Skip to main content

research: Maize breeding

Seeds to beat the heat in lowland tropics

South Asia, a region heavily impacted by climate change, faces rising temperatures, erratic monsoon rains causing intermittent drought and excessive moisture within the season, and frequent episodes of heat waves. These extreme weather events are challenging agrarian practices and affecting millions, especially smallholder farmers dependent upon rainfed cultivations. The halcyon days of consistent environmental conditions are gone, and adaptation and mitigation strategies have become essential in South Asia.

In May 2024, over 20 districts in the Terai region of Nepal and many parts of northern India recorded maximum temperatures between 40°C and 45°C, with several districts also experiencing heat waves during the same period. The temperature rise is not limited to the lowland plains; the effects are also being felt in the mountains, where rapid snowmelt is becoming increasingly common. In the Hindu Kush Himalayas region of Pakistan, farmers have had to shift their cropping cycles by a month to cope with drought stress caused by rising temperatures, which are leading to the early melting of snow in the region.

Partners in South Asia visiting heat stress tolerant hybrids demonstration in Nepal (Photo: CIMMYT-Nepal)

Collaborating to rise above the challenge

Amid the growing climate crisis, the Heat Stress Tolerant Maize for Asia (HTMA) project was launched by CIMMYT in 2012, with support from the United States Agency for International Development (USAID) under the Feed the Future initiative of the U.S. Government. The overarching goal of the HTMA project was to help farm families, particularly maize growers, to adapt to the impacts of soaring heat on maize productivity in South Asia. The project was implemented in partnership with 28 public and private sector stakeholders across the region and beyond to develop a multipronged approach to overcoming these challenges.

“Our aim is to develop and deploy maize hybrids with high yield potential and possess traits resilient to heat and drought stresses,” said P.H. Zaidi, Principal Scientist, and HTMA project lead at CIMMYT. Zaidi noted that during heat stress “high temperatures alone are not the only limiting factor- it is the combination of high temperature with low atmospheric humidity (high vapor pressure deficit), that creates a “killer combination” for maize production in the Asian tropics.”

This was also emphasized in a recently published article that he co-authored.

The development of heat stress-tolerant maize involves the use of cutting-edge breeding tools and methods, including genomics-assisted breeding, double haploidy, field-based precision phenotyping, and trait-based selection. Over 20 such hybrids have been officially released in India, Nepal, Bangladesh, Pakistan, and Bhutan. Between 2023 and 2024, over 2,500 metric tons of seed from these hybrids were distributed to farmers, helping them beat the heat.

Agile partnerships-from discovery to scaling

The first phase of the project (2012-2017) focused on discovering heat-tolerant maize varieties. During this time, pipeline products underwent field evaluations in stress-prone environments, leveraging the project’s product evaluation network of public and private partners, who contributed by managing trials and generating performance data. In the second phase (2018-2023), the focus shifted toward the deployment and scaling of heat-tolerant hybrids and strengthening seed systems in target countries to enable large-scale delivery, benefiting millions of farm families, particularly in South Asia’s rainfed ecologies. For example, the seed produced in 2023-2024 sufficed to cover over 125,000 hectares and benefited nearly 2.5 million people in the region.

HTMA project partners gathered in Nepal for the annual and project closure meeting (Photo-CIMMYT-Nepal)

Hailu Tefera, from USAID, praised the project’s success during the annual review and project closure meeting held in Nepal from August 21-22, 2024. “We have seen great strides in scaling heat stress tolerant hybrids in the region. This initiative aligns with the US Government’s Global Food Security Strategy, where building farmers’ resilience to shocks and climate vulnerability is central,” said Tefera, acknowledging the adaptive and agile partnership demonstrated by the project’s partners throughout HTMA’s discovery and scaling phases.

