Anne Wambui has been growing maize in her farm located in the upper eastern Kenyan county of Embu for three decades to cater for domestic consumption and sale in the nearby market.
During this period, she has relied on buying varieties from seed stockists that are either recommended by the agricultural extension officials or not necessarily varieties that she prefers to plant.
However, scientists at the International Maize and Wheat Improvement Center (CIMMYT) emphasized that farmers should be availed varieties that meet their varied needs.
Members of the International Maize Improvement Consortium Africa (IMIC – Africa) and other maize and wheat research partners discovered the latest innovations in seed and agronomy at Embu and Naivasha research stations in Kenya on August 27 and 28, 2019. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to present sustainable solutions for farmers to cope with poor soils, a changing climate and emerging diseases and pests, such as wheat rust, maize lethal necrosis or fall armyworm.
Versatile seeds and conservation agriculture offer farmers yield stability
“Maize is food in Kenya. Wheat is also gaining importance for our countries in eastern Africa,” KALRO Embu Center Director, Patrick Gicheru, remarked. “We have been collaborating for many years with CIMMYT on maize and wheat research to develop and disseminate improved technologies that help our farmers cope against many challenges,” he said.
Farmers in Embu, like in most parts of Kenya, faced a month delay in the onset of rains last planting season. Such climate variability presents a challenge for farmers in choosing the right maize varieties. During the field days, CIMMYT and KALRO maize breeders presented high-yielding maize germplasm adapted to diverse agro-ecological conditions, ranging from early to late maturity and from lowlands to highlands.
João Saraiva, from the Angolan seed company Jardins d’Ayoba, said having access to the most recent improved maize germplasm is helpful for his young seed company to develop quality seeds adapted to farmers’ needs. He is looking for solutions against fall armyworm, as the invasive species is thriving in the Angolan tropical environment. He was interested to hear about CIMMYT’s progress to identify promising maize lines resistant to the caterpillar. Since fall armyworm was first observed in Africa in 2016, CIMMYT has screened almost 1,200 inbred lines and 2,900 hybrids for tolerance to fall armyworm.
“Hopefully, we will be developing and releasing the first fall armyworm-tolerant hybrids by the first quarter of 2020,” announced B.M. Prasanna, director of CIMMYT’s Global Maize Programme and the CGIAR Research Program on Maize (MAIZE).
“Through continuous innovations to build varieties that perform well despite dry spells, heat waves or disease outbreak, maize scientists have been able to deliver significant yield increases each year across various environments,” explained Prasanna. “This genetic gain race is important to respond to growing grain demands despite growing climate risks and declining soil health.”
Berhanu Tadesse, maize breeder at the Ethiopian Institute for Agricultural Research (EIAR), was highly impressed by the disease-free, impeccable green maize plants at Embu station, remembering the spotted and crippled foliage during a visit more than a decade ago. This was “visual proof of constant progress,” he said.
For best results, smallholder farmers should use good agronomic practices to conserve water and soil health. KALRO agronomist Alfred Micheni demonstrated different tillage techniques during the field tour including the furrow ridge, which is adapted to semi-arid environments because it retains soil moisture.
Late maturity hybrid demonstration plot at Embu station. (Photo: Jérôme Bossuet/CIMMYT)
Innovations for a dynamic African seed sector
A vibrant local seed industry is needed for farmers to access improved varieties. Seed growers must be able to produce pure, high-quality seeds at competitive costs so they can flourish in business and reach many smallholder farmers.
Double haploid technology enables breeders to cut selection cycles from six to two, ultimately reducing costs by one third while ensuring a higher level of purity. Sixty percent of CIMMYT maize lines are now developed using double haploid technology, an approach also available to partners such as the Kenyan seed company Western Seeds.
The Seed Production Technology for Africa (SPTA) project, a collaboration between CIMMYT, KALRO, Corteva Agriscience and the Agricultural Research Council, is another innovation for seed companies enabling cheaper and higher quality maize hybrid production. Maize plants have both female and male pollen-producing flowers called tassels. To produce maize hybrids, breeders cross two distinct female and male parents. Seed growers usually break the tassels of female lines manually to avoid self-pollination. SPTA tested a male sterility gene in Kenya and South Africa, so that female parents did not produce pollen, avoiding a detasseling operation that damages the plant. It also saves labor and boosts seed yields. Initial trial data showed a 5 to 15% yield increase, improving the seed purity as well.
World-class research facilities to fight new and rapidly evolving diseases
The KALRO Naivasha research station has hosted the maize lethal necrosis (MLN) quarantine and screening facility since 2013. Implementing rigorous phytosanitary protocols in this confined site enables researchers to study the viral disease first observed in Africa 2011 in Bomet country, Kenya. Working with national research and plant health organizations across the region and the private sector, MLN has since been contained.
A bird’s eye view of the demonstration plots is the best testimony of the impact of MLN research. Green patches of MLN-resistant maize alternate with yellow, shrivelled plots. Commercial varieties are susceptible to the disease that can totally wipe out the crop, while new MLN-resistant hybrids yield five to six tons per hectare. Since the MLN outbreak in 2011, CIMMYT has released 19 MLN-tolerant hybrids with drought-tolerance and high-yielding traits as well.
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
A major challenge to achieving food security is to accelerate the varietal replacement on the market. CIMMYT scientists and partners have identified the lengthy and costly seed certification process as a major hurdle, especially in Kenya. The Principal Secretary of the State Department for Research in the Ministry of Agriculture, Livestock, and Fisheries, Hamadi Boga, pledged to take up this issue with the Kenya Plant and Health Inspectorate Service (KEPHIS).
