Skip to main content

research: Maize

NASDA representatives visit CIMMYT

Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco AlarcĂłn/CIMMYT)
Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco AlarcĂłn/CIMMYT)

Representatives from the National Association of State Departments of Agriculture (NASDA) of the United States visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on May 19, 2022. Ted McKinney, NASDA’s Chief Executive Officer, was joined by RJ Karney, Senior Director of Public Policy, and John Goldberg, consultant and partner at The Normandy Group.

“I wish the world could all understand what you do here. This is just fantastic,” said McKinney after seeing the broad range of work conducted at CIMMYT.

NASDA’s tour of CIMMYT’s global headquarters in Texcoco, Mexico, included visits to the museum, the maize and wheat genebanks, the greenhouse, the bioscience complex, the wheat quality laboratory and the experimental station.

In each location, the visitors met with CIMMYT representatives who provided an overview of their research areas. Discussions ranged from the importance of preserving disease resistance in wheat in order to conduct experiments, the process for using DNA to inform breeding programs, and the assessment process for wheat grain. NASDA’s representatives also gained an understanding of how CIMMYT connects experiments with the needs of farmers, ensuring that scientific progress is translated into real-life solutions.

(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco AlarcĂłn/CIMMYT).
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco AlarcĂłn/CIMMYT).
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

Legume-based Agroecological Intensification of Maize and Cassava Cropping Systems in Sub-Saharan Africa (LEG4DEV)

The Legume-based Agroecological Intensification of Maize and Cassava Cropping Systems in Sub-Saharan Africa (LEG4DEV) project aims to promote scaling of legume-based agroecological intensification of smallholder maize and cassava cropping systems in sub-Saharan Africa for water-food-energy nexus sustainability that enables food security and livelihood resilience.

Protecting plant health for food and nutritional security

Stripe rust, also known as yellow rust, on wheat with droplets of rain. (Photo: A. Yaqup/CIMMYT)
Stripe rust, also known as yellow rust, on wheat with droplets of rain. (Photo: A. Yaqup/CIMMYT)

Robust and resilient agrifood systems begin with healthy crops. Without healthy crops the food security and livelihoods of millions of resource-constrained smallholder famers in low- and middle-income countries would be in jeopardy. Yet, climate change and globalization are exacerbating the occurrence and spread of devastating insect-pests and pathogens.

Each year, plant diseases cost the global economy an estimated $220 billion — and invasive insect-pests at least $70 billion more. In addition, mycotoxins such as aflatoxins pose serious threats to the health and wellbeing of consumers. Consumption of mycotoxin-contaminated food can cause acute illness, and has been associated with increased risk of certain cancers and immune deficiency syndromes.

Effective plant health management requires holistic approaches that strengthen global and local surveillance and monitoring capacities, and mitigate negative impacts through rapid, robust responses to outbreaks with ecologically friendly, socially-inclusive and sustainable management approaches.

Over the decades, CGIAR has built a strong foundation for fostering holistic plant health protection efforts through its global network of Germplasm Health Units, as well as pathbreaking rapid-response efforts to novel transboundary threats to several important crops, including maize, wheat, rice, bananas, cassava, potatoes and grain legumes.

On May 12, 2022, CGIAR is launching the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative (Plant Health Initiative). It presents a unified and transdisciplinary strategy to protect key crops — including cereals, legumes, roots, tubers, bananas and vegetables — from devastating pests and diseases, as well as mycotoxin contamination. CGIAR Centers will pursue this critical work together with national, regional and international partner institutions engaged in plant health management.

A comprehensive strategy

Prevention. When and where possible, prevention is always preferable to racing to find a cure. Reactive approaches, followed by most institutions and countries, generally focus on containment and management actions after a pest outbreak, especially pesticide use. These approaches may have paid off in the short- and medium-term, but they are not sustainable long-term. It has become imperative to take proactive actions on transboundary pest management through globally coordinated surveillance, diagnostics and deployment of plant health solutions, as well as dynamic communications and data sharing.

To this end, under this Initiative CGIAR will produce a diagnostics and surveillance toolbox. It will include low-cost and robust assays, genomics- and bioinformatics-based tools for pathogen diagnosis and diversity assessment, as well as information and communications technologies for real-time data collection and crowdsourcing. This will be complemented by the development of interoperable databases, epidemiological and risk assessment models, and evidence-based guidance frameworks for prioritizing biosecurity measures and rapid response efforts to high-risk insect-pests and diseases.

Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)
Integrated pest management strategies have been key in dealing with fall armyworm in Africa and Asia. (Photo: B.M. Prasanna/CIMMYT)

Adoption of integrated approaches. The goal of integrated pest and disease management is to economically suppress pest populations using techniques that support healthy crops. An effective management strategy will judiciously use an array of appropriate approaches, including clean seed systems, host-plant resistance, biological control, cultural control and the use of environmentally safer pesticides to protect crops from economic injury without adversely impacting the environment.

Through the Plant Health Initiative, CGIAR will promote system-based solutions using ecofriendly integrated pest and disease management innovation packages to effectively mitigate the impact of major insect-pests and diseases affecting crop plants. It will also implement innovative pre- and post-harvest mycotoxin management tools and processes.