“Such rapid impact is remarkable, but we cannot rest. We need more seed companies to pick up these new improved seeds, so that our research reaches the maximum number of smallholders,’’ concluded Prasanna.
Training attendees outside the Rift Valley Hotel in Adama, Ethiopia. (Photo: CIMMYT)
From July 22–26, the Stress Tolerant Maize for Africa (STMA) project organized a training in Adama, Ethiopia to update maize technicians on recent developments in maize research, data collection and seed production. The training was designed to stimulate good breeding programs, good data collection in trial and nurseries, production of better quality seed and development of improved varieties. Around 25 trainees attended, mainly from maize breeding research centers. Similar trainings were conducted in all STMA project countries over the last three and a half years.
CIMMYT staff from Ethiopia, Kenya and Zimbabwe and staff from the Ethiopian Institute of Agricultural Research (EIAR) Bako Research Center delivered training on methodologies and gave practical demonstrations on tablets. Presentations focused on the origin and botany of the maize plant, constraints to maize production in Ethiopia, data collection, breeding for abiotic stresses, new tools for phenotyping, maize lethal necrosis (MLN), and seed quality control.
Mandefro Nigussie, Director General of EIAR, said that the training was important because it addressed data collection. “If we are missing the data, we are missing the investment of the country,” he noted. He recognized CIMMYT’s culture in empowering research centers through trainings. The role of EIAR is to generate, test, disseminate and scale technologies. Therefore, having technicians who are aware of the recent developments in their areas is crucial.
Cosmos Magorokosho, maize breeder and STMA project leader, said that the core components of the training were to give technicians a strong understanding of the basics of maize and the physiology of maize plant. The knowledge they gained from this training will support them during data collection and when breeding for resistance to diseases and pests and improved seed production.
Upon completing five days training, all trainees received certificates along with the presentations and other relevant documents for future reference. CIMMYT maize breeder Dagne Wegary said he appreciated the active participation and dedication of the trainees and the interest they showed to improve their knowledge and skills. He reminded them that this is the start of a long journey and they will have to use the knowledge and skills gained to help farmers produce more and ensure food security. Trainees reflected that the training increased their existing knowledge in maize breeding and helped them to understand the current developments in the area. They said they would directly apply what they have learned and transfer the knowledge to other colleagues working in maize breeding.
This year opens the Decade of Family Farming (#FamilyFarmingDecade), which aims to improve the life of family farmers around the world. In an earnest discussion, two leaders in the global agriculture community reflect on the challenges facing family farmers, the promises of high- and low-tech solutions, and their hopes for the future.
A conversation between Martin Kropff, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and Trevor Nicholls, CEO of CABI.
On the unique challenges facing family farms
Trevor Nicholls (CABI): Family farmers come in many shapes and sizes but for me, the words “family farmer” bring a focus on smallholders and people who are starting on a journey of making a farming business. It depends on which part of the world you’re talking about; a family farm in the UK is perhaps very different to a small family farm in Ethiopia. And family farms can grow from just a small plot to being quite large commercial enterprises.
Martin Kropff (CIMMYT): All agriculture started with family farms. Fifty years ago in my home country, the Netherlands, farms were almost all family farms. When we look globally, farms in places like India, Pakistan, and Kenya are very often small, and the whole family is involved.
KROPFF: When the whole family is involved, gender dynamics come out. In a way, family farming is very often the farming done by women. This makes women the most important players in agriculture in many developing countries. It’s crucial to recognize this and understand their decision-making. For example, our research shows that men and women value different traits in crop varieties. We need to understand this to have successful interventions.
NICHOLLS: We’ve seen something similar through our Plantwise plant clinics, where farmers come for practical plant health advice. We see a definite pattern of men bringing in cash crops for advice, and women looking more at fruits and vegetables to feed their family. But overall, mostly men come into our clinics, particularly in certain parts of the world. We’re trying to encourage more female participation by timing the clinics so that they fit into women’s routines without getting in the way of taking care of elderly relatives or getting kids off to school. Sometimes really simple things can open up access and improve the gender balance.
KROPFF: When the whole family is involved, there are also downsides. In Africa, young people do much of the weeding.
NICHOLLS: That’s right, they may be pulled out of school for weeding.
KROPFF: This really worries me. Hand weeding is such hard labor, such an intensive use of energy; it seems like it should be something of the past. Children don’t want to do it anymore. My wife is from the generation where children still did weeding in the Netherlands. She remembers standing in the fields weeding when the sun was extremely warm while her friends were out doing other things.
NICHOLLS: It starts kids off on the wrong path, doesn’t it? If their experience of farming is backbreaking weeding from the age of 8 onwards, it’s highly unlikely to attract them into farming as a career.
A farmer uses a smartphone to access market information.
On keeping young people interested in farming
NICHOLLS: We need to look at things like weed control as a social issue. It’s possible, for example, to use beneficial insects to limit the spread of certain weeds that infest farmland. Biocontrol and Integrated Pest Management should be seen as ways of reducing the spread of certain weeds, and also as ways to reduce the burden on women and youth.
KROPFF: I agree. Similarly, we’re finding that small-scale mechanization is making a difference for youth, and also women’s labor in Latin America, Africa and Asia, where CIMMYT has been introducing two-wheel tractors that can be engineered in local workshops. Suddenly, smallholders can harvest the entire wheat crop of 20 families in one day. This saves so much time, money, and effort, eliminating some of the “bad” labor that may discourage youth and unfairly burden women. Farmers can focus on the “nice” aspects of the business. It’s a real game changer for family farming.
NICHOLLS: Yes and this can also be amplified through digital technology. People refer to the “Uber-ization” of tractors, where farmers are able to hire a piece of mechanical equipment for a very short space of time, and maybe it even comes with an experienced driver or operator. We’re finding that digital tools like artificial intelligence, satellite imaging, smartphones, and other modern technologies, will intrigue youth anywhere in the world. These will hopefully have an impact on bringing more youth back into farming, as they start to see it as technologically enabled rather than straightforward muscle power.
On the transformations that need to happen
KROPFF: If we want to keep youth engaged, and improve farmers’ livelihoods, I think farming needs to become more entrepreneurial. Many family farms are only half a hectare. I think this has to grow somehow, though land rights and ownership are a challenge
NICHOLLS: As farming becomes more business-like in Africa then we’re going to see the same sort of consolidation that we saw in the United States and Europe, whereby farm sizes do get larger even if land ownership remains fragmented.
This could happen through cooperatives, which offer economies of scale and also help farmers spread the costs of things like access to inputs, advice, weather insurance and crop insurance. But we need to view cooperatives as more than a way to infuse new technologies into the farming system. They are in fact a channel for helping farmers gain stronger business skills, so they can get a better bargain for themselves.
KROPFF: In Mexico we are working with 300,000 smallholder farmers in a sustainable maize and wheat sourcing initiative. Rather than “pushing” new varieties and technologies at farmers, we help them partner with maize and wheat companies to create a local demand for high quality, sustainable products. Real scaling up, especially for wheat and maize, needs more than extension. Farmers need better links to the market.
NICHOLLS: If farms get larger and more mechanized, it means fewer people are involved in the business of farming. This shift means that people will need other rural occupations, so that they don’t just leave the land and move to the city. We need investments in other productive activities in rural areas. This could be around post-harvest processing of crops: adding value locally rather than shipping the raw materials elsewhere.
KROPFF: Exactly. We’ve been doing more work on this in the last ten years. CIMMYT works on wheat and maize, and these are products that need to be processed. Doing this locally would also help people save food in the future for more difficult times, instead of selling to someone from the city who may buy it for an unfair price. Farmers these days have access via smartphones to market information, which is empowering. We see it happening in Africa. It’s really crucial.
NICHOLLS: We’re certainly seeing the power of digital technologies, which are also helping us move beyond just responding to crop pests and diseases to being able to get better at predicting outbreaks on a micro-scale. By linking ground observations through our Plantwise clinics with satellite observation technology and data, we’ve developed a program called PRISE (Pest Risk Information SErvice), which provides farmers with alerts before a pest is likely to reach its peak point, so that they can be prepared and take preventative measures.
KROPFF: Without a doubt, smallholder farmer communities are rapidly entering the digital age, and tools on weather prediction, selection of varieties, market information are very important and transforming the way people farm.
A farmer requests weather information via SMS.
On climate change
KROPFF: Climate change is going to be the issue affecting family farmers, especially in Asia and Africa where the population will grow by 2 billion people who need food that has been produced on their own continents. Yields have to rise and climate change brings yields down. We have to help smallholder family farmers keep doing their job and ensure crop yields, which is why climate change is embedded into 70% of our work at CIMMYT. One major area is developing and testing heat- and drought-tolerant varieties that suit local climates. Last year I was in Zimbabwe, which was experiencing El Niño, and I was very impressed by the difference in maize yields from drought and heat-tolerant varieties compared to the normal varieties.
NICHOLLS: That’s very good. In addition to drought and heat, we see pests and diseases appearing in new places as a result of climate change. Pests and diseases will cause crop losses of up to 40% on average. Stemming those losses is critical. We’re seeing invasive species, such as fall armyworm, and many invasive weeds and trees that are effectively stealing arable and pastoral land from farmers, as well as water resources.
Pest-resistant crops have great long-term potential, but farmers also need short-term solutions while they wait for new varieties to become available. One of CABI’s strengths is scanning for solutions from other parts of the world. With fall armyworm, we are looking to South America, where the pest originates, for solutions and natural enemies. We’re also scanning our fungal culture collection for samples that may have properties that can form the basis for biopesticides, and therefore open up a program of biological control.
Hopes for the future
NICHOLLS: I’m very optimistic for family farmers. They are incredibly resilient and resourceful people, and they survive and thrive in pretty difficult circumstances. But the world is getting more challenging for them by the day. I think the Sustainable Development Goals (SDGs) have framed many of the issues very well, in terms of food security and livelihoods, sustainable consumption and production, and this will help to focus attention on family farmers.
I do see some quite encouraging signs, particularly in Africa, where the CAADP (Comprehensive Africa Agricultural Development Programme) has brought much greater coordination among countries. We’re seeing more unity in the requests we receive from our member countries to help them address the issues that are in the SDGs. That makes the work of our organizations easier, because we’re addressing a broader set of demands. And in turn, that will benefit family farmers.
Technology, be it biotechnology or telecommunications and ICTs, is becoming so much more affordable over time. The rate that smartphone usage is spreading in Africa and Asia is incredible. In many areas we actually have most of the technology we need today. It’s about getting it put into practice effectively with large numbers of farmers. So I remain very optimistic about the future.
KROPFF: I’m an optimist by nature. That’s also why I’m in this job: it’s not easy, but I really believe that change is possible if we have our act together and collaborate with CABI and other international research partners, national systems and the private sector. For a long time, people said that there was no Green Revolution in Africa, where yields remained one ton per hectare. But today we see yields increasing in countries like Nigeria, and in Ethiopia, where maize yields are 3.5 tons per hectare. Good things are happening because of family farming.