Integrating people’s mindsets. The lack of gender and social perspectives in plant health surveillance, technology development, access to extension services and impact evaluation is a major challenge in plant health management. To address this, CGIAR will prioritize interdisciplinary data collection and impact evaluation methods to identify context-specific social and gender related constraints, opportunities and needs, as well as generate evidence-based recommendations for policy makers and stakeholders.

Interface with global and regional Initiatives. The Plant Health Initiative will build on the critical, often pioneering work of CGIAR. It will also work closely with other CGIAR global initiatives — including Accelerated Breeding, Seed Equal, Excellence in Agronomy and Harnessing Equality for Resilience in Agrifood Systems — and Regional Integrated Initiatives. Together, this network will help support CGIAR’s work towards developing and deploying improved varieties with insect-pest and disease resistance, coupled with context-sensitive, sustainable agronomic practices, in a gender- and socially-inclusive manner.

Targeting localized priorities with strategic partnerships

Effective plant health monitoring and rapid response efforts rely on the quality of cooperation and communication among relevant partner institutions. In this Initiative, CGIAR places special emphasis on developing and strengthening regional and international networks, and building the capacity of local institutions. It will enable globally and regionally coordinated responses by low- and middle-income countries to existing and emerging biotic threats.

To this end, CGIAR will work closely with an array of stakeholders, including national plant protection organizations, national agricultural research and extension systems, advanced research institutions, academia, private sector, and phytosanitary coordination networks.

The geographic focus of interventions under this Initiative will be primarily low- and middle-income countries in Latin America, South and Southeast Asia, and sub-Saharan Africa.

Coupled with CGIAR’s commitment to engaging, mobilizing and empowering stakeholders at various scales across the globe, the Plant Health Initiative represents an enormous step towards integrating people’s mindsets, capacities and needs towards holistic and sustainable plant health management. It will ultimately protect the food and nutritional security and livelihoods of millions of smallholders and their families.

CGIAR research highlighted among climate innovations to meet net zero emissions

(Image: Wondrium.com)

Agriculture is one of the five main greenhouse gas-emitting sectors where innovations can be found to reach net zero emissions, according to the new documentary and ten-part miniseries “Solving for Zero: The Search for Climate Innovation.” The documentary tells the stories of scientists and innovators racing to develop solutions such as low-carbon cement, wind-powered global transportation, fusion electricity generation and sand that dissolves carbon in the oceans.

Three CGIAR scientists are featured in the documentary, speaking about the contributions being made by agricultural research.

Whereas all sectors of the global economy must contribute to achieve net zero emissions by 2050 to prevent the worse effects of climate change, agricultural innovations are needed by farmers at the front line of climate change today.

CIMMYT breeder Yoseph Beyene spoke to filmmakers about the use of molecular breeding to predict yield potential. (Image: Wondrium.com)

Breeding climate-smart crops

“Climate change has been a great disaster to us. Day by day it’s getting worse,” said Veronica Dungey, a maize farmer in Kenya interviewed for the documentary.

Around the world, 200 million people depend on maize for their livelihood, while 90% of farmers in Africa are smallholder farmers dependent on rainfall, and facing drought, heatwaves, floods, pests and disease related to climate change. According to CGIAR, agriculture must deliver 60% more food by 2050, but without new technologies, each 1°C of warming will reduce production by 5%.

“Seed is basic to everything. The whole family is dependent on the produce from the farm,” explained Yoseph Beyene, Regional Maize Breeding Coordinator for Africa and Maize Breeder for Eastern Africa at the International Maize and Wheat Improvement Center (CIMMYT). As a child in a smallholder farming family with no access to improved seeds, Beyene learned the importance of selecting the right seed from year to year. It was at high school that Beyene was shown the difference between improved varieties and the locally-grown seed, and decided to pursue a career as a crop breeder.

Yoseph Beyene examines breeding lines. (Image: Wondrium.com)

Today, the CIMMYT maize program has released 200 hybrid maize varieties adapted for drought conditions in sub-Saharan Africa, called hybrids because they combine maize lines selected to express important traits over several generations. Alongside other CGIAR Research Centers, CIMMYT continues to innovate with accelerated breeding approaches to benefit smallholder farmers.

“Currently we use two kinds of breeding. One is conventional breeding, and another one is molecular breeding to accelerate variety development. In conventional breeding you have to evaluate the hybrid in the field,” Beyene said. “Using molecular markers, instead of phenotypic evaluation in the field, we are evaluating the genetic material of a particular line. We can predict based on marker data which new material is potentially good for yield.”

Such innovations are necessary considering the speed and the complexity of challenges faced by smallholder farmers due climate change, which now includes fall armyworm. “Fall armyworm is a recent pest in the tropics and has affected a lot of countries,” said Moses Siambi, CIMMYT Regional Representative for Africa. “Increased temperatures have a direct impact on maize production because of the combination of temperature of humidity, and then you have these high insect populations that lead to low yield.”

Resistance to fall armyworm is now included in new CIMMYT maize hybrids alongside many other traits such as yield, nutrition, and multiple environmental and disease resistances.