I believe that to increase yields you need three components: better seeds for more resilient crop varieties; sustainable intensification to grow more nutritious food per unit of water, land and soil; and good governance, to properly manage resources. We need to invest in all of these areas.
NICHOLLS: I fully agree. We need to work on all these areas, and harness the power of modern technology to help family farmers thrive now, and in the future.
This interview has been edited for length and clarity.
This year’s African Green Revolution Forum (AGRF), which took place from September 3-6, 2019 in Accra, Ghana, focused on the potential of digital agriculture to transform African agriculture through innovations such as precision agriculture solutions for smallholder farmers, access to mobile financial services, data-driven agriculture, and ICT-enabled extension.
Committed to a digital transformation of African agricultural that benefits many, not a few.
Despite its importance of the continental economy and untapped resources, African farming sector is still dominated by ageing smallholders cultivating few acres of cropland, using not much inputs and lagging far behind productivity world standards.
Many experts believe digital agriculture could help African agriculture leapfrog to overcome its geographical, social and economic bottlenecks, bringing successful technologies to scale faster, and market opportunities even for remote smallholders. Some countries like Ghana or Kenya are becoming digital hubs for agritech-savvy young entrepreneurs along the food value chains, from drone for Ag, linking farmers to the marketplace, or offering mobile mechanization or financial services.
Large initiatives were announced to foster this growth potential, in particular towards the youth in agriculture, like the Mastercard Foundation’s commitment to invest $500 million to support for young agripreneurs within its Young Africa Works initiative, and the World Bank’s One Million Farmer platform in Kenya.
Improving smallholders’ resilience through digital innovations
The millions of African rainfed farmers are in a risky business, from rising climate shocks to emerging pests and diseases like the invasive fall armyworm or the maize lethal necrosis. CIMMYT Director General Martin Kropff highlighted the importance of digital tools to predict these risks through smart, scalable early warning systems like the award-winning diagnostic tool Marple that helps map wheat rust outbreaks. Researchers can also better predict the farms’ responses to these risks through accurate modelling. They can for instance better assess the potential yield benefits of drought and heat tolerance under different climate change scenarios.
CIMMYT crop breeders use tablet-based disease scoring applications and test new imagery and high-tech sensors for more accurate and cost-effective data collection. Kropff underlined the key role digital tools play to speed up science breakthroughs and impact delivery at the farm level.
Tailored advice for farmers and policy-makers to enable sustainable intensification
“The future is no longer where it used to be. Farmers’ reality has become even more unpredictable,” said Enock Chikava, deputy director, agricultural development at the Bill & Melinda Gates foundation during a vivid debate on how to reshape the future agronomic research so it delivers more site-specific and responsive advice.
Much of the agronomy work within the region remains fragmented across research institutes, commodities and projects, and struggles to go beyond blanket recommendations that are most of the time not adapted to local farming conditions.
However, there is a fast-growing wealth of georeferenced data that can describe the diverse farming landscapes and socio-economic context of each African smallholder farmer. The starting point to exploit these data and get the right solutions for each farmer is to ask the right questions.
Moderated by Samuel Gameda, CIMMYT soil scientist, who shared the lessons from the Taking Maize Agronomy to Scale (TAMASA) project, this session on Agronomy at Scale discussed what public information goods like crop yield prediction maps or extension apps, such as the maize variety selector, would be the most useful for farmers and large-scale agronomic initiatives to trigger this much needed sustainable intensification of millions of African smallholdings. What investments would make a difference to scale the use of these new decision-support tools?
“Agronomic research must be carried out from a broader perspective of large-scale relevance and application. It is also more and more a joint effort and responsibility between smallholder farmers, the research community and public and private sectors, with each component playing specific and interacting roles. The current era of powerful and accessible ICT tools and big data analytics make this much more feasible and should be incorporated to enable precision agronomy for all, this is my take home message,” said Gameda.
“This data revolution will only work if we invest in research data quality and data management,” stressed Bram Govaerts, CIMMYT’s Integrated Development Program director. “That will generate better evidence for decision-makers to guide impact investment plans, deciding on which technology e.g. a new drought-tolerant crop variety and put the money in the right leveraging point,” Govaerts concluded.
The largest forum on African agriculture, AGRF 2019 gathered more than 2,200 delegates and high-level dignitaries, from heads of State and government officials to leaders of global and regional development institutions; top agri-food businesses and local entrepreneurs; financial institutions; mobile network operators and tech leaders, as well as lead representatives of farmer organizations.
Cover photo: Delegation from the International Maize and Wheat Improvement Center (CIMMYT) at the African Green Revolution Forum (AGRF) 2019.
The Indonesian delegation visited CIMMYT’s germplasm bank. (Photo: Alfonso Cortés/CIMMYT)
A delegation of the Indonesian Agency for Agricultural Research and Development (IAARD) visited the International Maize and Wheat Improvement Center (CIMMYT) to reaffirm their research partnership. Led by the Director General of IAARD, Fadjry Djufry, a group of Indonesian researchers and leaders visited CIMMYT on August 28 and August 29.
CIMMYT and IAARD have collaborated on research since 1981, when an Indonesian researcher participated in CIMMYT trainings. Since 1995, CIMMYT has worked with Indonesia through joint research and donations of inbred lines. CIMMYT has helped the Indonesian Cereals Research Institute (ICERI) in establishing infrastructure for a drought-tolerant nursery and has sponsored ICERI researchers to attend international scientific meetings. The CIMMYT-organized Asian Maize Biotechnology Network supported a satellite molecular laboratory for ICERI.