Ana María Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity and CIAT, spoke about CGIAR’s community-focused climate work. (Image: Wondrium.com)

Building on CGIAR’s climate legacy

Ana María Loboguerrero, Research Director for Climate Action at the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), told the filmmakers about CGIAR’s community-focused climate work, which includes Climate-Smart Villages and Valleys. Launched in 2009, these ongoing projects span the global South and effectively bridge the gap between innovation, research and farmers living with the climate crisis at their doorsteps.

“Technological innovations are critical to food system transformation,” said Loboguerrero, who was a principal researcher for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). “But if local contexts are not considered, even the best innovations may fail because they do not respond to beneficiaries needs.”

CCAFS’s impressive legacy — in research, influencing policy and informing $3.5 billion of climate-smart investments, among many achievements — is now being built upon by a new CGIAR portfolio of initiatives. Several initiatives focus on building systemic resilience against climate and scaling up climate action started by CCAFS that will contribute to a net-zero carbon future.

Loboguerrero pointed to other innovations that were adopted because they addressed local needs and were culturally appropriate. These include the uptake of new varieties of wheat, maize, rice and beans developed by CGIAR Research Centers. Taste, color, texture, cooking time and market demand are critical to the success of new varieties. Being drought-resistant or flood-tolerant is not enough.

Local Technical Agroclimatic Committees, another CCAFS innovation that is currently implemented in 11 countries across Latin America, effectively delivers weather information in agrarian communities across the tropics. Local farmers lead these committees to receive and disseminate weather information to better plan when they sow their seeds. “This success would not have been possible if scientists hadn’t gotten out of their labs to collaborate with producers in the field,” Loboguerrero said.

Climate adaptation solutions

Across CGIAR, which represents 13 Research Centers and Alliances, and a network of national and private sector partners, the goal is to provide climate adaptation solutions to 500 million small-scale farmers around the world by 2030. This work also covers reducing agricultural emissions, environmental impacts and even the possibility of capturing carbon while improving soil health.

Interested in learning more? The documentary “Solving for Zero: The Search for Climate Innovation” is available at Wondrium.com alongside a 10-part miniseries exploring the ongoing effort to address climate change.

MAIZE partners announce a new manual for effectively managing maize lethal necrosis (MLN) disease

For a decade, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been at the forefront of a multidisciplinary and multi-institutional effort to contain and effectively manage maize lethal necrosis (MLN) disease in Africa.

When the disease was first reported in Kenya 2011 it spread panic among stakeholders. Scientists soon realized that almost all commercial maize varieties in Africa were susceptible. What followed was a superlative effort coordinated by the CGIAR Research Program on Maize (MAIZE) to mobilize “stakeholders, resources and knowledge” that was recently highlighted in an external review of program.

The publication of Maize Lethal Necrosis (MLN): A Technical Manual for Disease Management builds on the partnerships and expertise accrued over the course of this effort to provide a comprehensive “guide on best practices and protocols for sustainable management of the MLN.”

The manual is relevant to stakeholders in countries where MLN is already present, and also aims to offer technical tips to “‘high-risk’ countries globally for proactive implementation of practices that can possibly prevent the incursion and spread of the disease,” writes B.M. Prasanna, director of CIMMYT’s Global Maize Program and MAIZE, in the foreword.

“While intensive multi-disciplinary and multi-institutional efforts over the past decade have helped in containing the spread and impact of MLN in sub-Saharan Africa, we cannot afford to be complacent. We need to continue our efforts to safeguard crops like maize from devastating diseases and insect-pests, and to protect the food security and livelihoods of millions of smallholders,” says Prasanna, who is presently leading the OneCGIAR Plant Health Initiative Design Team.

The worst global food security crisis in 50 years could be already here

As agricultural researchers around the world explore ways to avert what is quickly becoming the worst global food crisis in 50 years, it is imperative to shift the focus from efficient food value chains to resilient food systems.

This was one of the key messages Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT) shared with global and local audiences at a series of lectures and presentations at Cornell University the week of March 14, 2022.

Speaking as an Andrew White Professor-at-Large lecturer and lifetime Cornell faculty member, Govaerts advocated for ratcheting up investment in agricultural research and development. Not only this is necessary to avert the looming humanitarian catastrophe, he argued, but also to recover from the COVID-19 pandemic and rebuild a more peaceful, resilient and food-secure world.

“Countries that are ill-prepared to absorb a global food shock are now facing similar conditions to those that triggered the Arab Spring a decade ago — possibly even worse,” Govaerts said.

In the lecture “Food Security: A legacy turned into a future challenge of peace, prosperity & empowerment,” he compared the current challenge to the 1970s famine threat in South Asia, which was averted by the introduction of improved, high-yielding wheat varieties bred in Mexico by the late Nobel Peace Prize Laureate, Norman Borlaug.

“Today, humanity faces an existential challenge fueled by conflict, environmental degradation and climate change that urges a transformational response in the way that we produce, process, distribute and consume food,” he said.

In a public lecture “What is the leading agricultural research for development organization doing to help farmers adapt to climate change?” Govaerts acknowledged agriculture’s dual burden as both a cause and victim of climate change.

“We need to get climate change out of agriculture, and agriculture out of climate change,” he said, advocating for climate change as the driver of research and innovation, and calling for investment in transforming from efficiency to resilience.

Referencing the Ukraine crisis and its looming food security implications, he reminded attendees that we can all be inspired by Norman Borlaug’s accomplishments applying science to agriculture, and move quickly, together, to avert disaster.

“We need the same bold thinking, to do something before it’s too late,” Govaerts told the audience, which included nearly 200 online attendees and a full auditorium at Cornell’s College of Agricultural and Life Sciences.

“There is no ‘other’ team that is going to do it for us. This is the meeting. This is the team.”

CIMMYT implements integrated agri-food systems initiatives to improve maize and wheat seeds, farming practices and technologies to increase yields sustainably with support from governments, philanthropists and farmers in more than 40 countries.

In addition, along with the Nobel Peace Center and the Governments of Mexico and Norway, CIMMYT launched the Agriculture for Peace call in 2020 to mobilize funding for agricultural research and extension services to help deliver much-needed global food systems transformation.

Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)

Viktor Maurice Kommerell

Victor Kommerell was the program manager of the CGIAR Research Programs on Maize (MAIZE; 2017-2021) and Wheat (WHEAT; 2012-2021). He previously worked as a consultant to the CGIAR on strategy, human resources and project management, which included facilitation of a 2020 sustainability plan for the 10 CGIAR gene banks and an external evaluation of ILAC.

Prior to working with the CGIAR, Victor worked with the Chief Prosecutor at the International Criminal Court and led a change management program at NATO HQ, after having worked for Perot Systems (people change management) and the Leipzig Trade Fair (b-to-b marketing).

New CIMMYT maize hybrid available from Eastern Africa highland breeding program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is proud to announce a new, improved highland maize hybrid that is now available for uptake by public- and private-sector partners, especially those interested in marketing or disseminating hybrid maize seed across upper altitudes of Eastern Africa and similar agro-ecologies. National agricultural research system (NARS) and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

The deadline to submit applications to be considered during the first round of allocations is 8 April 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

The newly available CIMMYT maize hybrid, CIM20EAPP3-01-47, was identified through rigorous trialing and a stage-gate advancement process that culminated in the 2021 Eastern Africa Regional On-Farm Trials for CIMMYT’s eastern Africa highland maize breeding pipeline (EA-PP3). While individual products will vary, the EA-PP3 pipeline aims to develop maize hybrids fitting the product profile described in the following table:

Product profile Basic traits Nice-to-have / Emerging traits
Eastern Africa Product Profile 3 (EA-PP3) Late -maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and rust MLN, fall armyworm, cold tolerance

 

Application instructions, and other relevant material is available via the CIMMYT Maize Product Catalog and in the links provided below.

Download the full text and trial data summary:
CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Who does what in maize farming in Kenya?

Women’s involvement in maize production is often shrouded in assumptions. One might assume that women have minimal say in management decisions, especially regarding jointly managed plots, due to rigid gender norms that prioritize men’s decisions on farming-related matters. However, operating under such assumptions about women’s role in the management of maize farms risks confining women to specific roles and not meeting their needs in the maize seed system.

To break these assumptions, Rachel Voss, Gender Specialist at the International Maize and Wheat Improvement Center (CIMMYT), and a team of fellow researchers are conducting a study, “Unpacking maize plot management roles of women and men in smallholder households in Kenya.” The study, part of the Accelerating Genetic Gains in Maize and Wheat (AGG) project, aims to asses the gender dynamics of maize management in Kenya in order to categorize plots and households, analyzing intrahousehold decision-making and evaluating which women have the power and agency to apply their preferences for seed on their farms — and which ones do not.

Challenging perceptions

Take, for example, Sofa Eshiali, a 60-year-old farmer from Ikolomani, western Kenya, who participated in the study. She defies the stereotype of women having a limited role in maize farming, as she is deeply involved in decision-making on maize production in her household and represents an important client for new breeding efforts and more inclusive seed distribution programs. Together with her husband, she has grown maize primarily for family consumption since getting married, getting involved in all matters concerning their half acre farm. “For us, when we want to plant [our maize seeds], we sit together and discuss the cash we have at hand and decide if we can get two hands to help us work our half acre of land,” she says.

Eshiali and her husband make a joint decision on the maize seed variety they plant every season based on performance of the previous planting season. “We previously used the H614D [maize seed variety] and it did well in our farm — except when it gets very windy, as our crops fall and our bean crop gets destroyed before it is ready for harvest. Last season, we decided to use the H624 because it remains there even when it is windy,” she said, demonstrating her knowledge of maize seed variety.

In addition to seed choice and farm labour, Eshiali and her husband also discuss what fertilizer to use and when they need to shift to a new choice, and they make decisions together concerning their farm and farm produce. This includes deciding what amount of harvest they can sell and what to do with the sale proceeds. For a household like Eshiali’s, new maize varieties need to appeal to — and be marketed to — both spouses.

Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)
Sofa Eshiali, a 60-year-old maize farmer from Ikolomani, Western Kenya, who participated in the study. (Photo: Susan Umazi Otieno/CIMMYT)

Farming roles

Eshiali’s reality of equitable engagement in the farm may not be the case for other households in her community and across Kenya, meaning that reaching women with new varieties is not always simple.