The Director General of IAARD, Fadjry Djufry (left), and the Director General of CIMMYT, Martin Kropff, signed a memorandum of understanding. (Photo: Alfonso Cortés/CIMMYT)
During the visit, the Indonesian delegation signed a memorandum of understanding with CIMMYT. Visitors also attended presentations on CIMMYT’s progress and strategy, toured the germplasm bank, visited the maize nutrition quality lab, and did a field visit to learn about sustainable intensification and climate change adaptation.
After CIMMYT director general Martin Kropff gave an overview of CIMMYT, the IAARD delegation presented their work and innovations to increase maize and wheat production. Indonesian researchers have released high yielding maize varieties, functional maize varieties and hybrid maize varieties. Farmers are intercropping maize, rice and soybeans. Post-harvest technology, mechanization and mapping have contributed to maize productivity.
The Indonesian delegation and CIMMYT discussed possible opportunities for collaboration. (Photo: Alfonso Cortés/CIMMYT)
IAARD also outlined its strategy to contribute to the government’s target of food self-sufficiency to become the world’s food basket by 2045.
IAARD suggested future collaboration with CIMMYT to help achieve this goal, including working together on research and development of improved maize and wheat, a double haploid for maize, water management, climate-smart agriculture and data management for genetic resources.
Indonesian researchers did a field visit to learn about sustainable intensification and climate change adaptation. (Photo: Alfonso Cortés/CIMMYT)
At the African Green Revolution Forum 2019, global and African leaders come together to develop actionable plans that will move African agriculture forward. This year, the forum is taking place in Ghana on the week of September 3, 2019, under the theme “Grow digital: Leveraging digital transformation to drive sustainable food systems in Africa.” Participants will explore the practical application of the emerging elements of the digital era such as big data, blockchain, digital IDs, drones, machine learning, robotics, and sensors.
CIMMYT’s work in this area is showcased in a new leaflet entitled “Data-driven solutions for Africa: Using smart tools to combat climate change.” The leaflet highlights innovations such as crowdsourced crop disease tracking and response systems in Ethiopia, low-cost imaging tools to speed up the development of hardier varieties, and combining geospatial data with crop models to predict climate change and deliver personalized recommendations to farmers.
A new publication highlights the diverse ways in which CIMMYT’s research is propelling the digital transformation of agriculture in Africa.
Speaking at the conference attended by 2,000 delegates and high-level dignitaries, CIMMYT Director General Martin Kropff will give the keynote remarks during the session “Digital innovations to strengthen resilience for smallholders in African food systems” on September 3. This panel discussion will focus on how the data revolution can support African smallholder farmers to adapt quickly challenges like recurrent droughts or emerging pests, including the invasive fall armyworm. The Global Resilience Partnership (GRP), the Food and Agriculture Organization of the United Nations (FAO), CABI, and the Minister of Agriculture of Burkina Faso will be among the other panelists in the session.
The same day, CIMMYT will also participate to an important “Agronomy at scale through data for good” panel discussion with speakers from the Bill & Melinda Gates Foundation, research organizations and private companies. The session will highlight how digital agriculture could help deliver better targeted, site-specific agronomic advice to small farmers.
During the forum, the CIMMYT delegation will seek collaborations in other important drivers of change like gender transformation of food systems and smallholder mechanization.
They will join public sector leaders, researchers, agri-preneurs, business leaders and farmers in outlining how to leverage the growth in digital technologies to transform food systems and agricultural livelihoods in Africa.
Rural areas in Africa are facing unprecedented challenges. From high levels of rural-urban migration to the need to maintain crop production and food security under the added stress of climate change, rural areas need investment and support. The recent Africa Food Security Leadership Dialogue brought together key regional actors to discuss the current situation as well as ways to catalyze actions and financing to help address Africa’s worsening food security crisis under climate change.
Heads of state, ministers of agriculture and finance, heads of international institutions and regional economic commissions, Nobel laureates, and eminent scientists took part in the dialogue in Kigali, Rwanda, on August 5 and 6, 2019.
This high-level meeting was convened by core partners including the African Union Commission (AUC), the African Development Bank (AfDB), the Food and Agriculture Organization of the United Nations (FAO), the International Fund for Agricultural Development (IFAD), and the World Bank.
The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, participated in a session entitled “Leveraging science to end hunger by 2025”, where he discussed the challenges to adapt Africa’s wheat sector to climate change, and what CIMMYT is doing to help. Demand for wheat is growing faster than any other commodity, and sub-Saharan Africa has tremendous potential to increase wheat production. People in Africa consume nearly 47 million tons of wheat a year. However, more than 80% of that — 39 million tons— is imported and used for human consumption, costing the countries billions of dollars. Kropff discussed the great strides CIMMYT has made in supporting wheat production on the continent despite biological challenges such as Ug99, a dangerous strain of wheat rust native to east Africa.
“The potential for wheat production in Africa is tremendous; existing varieties already realize very high yields but poor agronomic practices often result in low yields,” Kropff said. “The challenges we have to tackle together are as much in reshaping policies in favor of wheat and develop the wheat market and surrounding infrastructure. Africa’s environment is friendly for wheat production, but it needs the right supporting policies to develop a sustainable wheat market.”
Kropff highlighted Ethiopia’s case. “Ethiopia has decided to become self-sufficient in wheat by 2025. CIMMYT is already talking to the government and working with the national system to assure the best varieties and technologies will be used. We are ready to do this with every single African nation that is interested in producing quality wheat.”
Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)
Climate change is also posing dire threats to maize, a key staple crop in sub-Saharan Africa.
We talked to Cosmos Magorokosho, CIMMYT researcher and project leader of the Stress Tolerant Maize for Africa (STMA) project, who attended the dialogue, on what CIMMYT can do to better support farmers in Africa’s rural communities.
How can projects such as Stress Tolerant Maize for Africa contribute to protecting food security in Africa in the face of climate change?
Stress-tolerant maize varieties can contribute by cushioning farmers against total crop failures in case of drought and heat stress, among other stresses during the growing season. In addition, stress-tolerant varieties can also yield well under good growing conditions, therefore benefiting farmers both during difficult growing seasons as well as those seasons when conditions are favorable for maize growth.
What can be done to support rural areas and smallholder farmers in Africa to improve food security?
Rural areas and smallholder farmers need support with climate resilient crop varieties, supporting agronomic practices, environment conserving farming practices, labor and drudgery- reducing farm operations, access to affordable finance, and rewarding markets for their produce.
What role can international research organizations such as CIMMYT play in this?
International agricultural research can unlock the potential of small holder farmers through the generation of new appropriate technologies, testing and helping farmers adopt those technologies, refining and fine tuning of new technologies, as well as scaling up and out of farmer-demanded technologies. International agriculture research can influence policy across and within borders, political divide, religion, ecologies, and diversity of farmers.
What would it take for CIMMYT to effectively move science from the lab and package it into solutions that can be disseminated and adopted by majority of small family farms in Africa?
CIMMYT should keep and broaden its engagement with farmers, policy makers, and continue with capacity enhancement of partners to reach scale and bring new cutting-edge smallholder-farmer appropriate technologies to farmers’ fields in the shortest possible timeframe.
Anani Bruce, maize entomologist at the International Maize and Wheat Improvement Center (CIMMYT) since 2013, is intensively engaged in an expert partnership supporting African maize farmers’ stand against deadly insect pests, especially fall armyworm and stem borers.
A moth species native to the Americas, fall armyworm was detected in Nigeria in 2016 and in less than three years has overrun sub-Saharan Africa’s maize growing regions. At its larval stage, it feeds on leaves and ears, causing annual harvest losses whose value can exceed $6 billion.
Bruce and his colleagues are rushing to develop maize varieties that feature native genetic resistance to fall armyworm and to arm farmers with locally suited control measures. Finding and strengthening native resistance in maize against the pest is a key pillar of integrated pest management.
“The fall armyworm is so challenging that there’s no single, easy fix,” said Bruce, who earned a PhD in Entomology at the International Centre of Insect Physiology and Ecology (ICIPE) and Kenyatta University, Kenya, in 2008. “We are testing and promoting an integrated management approach which, along with host plant resistance, includes biological control, habitat management, good agronomic practices, safe chemicals, bio-pesticides, and botanical controls.”
“The costs and complexities of such practices are daunting, but farmers can learn if you help them and there is little alternative right now, given that maize is sub-Saharan Africa’s number-one staple food,” Bruce explained.
According to the scientist, breeding is also laborious, because potentially resistant maize plants must be tested under controlled, heavy infestations of insects and this is allowed only in net houses.
“Net houses don’t provide enough room to grow the large number of maize lines needed for rapid and effective breeding progress,” Bruce said. “Even so, we have promising leads on sources of moderate resistance from maize populations developed by CIMMYT in Mexico in the 1980s-90s.”
A case of switching environments and specialties
A native of Togo, a small West African country between Benin and Ghana, Bruce said he was first interested in studying mechanical engineering but did not get the opportunity at the University of Lomé, Togo, where he did his master’s studies in agronomy. A mentor instead suggested he pursue entomology, and he followed this up at the International Institute of Tropical Agriculture (IITA) in Cotonou, Benin, where he undertook research on stem borers as a part of his master’s thesis.
“Surprisingly, I found many parallels with mechanical engineering,” said Bruce, who is based at CIMMYT’s office in Kenya. “There is a vast number and diversity of insect species and their roles and interactions in natural systems are incredibly complex, just as occurs between components in mechanical systems.”
When Bruce moved to ICIPE under the African Regional Postgraduate Program in Insect Science (ARPPIS), he needed to add English to his native French and local languages, but said his first major cultural shock was actually dietary.
“In West Africa we usually eat our maize paste with a sauce,” he explained,” but when I sat down to eat in Kenya, I found that the maize paste called ugali was eaten only with milk or meat, a combination known as nyama choma.”
Despite that and other cultural differences, Bruce said he quickly acclimatized to his new work and study setting in eastern Africa.
Nursing maize’s enemies
At CIMMYT, Bruce provides technical backstopping for national research partners to rear maize stem borers and the fall armyworm, as part of breeding improved maize varieties with insect-pest resistance and other relevant traits.
“Special expertise and conditions are required to raise, transport, and apply the eggs or young larvae properly on experimental maize plants, so that infestation levels are as uniform as possible and breeders can identify genetically resistant plants,” Bruce said.
He has also worked with gene constructs from the bacteria known as Bacillus thurigiensis (Bt). When inserted into maize, the constructs bestow the crop with resistance against stem borer species.
“We have plans to deploy Bt maize in selected countries in eastern and southern Africa, but we are awaiting the resolution of regulatory hurdles,” he explained.
Bruce credits Fritz Schulthess, former IITA and ICIPE entomologist, with providing special inspiration and support for his studies and professional development.
“Fritz believes in sharing his scientific experience with upcoming scientists and in speaking his thoughts in black and white,” Bruce said. “He is a workaholic scientist who will review your paper even past midnight and expects your response before 6 am.”
Access to affordable quality seed is one of the prerequisites to increase agricultural production and improve the livelihoods of Nepali farmers. However, there are significant challenges to boost Nepal’s seed industry and help sustainably feed a growing population.