As Voss points out, women are often less involved in major household decisions than men, frequently due to longstanding social norms. However, there is little understanding of how decisions are negotiated at the household level, particularly when crops are jointly produced. Furthermore, in many places, men are perceived to be the “real” farmers, while women are viewed to only play a supportive role within household farming. This can lead to the exclusion of women from extension activities, trainings and input marketing efforts.

Against this background, Voss notes that the ongoing study aims to identify in which types of households women have control over seed choice and in which households other constraints might be more important.

“To get new maize varieties into men’s and women’s fields, we need to identify the bottlenecks to reaching women. This means understanding, among other things, how decisions about seed are made within households and how households source their seed,” she explains.

Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)
Vignettes showing five different decision-making scenarios based on fictitious husband and wife characters. (Photo: Susan Umazi Otieno/CIMMYT)

Best-case scenario

To overcome the challenge of discussing the sensitive topic of decision-making roles between spouses and to encourage more culturally unbiased, candid responses, the study uses vignettes, or short stories, to describe various scenarios. This enables farmers to relate with different farm management decision making scenarios without pointing fingers at their spouses.

The study’s coauthor and research team leader, Zachary Gitonga, explains that the use of vignettes is still a relatively new method, especially in agricultural research, but enables digging deeper into sensitive topics.

Data collection involved a joint survey with both men and women household heads about maize plot management before breaking into separate discussions using the vignettes. These presented five possible decision-making scenarios with fictitious husband and wife characters. The five scenarios were then used to discuss strategic seed choices, operational decisions related to issues such as planting date and hiring farm labor, and financial decisions such as the use of the income from the maize sales.

“By presenting a set of short stories, a farmer can determine what scenario they relate with. In the study, farmers can talk about sensitive interaction without having to assign responsibility to their spouse, especially negatively, in the way decisions are made,” Gitonga said.

The vignettes also made it easier for both the enumerators to explain the scenarios and the farmers to understand and freely give their feedback. Sometimes, he pointed out, what men and women perceive as joint decision-making might not be the same. For instance, some men may think informing their wives that they are going to buy a particular seed means involving them. Here, the vignette activity aims to unpack the reality of joint decision-making in households.

From East Africa to Asia

During a recent field visit to the study area in Kakamega, Kenya, Hom Gartaula, Gender and Social Inclusion Research Lead at CIMMYT, noted the study’s importance to the inclusion of women in the farming cycle. “We urgently need to better understand the reality of women’s and men’s situation in terms of access to maize seed and other needed inputs and services. Otherwise, we risk designing breeding and seed systems that do not address the needs of the most vulnerable farmers, including women,” he said, adding that data from the study will enable insights into and comparison with the gender dynamics of wheat production in South Asia through cross-regional learning.

Gartaula also noted that, even though men predominantly manage South Asia’s wheat agriculture, women significantly contribute to it, especially in smallholder farming systems. In recent years, women’s contribution to providing labor and decision-making in wheat agriculture has increased due to the feminization of agriculture and livelihood diversification among smallholders.

Since women’s contributions to wheat farming are often vital to pre- and post-harvest processes, Gartaula notes they ought to be part of the entire maize and wheat value chain. That includes building more equitable seed delivery systems. “It is therefore important to have seed products that address the needs of different users and include home consumption and commercial sales,” he says.

The study will inform future efforts to ensure equitable seed access for both men and women farmers. Ultimately, if both men and women farmers access the best seed based on their needs and priorities, incomes will rise, households will be better sustained, and communities will become more food secure.

Explore our coverage of International Women’s Day 2022.

New endeavor fast-tracks the power of crop diversity for climate resilience

Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT's global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)
Shelves filled with maize seed samples make up the maize active collection at the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. It contains around 28,000 unique samples of maize seed — including more than 24,000 farmer landraces — and related species. (Photo: Xochiquetzal Fonseca/CIMMYT)

A new $25.7 million project, led by the International Maize and Wheat Improvement Center (CIMMYT), a Research Center part of CGIAR, the world’s largest public sector agriculture research partnership, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

As climate change accelerates, agriculture will be increasingly affected by high temperatures, erratic rainfall, drought, flooding and sea-level rise. Looking to the trove of genetic material in genebanks, scientists believe they can enhance the resilience of food production by incorporating this diversity into new crop varieties — overcoming many of the barriers to fighting malnutrition and hunger around the world.

“Better crops can help small-scale farmers produce more food despite the challenges of climate change. Drought-resistant staple crops, such as maize and wheat, that ensure food amid water scarcity, and faster-growing, early-maturing varieties that produce good harvests in erratic growing seasons can make a world of difference for those who depend on agriculture. This is the potential for climate-adaptive breeding that lies untapped in CGIAR’s genebanks,” said Claudia Sadoff, Managing Director, Research Delivery and Impact, and Executive Management Team Convener, CGIAR.

Over five years, the project, supported by the Bill & Melinda Gates Foundation, aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties. Entitled Mining useful alleles for climate change adaptation from CGIAR genebanks, the project will enable breeders to more effectively and efficiently use genebank materials to develop climate-smart versions of important food crops, including cassava, maize, sorghum, cowpea and rice.

Wild rice. (Photo: IRRI)
Wild rice. (Photo: IRRI)

The project is a key component of a broader initiative focused on increasing the value and use of CGIAR genebanks for climate resilience. It is one of a series of Innovation Sprints coordinated by the Agriculture Innovation Mission for Climate (AIM4C) initiative, which is led by the United Arab Emirates and the United States.

“Breeding new resilient crop varieties quickly, economically and with greater precision will be critical to ensure small-scale farmers can adapt to climate change,” said Enock Chikava, interim Director of Agricultural Development at the Bill & Melinda Gates Foundation. “This initiative will contribute to a more promising and sustainable future for the hundreds of millions of Africans who depend on farming to support their families.”

Over the past 40 years, CGIAR Centers have built up the largest and most frequently accessed network of genebanks in the world. The network conserves and makes nearly three-quarters of a million crop accessions available to scientists and governments. CGIAR genebanks hold around 10% of the world’s plant germplasm in trust for humanity, but account for about 94% of the germplasm distributed under the International Treaty on Plant Genetic Resources for Food and Agriculture, which ensures crop breeders globally have access to the fundamental building blocks of new varieties.

“This research to develop climate-smart crop varieties, when scaled, is key to ensuring that those hardest hit by climate shocks have access to affordable staple foods,” said Jeffrey Rosichan, Director of the Crops of the Future Collaborative of the Foundation for Food & Agriculture Research (FFAR). “Further, this initiative benefits US and world agriculture by increasing genetic diversity and providing tools for growers to more rapidly adapt to climate change.”

“We will implement, for the first time, a scalable strategy to identify valuable variations hidden in our genebanks, and through breeding, deploy these to farmers who urgently need solutions to address the threat of climate change,” said Sarah Hearne, CIMMYT principal scientist and leader of the project.

Building on ten years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors and the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC), the project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods, to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.

INTERVIEW OPPORTUNITIES:

Sarah Hearne – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Being the change you wanted to see as a young girl

In the traditional Indian society Madhulika Singh grew up in, girls choosing to study science, technology, engineering or mathematics (STEM) was as radical as choosing a life partner on their own.

“They say women hold up half the sky. I believe they should hold up as much and contribute equally in STEM too,” says Singh, now an agriculture specialist at the International Maize and Wheat Improvement Center (CIMMYT).

In her early teens she saw her mother, a school headmaster, comfortably navigate her career along with her domestic responsibilities without a sweat. She later saw a similar example in her sister-in-law. “I grew up thinking ‘there is so much that a woman is capable of,’ whether at home or her workplace,” Singh recalls.

This strong idea of women’s potential led her to pursue studies in science. “Many women before me, like my mother’s generation, were encouraged to take up [careers in] humanities — become a teacher, or pursue home management courses — to ensure a smooth transition once married,” Singh explains. She hoped this would change during her time and that following a career in STEM would be a matter of choice — not gender.

Singh’s goals and ambitions were very clear from the very beginning. In school, she was interested in biology, particularly plant studies and botany. Her inquisitive nature was reflected in her projects and presentations, scoring her high grades. She demonstrated a thorough understanding of plant physiology and her passion for the subject. The budding scientist always wanted to know more and to do more, which Singh feels resonates with her current research and publications.

A popular quote attributed to Mahatma Gandhi says “Be the change you want to see in the world.” When Singh chose to take up plant science in graduate school and then agriculture science for her doctorate, she became the change she had hoped to see in her home and society as a young girl. With the support from her family but a skeptical society, she went ahead and pursued a career in STEM, beginning her research on maize genotypes and conservation agriculture. In 2013 she joined CIMMYT as a physiologist.

CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)
CIMMYT researcher Madhulika Singh takes notes while talking to farmers about their rice-wheat cropping practice in Nalanda, Bihar state, India. (Photo: CIMMYT)

Helping farmers transition to conservation agriculture

Singh currently works in her home state of Bihar for the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. She is engaged with over ten thousand farmers from the states of Bihar and Uttar Pradesh, supporting the adoption of  conservation agriculture practices.

Farming is vital for the region, as nearly 70% of the population is engaged in agriculture and extension services. However, food and livelihoods are threatened by the small size of farms, low incomes, and comparatively low levels of agricultural mechanization, irrigation and productivity.

Singh and her colleagues have led the transition from traditional farming to sustainable intensification practices — like early wheat sowing, zero tillage and direct-seeded rice — which have helped smallholder farmers increase their yield potential substantially.

“We believe a project like CSISA, along with the government and partners, can help advance and support in realizing the full agriculture potential of these regions,” Singh explains.

Roots in the soil

Her grandparents were farmers. “To be able to care for the land that provided you nourishment and a living was always admired upon,” she says. As a crop scientist, Singh’s family acknowledges her work as an extension of the services her grandparents practiced.

Sustained by this motivation and encouragement, Singh feels reassured of her role: joining other scientists, partners and farmers to make agriculture sustainable and our communities food-secure.

“The fact that the data we generate from our experiments serve as building blocks in the generation of knowledge and help farmers optimize the cost of inputs and increase their productivity is fulfilling and enriching to me,” Singh expresses.

Apart from working to build the capacity of farmers and extension workers, Singh supports the implementation of field trials and community-based technology demonstrations. She also helps refine key agricultural innovations, through participatory testing, and optimizes cropping systems in the region.

Leading the way for for the next generation

A true representative of the STEM community, Singh is always learning and using her experience to give back to society. She has co-authored numerous books and contributed to journals, sharing her knowledge with others.