Six years ago, Nepal launched its National Seed Vision 2013-2025. This strategic plan aims at fostering vibrant, resilient, market-oriented and inclusive seed systems in public-private partnership modalities, to boost crop productivity and enhance food security.
The Nepal Seed and Fertilizer (NSAF) project, led by the International Maize and Wheat Improvement Center (CIMMYT), is supporting the government to enhance national policies and guidelines, and private seed companies to build competitive seed businesses and hybrid seed production.
General view of a hybrid maize field from Lumbini Seed Company, a NSAF project partner, in Nepal’s Bhairahawa district. (Photo: Subhas Sapkota)
Quality seed can increase crop yield by 15-20%. However, there are critical challenges hindering the growth of Nepal’s seed industry. Existing seed replacement rate for major cereals is low, around 15%. About 85% of Nepali farmers are unable to access recently developed improved seeds — instead, they are cultivating decades-old varieties with low yield and low profits. Some of the factors limiting the development of seed systems are the high cost of seed production and processing, the limited reach of mechanization, and the low use of conservation agriculture practices.
The demand for hybrid seeds in Nepal is soaring but research in variety development is limited. Most of the country’s supply comes from imports.
In collaboration with the Nepal Agricultural Research Council (NARC), the NSAF project team is working with seed companies and cooperatives to scale hybrid seed production of maize, tomato and rice. Through this project, CIMMYT collaborated with the Seed Quality Control Center (SQCC) and national commodity programs of the NARC to draft the first hybrid seed production and certification guidelines for Nepal to help private seed companies produce and maintain standards of hybrid seeds.
Extension and promotion activities are essential to bring improved seed varieties to farmers. Standard labelling and packaging also needs to be strengthened.
Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, explained the importance of seed stakeholders’ collaboration to achieve the National Seed Vision targets. (Photo: Bandana Pradhan/CIMMYT)
A joint effort
CIMMYT and its partners organized a two-day workshop to review the progress of the National Seed Vision. The event attracted 111 participants from government institutions, private companies and development organizations engaged in crop variety development, seed research, seed production and dissemination activities.
In the opening remarks, Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, addressed the seed sector scenario and its challenges. He stressed the importance of collaboration among seed stakeholders to meet the targets of the National Seed Vision in the next six years.
During the technical sessions, Madan Thapa, Chief of the SQCC, analyzed the current status of the National Seed Vision and highlighted the challenges as well as the opportunities to realize it.
Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) emphasized the importance of private sector engagement and other support areas to strengthen seed production and marketing of open-pollinated varieties and hybrids.
Seed systems specialist AbduRahman Beshir shares CIMMYT’s experiences in hybrid testing and seed business promotion in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Tara Bahadur Ghimire, Principal Scientist at NARC, gave an overview of the status of NARC varieties, source seed and resource allocation.
Dila Ram Bhandari, former Chief of SQCC, led a discussion around the assumptions and expectations that arose while developing the National Seed Vision.
Technical leads of maize, rice, wheat and vegetables presented a road map on hybrid variety development and seed production in line with the National Seed Vision’s targets for each crop.
“A large quantity of hybrid seeds, worth millions of dollars, is being imported into Nepal each year,” explained AbduRahman Beshir, Seed Systems Lead of CIMMYT’s NSAF project. “However, if stakeholders work together and strengthen the local seed system, there is a huge potential in Nepal not only to become self-sufficient but also to export good quality hybrid seeds in the foreseeable future. Under the NSAF project we are witnessing a few seed companies that have initiated hybrid seed production of maize and tomato.”
In one of the exercises, workshop participants were divided in groups and examined different topics related to the realization of the National Seed Vision. They looked at genetic resources, hybrid and open-pollinated variety development, source seed production and supply, private sector engagement and marketing, seed extension and varietal adoption by farmers, seed quality control services, and roles of research partners and other stakeholders. The groups presented some of the major challenges and opportunities related to these topics, as well as recommendations, which will be documented and shared.
The outcomes of this mid-term review workshop will inform policy and guide the discussions at the upcoming International Seed Conference to be held in early September 2019.
In one of the breakout sessions, a group discusses challenges and recommendation to improve private sector engagement. (Photo: Bandana Pradhan/CIMMYT)
Regulating hybrid seed production
At the workshop, participants thoroughly discussed the draft hybrid seed production and certification guidelines, developed under the NSAF project.
The guidelines are the first of their kind in Nepal and essential to achieve the targets of the National Seed Vision, by engaging the private sector in hybrid seed production.
Hari Kumar Shrestha, CIMMYT’s Seed Systems Officer, and other seed experts from the SQCC presented the main features and regulatory implications of the guidelines.
After the workshop, the guidelines were sent to the National Seed Board for approval.
The newly released CGIAR Research Program on Maize (MAIZE) Annual Report 2018 highlights significant development outcomes and impacts through varietal release, scale-up, delivery and adoption of CIMMYT- and IITA-derived climate-resilient and nutritionally enriched maize varieties.
In 2018, national partners released 81 unique CGIAR-derived maize varieties across Africa, Asia and Latin America. Of these varieties 14 were hybrid combinations, showing that regional and multinational seed companies use MAIZE’s improved germplasm to develop and release improved maize hybrids. 20 of the released varieties are nutritionally enriched — provitamin A, quality protein maize (QPM), high-zinc — the result of the MAIZE partnership with the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH; HarvestPlus).
MAIZE and partners have made great strides in 2018 combatting major pest and disease challenges such as maize lethal necrosis (MLN) and the devastating fall armyworm. MAIZE researchers found that sustainable intensification practices in combination with stress-tolerant maize led to higher yield gains during the El Niño year in Southern Africa. Meanwhile, a crop growth modelling study quantified the impact of climate change on maize and found combined drought and heat stress tolerance has a benefit at least twice that of either one alone.