Other women leaders in STEM have inspired Singh in her professional life, including CIMMYT’s former deputy director general for research Marianne Banziger. Singh believes Banziger was trailblazing and that young girls today have many female role models in STEM that can serve as inspiration.

The change is already here and many more young women work in STEM, pursuing excellence in agriculture sciences, engineering and research studies contributing to as well as claiming “half the sky.”

Cover photo: CIMMYT researcher Madhulika Singh (center-right) stands with farmers from self-help groups in the village of Nawtanwa, West Champaran, in India’s Bihar state. CIMMYT works on gender inclusion and participation through partnerships with other organizations and self-help groups. (Photo: CIMMYT)

Explore our coverage of International Women’s Day 2022.

Supporting the growth of local maize seed industries: Lessons from Mexico

Over the past several decades, maize breeders have made considerable strides in the development and deployment of new hybrids. These offer higher yields compared to older varieties and reduce the risks farmers face from the vagaries of a changing climate and emerging pest and disease threats. But, for small-scale farmers to adopt new, improved climate-resilient and stress-tolerant maize hybrids at scale, they must be first available, accessible and their benefits need to be widely understood and appreciated. This is where vibrant national seed industries potentially play an important role.

Prior to the 1990s, government agencies tended to play the lead role in hybrid production and distribution. Since then, expectations are that the private sector — in particular locally owned small-scale seed enterprises — produce maize hybrids and distribute them to farmers. When successful, local seed industries are able to produce quality new hybrids and effectively market them to farmers, such that newer hybrids replace older ones in agrodealer stores in relatively short periods of time. If small seed enterprises lack capacities or incentives to aggressively market new hybrids, then the gains made by breeding will not be realized in farmers’ fields. By monitoring seed sales, breeders at CIMMYT and elsewhere, as well as seed business owners, gain insights into smallholders’ preferences and demands.

A recent publication in Food Security assesses the capacities of 22 small and medium-sized seed enterprises in Mexico to produce and market new maize hybrids. The study draws on the experience of the MasAgro project, a decade-long development whereby the International Maize and Wheat Improvement Center (CIMMYT), in partnership with Mexico’s Department of Agriculture and Rural Development (SADER), engaged with dozens of locally owned seed businesses to expand their portfolio of maize hybrids.

The authors, led by CIMMYT senior economist Jason Donovan, highlight the critical role the MasAgro project played in reinvigorating the portfolios of maize seeds produced by small and medium-sized enterprises. MasAgro “filled a gap that had long existed in publicly supported breeding programs” by providing easy access to new cultivars, available to local seed companies without royalties or branding conditions, and without the need for seed certification. The enterprises, in turn, showed a remarkably high capacity to take up new seed technology, launching 129 commercial products between 2013 and 2017.

“Without doubt the MasAgro project can be considered a success in terms of its ability to get new maize germplasm into the product portfolios of small seed companies throughout Mexico,” Donovan said.

The authors also delve into the challenges these maize enterprises faced as they looked to scale the new technologies in a competitive market that has long been dominated by multinational seed enterprises. They observed a lack of access to physical capital, which in turn evidenced a lack of financial capital or access to credit, as well as limited marketing know-how and capacity to integrate marketing innovations into their operations. While most maize enterprises identified the need to expand sales of new commercial products, “signs of innovation in seed marketing were limited” and most of them relied heavily on sales to local and state governments.

According to Donovan, “The MasAgro experience also shows that a strong focus on the demand side of formal seed systems is needed if breeding programs are to achieve greater impact in less time. This implies more attention to how farmers decide on which seed to purchase and how seed companies and seed retailers market seed to farmers. It also implies strong coordination between public sector to make building the local seed industry a national imperative.”

Beyond the Mexican context, the paper’s findings may be of particular interest to development organizations looking to supply local seed industries facing strong competition from regional and multinational companies. One example is the effort to support small seed businesses in Nepal, which face strong competition from larger Indian companies with long histories of engagement in Nepalese seed markets. There are also important lessons for policymakers in eastern and southern Africa, where strict controls over seed release and certification potentially lead to higher production costs and slower rates of introduction of new products by local maize seed companies.

Read the full article:
Capacities of local maize seed enterprises in Mexico: Implications for seed systems development

This paper is complemented by two CIMMYT-led publications in a special issue of Outlook on Agriculture that highlights experiences in sub-Saharan Africa. That special issue grew out of the CGIAR Community of Excellence for Seed Systems Development where CIMMYT led the discussion on seed value chains and private sector linkages.

Cover image: Farmers in Mexico attend a workshop organized by CIMMYT to build their capacity in seed production. (Photo: X. Fonseca/CIMMYT)

Plant breeding innovations

What is plant breeding?

Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.

Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex — that is, they are controlled by many genes and gene interactions — so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.

Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.

Is plant breeding a modern technique?

Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.

Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.

With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the crops’ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered “banks.”

The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.

Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.

Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.

A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)
A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)

A century of breeding innovations

Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.

Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.

Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plant’s genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA “fingerprint” of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.

Plant breeders normally prefer to work with “elite” populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.

Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmers’ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.

Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.

The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)

Selected impacts of maize and wheat breeding

In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa — a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought — was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.

Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.

Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.

Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.

Crosses of wheat with related crops (rye) or even wild grasses — the latter known as wide crosses — have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as “goat grass,” that boost their resilience and provide other valuable traits to protect yield.

Biofortification — breeding to develop nutritionally enriched crops — has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.

Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in ObregĂłn, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)

The future

Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.

Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information — also called phenotyping — to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles — or generations — to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.

Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.

Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIAR’s Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.

Cover photo: CIMMYT experimental station in Toluca, Mexico. Located in a valley at 2,630 meters above sea level with a cool and humid climate, it is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rust. Conventional plant breeding involves selection among hundreds of thousands of plants from crosses over many generations, and requires extensive and costly field, screenhouse and lab facilities. (Photo: Alfonso Cortés/CIMMYT)

New direction in research for advancing gender-responsive maize breeding

New improved maize varieties may fall short in meeting the needs of women and the poorest of farmers – a concern that remains a focus of the International Maize and Wheat Improvement Center (CIMMYT) and the wider CGIAR.

Lower than expected adoption rates for some new maize varieties suggest that innovative strategies in breeding and seed delivery are likely needed. There is broad recognition of the need to get new germplasm from the CGIAR and its partners into the fields of more farmers in less time.

CIMMYT research on markets and social inclusion focuses on understanding two related dynamics: the unique preferences, needs and circumstances faced by women and the poorest farmers, and the implications these carry for how breeding programs and seed companies design and market new varieties.

Taking stock of knowledge and gaps in gender and maize breeding

A new paper by CIMMYT researchers, “Gender inclusivity through maize breeding in Africa: A review of the issues and options for future engagement”, takes stock of lessons learnt on gender and maize breeding and assesses knowledge gaps that need to be filled to effectively support gender-responsive and gender-intentional breeding and seed systems work.

Decades of research on maize preferences have sought to understand if and how men’s and women’s preferences differ. However, existing data provides unclear guidance to maize breeders on gender-relevant traits to prioritize in product profile design. The evidence suggests a lack of meaningful differences in what men and women are looking for in maize­­—yield, drought tolerance and early maturity—are high priorities almost across the board.

One reason for the similarity in preferences among women and men may relate to how we evaluate them, the authors argue. Preference studies that focus on evaluation of varieties’ agronomic and productivity-related traits may overlook critical components of farmers’ variety assessment and seed choice, including their household and farming context. Ultimately, they say, we need to explore new approaches to evaluating farmer demand for seed, considering new questions instead of continuing to look for gender-based differences in preferences.

A first step in that direction is to figure out how demand for maize seed differs among farmers according to their needs, priorities and resource limitations. Gender is definitely a part of that equation, but there’s much more to think about, like how maize fits into household food security and livelihoods, decision-making dynamics around maize production, and seed accessibility. New tools will be needed for understanding those and how decision-making around seed happens in real-world contexts.

Understanding how farmers make decisions on seed choice

The authors offer several practical suggestions for maize breeders and other researchers in this space:

  • First, explore tools that allow farmers to evaluate varieties in their household context. Large-scale farmer-managed on-farm trials have gained attention in the CGIAR as tools for more accurate assessment of farmer preferences. These approaches have several added advantages. They enable evaluation of variety performance under realistic management conditions—including under management practices used disproportionately by women, such as intercropping, which is typically excluded from larger researcher-managed trials. These approaches also enable farmer evaluation of maize varieties not only in terms of in-field performance and yield at harvest stage, but in terms of grain quality after harvest. This is particularly important for social inclusion, given women’s disproportionate attention to traits related to processing and consumption.
  • Second, move beyond gender-based preferences in evaluating seed demand. Gendered preferences matter, but they may not be the sole factor that determines a farmer’s choice of seed. We need to understand market segments for seed in relation to farmers’ aspirations, risk perceptions and tolerance, livelihood priorities, and household context. This also means exploring the intrahousehold gender dynamics of maize farming and seed choice to understand women’s roles in decision-making in maize production, processing, and consumption.
  • Finally, consider questions related to maize seed systems more broadly. Are maize seed systems capable of delivering gender-responsive and gender-intentional varieties to women and men? What are the barriers to wider uptake of new varieties aside from variety suitability? Innovative marketing and delivery mechanisms may be critical to realizing gains from more gender-intentional breeding.

With the transition to the One CGIAR, sharing tools and lessons learned across crops will be increasingly important. Researchers in the CGIAR community have developed new tools for gender-responsive and gender-intentional breeding. This includes through the Gender and Breeding Initiative, which has published the G+ tools to support gendered market segmentation and gender-intentional product profile development.

While learning from one another’s experiences will prove essential during the transition, recognizing that the gender dynamics of maize production may be very different from sweet potato production will also be key. Here, the new Market Intelligence & Product Profiles initiative and SeEdQUAL initiative on seed systems will both create new spaces for exploring these issues across crops.

Related links

Webinar: CIMMYT Webinar (Nov. 2021) on Gender Inclusivity through Maize Breeding

CGIAR Gender & Breeding Initiative link: http://www.rtb.cgiar.org/gender-breeding-initiative/

Breeding for better gender equity at CGIAR Excellence in Breeding: https://excellenceinbreeding.org/blog/breeding-better-gender-equity