Newly formed, non-profit ProMaíz Nativo will promote Mexico’s native corn biodiversity with a front-of-pack logo to help consumers choose sustainably-grown, heirloom varieties. Read more here.
The International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of improved maize hybrids to partners in South and South East Asia and similar agro-ecological zones, to scale up production for farmers in these areas.
National agricultural research systems and seed companies are invited to apply for the allocation of these pre-commercial hybrids, after which they will be able to register, produce and offer the improved seed to farming communities.
The deadline to submit applications to be considered during the next round of allocations is August 15, 2019. Applications received after that deadline will be considered during the following round of product allocations.
Information about the newly available hybrids, application instructions and other relevant material is available below.
To apply, please fill out the CIMMYT Improved Maize Product Allocation Application Forms, available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. Please be sure to use these current versions of the application forms.
A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)
Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.
A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.
The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.
A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)
Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.
Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.
Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)
“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”
The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.
The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.
Tabitha Kamau, 29, is scrutinizing a maize demonstration plot on which 12 different varieties were planted in November 2018. “What I am looking for is a maize variety that produces a lot, even when there is scarce rainfall,” says the single mother of three, who lives in Katheini, in Kenya’s Machakos County, on a quarter of an acre of land.
Together with 350 other smallholder farmers from Katheini and neighboring villages, Kamau is assessing the maize crops and ranking them based on her preferred traits.
Like her peers when asked what makes a good maize variety, she gives high scores to drought-tolerant varieties and those that can yield large and nicely filled cobs despite the dry spell that has affected the area over the last two months.
For five years, Kamau has been planting KDV4, a drought-tolerant open pollinated variety on the family land and another piece of leased plot. This early variety matures in 100 to 110 days and is adapted to dry mid-altitude conditions.
Tabitha Kamau examines drought-tolerant KDV4 maize in her plot in the village of Kavilinguni, Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
KDV4 was released by the Kenya Agricultural & Livestock Research Organization (KALRO) using the International Maize and Wheat Improvement Center (CIMMYT)’s germplasm. It is currently marketed by Dryland Seed Limited and Freshco Seeds, targeting farmers in the water-stressed counties of Kitui, Machakos and Makueni, in the lower eastern regions of Kenya.
The early maturing of varieties like KDV4 presents a good opportunity for its adopters, says Kamau. “If I am able to harvest in three and a half months or less, compared to four months or more for other varieties, I can sell some grain to neighbors still awaiting their harvest who want to feed their families.”
“I heard of new varieties that can germinate well and produce lots of leaves,” explains Catherine Musembi. This farmer from Kivaani looks for maize that performs well even under heat and drought. She likes maize plants with high biomass, as the foliage is used to feed the family’s three cows and two goats.
An enumerator (left) collects a farmer’s details and socioeconomic data before she participates in the evaluation of maize varieties. (Photo: Joshua Masinde/CIMMYT)
Farmers’ picks
The International Maize and Wheat Improvement Center (CIMMYT) has been undertaking participatory maize variety evaluations since 2016 in Kenya, Rwanda, Tanzania and Uganda. Every year, during the main maize growing season, researchers plant on-farm trials that can be evaluated by farmers.
Kamau and Musembi attended a selection trial in Machakos County, facilitated by a team from KALRO on February 18-19, 2019. This exercise was part of the 2018 mid-season evaluations, which were followed up by end-season assessments a month later.
Participatory farmer evaluations are used to give crucial feedback to CIMMYT’s maize breeding work. First, farmers get an opportunity to state what traits are important for them and rank them according to their importance. Then, participants evaluate varieties planted in the trial and give a score on individual trait and the overall performance for each variety planted. And they conclude the exercise by rating the best three plots.
In the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred.
“Our work is to tease out the information regarding which traits contribute to a good score in the overall score,” explains Bernard Munyua, a socioeconomics research assistant at CIMMYT. Statistical analysis of the farmers’ score cards will reveal if the initial rating of criteria plays a strong role in the final overall appreciation of a variety. For instance, farmers may give high importance to height or biomass, yet it may not play a role in their ranking of best varieties.
“Such data is important for maize breeders to support future variety improvement work,” Munyua notes. “Moreover, by disaggregating the farmers opinions by region and socioeconomic attributes such as gender, education and income, we can define the priority traits by region or farmers’ socioeconomic profiles. It helps better target maize breeding work according to the needs on the ground and gives useful knowledge to seed companies for their seed marketing strategy,” he adds.
For instance, in the drier eastern part of Kenya, farmers might be more interested in traits such as drought tolerance, early maturity and disease resistance. In central Kenya, where dairy farming is commonly practiced, a variety with more biomass could be preferred. In western Kenya, they could be more interested in grain yields and cob characteristics to improve their sales after harvest.
Agnes Nthambi (left) and other farmers evaluate maize varieties developed through CIMMYT’s Stress Tolerant Maize for Africa (STMA) project. (Photo: Joshua Masinde/CIMMYT)
Agnes Nthambi, the farmer who hosted the demonstration plot, is very positive about her participation, as she learned about some of the ideal agronomic practices as well as the performance of new varieties. “On this trial, I learned that spacing was about two times shorter than we are generally used to. Even with the more constricted spacing, the maize has performed much better than what we are used to seeing,” she says. She also learned that fertilizer is applied at the time of planting. In her case, she normally applies fertilizer much later after germination has already occurred.
Nthambi says her family cannot afford losing both the fertilizer and the seed in case the rains fail. This time, she expects a good harvest from the one-acre farm, to supplement her family’s income.