One of the project’s key achievements was creating a multi-stakeholder platform and leveraging resources across the region. Partners, including national agricultural research systems, seed companies, and higher learning institutes, expanded the project’s impact. “The collaboration we fostered under the HTMA project is a working example of effective partnerships,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program. He highlighted how synergies with other developmental projects in the region, especially projects supported by the USAID country mission in Nepal helped launch local hybrid seed production, transforming the country from a net importer of hybrid maize seeds to producing locally in just a few years, and such seeds of resilience cover nearly 10,000 hectares in 2023/24 alone. Using heat tolerant (HT) maize seed allows smallholder farmers to harvest nearly one metric ton per hectare additional yield than normal maize under stress conditions.

The value of the seed these new hybrids was validated by adopter farmers who grow maize in stress-vulnerable ecologies by expressing their willingness to pay a premium price for HT hybrid seed as per the study conducted in Nepal and India. “The spillover effect of the project is helping countries like Bhutan to strengthen their seed systems and initiate hybrid seed production for the first time,” added Prasanna, expressing gratitude to USAID and all project partners.

The salient achievements of the project, including technical know-how, outputs, outcomes, and learnings were compiled as an infographic, titled “HTML Tool‘ and it was formally released by Narahari Prasad Ghimire, Director General of the Department of Agriculture, Government of Nepal, during the HTMA meeting in Nepal.

Rewarding achievement

Subash Raj Upadhyay, Managing Director of Lumbini Seed Company in Nepal, recalls the early days of producing heat stress-tolerant hybrid maize seed in Nepal, which began in 2018. “Our journey started with just one hectare of seed production in 2018 and 2019, and we expanded to 30 hectares by 2022. This was the first time that we started hybrid maize seed production in Nepal, specifically RH-10, a heat stress tolerant hybrid from CIMMYT, released by the National Maize Research Program of Nepal. The support of USAID’s projects like the Nepal seed and fertilizer project was crucial for our success,” said Upadhyay, who was among the award recipients for setting a potent example in scaling up heat stress-tolerant hybrids.

HTMA TOOL- an infographic launched during the meeting (Photo-CIMMYT Nepal)

In addition to Lumbini Seed Company, Jullundur Seed Private Limited Company in Pakistan was also recognized for its efforts in seed scaling. The National Maize Research Program of Nepal and the University of Agricultural Sciences, Raichur, India, were acknowledged for their rewarding achievement in research and development during the project period.

“The recognition exemplifies the public-private partnership that we demonstrated under the HTMA project, where the public sector mainly focused on strategic research and product development, and seed companies took charge of seed delivery and scaling,” said Zaidi during the project’s phaseout meeting in Nepal, attended by over 60 participants from the project’s target and spillover countries. “Such partnership models need to be strengthened and replicated in other projects. It is important to consolidate the gains and maintain the momentum of the HTMA project in the years to come to benefit millions of smallholder farmers,” echoed Prasanna, who presented certificates of recognition to the partners in the presence of USAID representatives, senior government officials from Nepal and project partners from South Asia and beyond.

Unlocking genetic innovations through collaborative pathways

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

The International Maize Improvement Consortium for Africa (IMIC-Africa) held its Southern Africa field day on 25 March 2024 at Harare, Zimbabwe. IMIC-Africa, launched by CIMMYT in 2018, is a public-private partnership designed to strengthen maize breeding programs of partner institutions in Africa. As part of this initiative, CIMMYT organizes annual field days which bring together representatives from seed companies and national agricultural research system (NARS) partners across Zimbabwe and Kenya.

At the heart of the IMIC-Africa field day lies a vibrant showcase of genetically diverse materials developed from various maize breeding pipelines of CIMMYT in Southern Africa. Such events serve as a catalyst to drive innovations in maize breeding programs, deliver solutions to stakeholders, and enable seed companies and NARS partners to make informed selections tailored to local contexts.

“It is an important forum to have organized discussions with partners, and redesign—where possible—our breeding approaches to deliver targeted products to stakeholders,” said Director of CIMMYT’s Global Maize Program, One CGIAR Global Maize Breeding Lead, and One CGIAR Plant Health Initiative Lead, B.M. Prasanna. “The main stakeholders here are our partners, including seed companies and public sector national programs, through whom we reach out to farming communities.”

The significance of these field days cannot be overstated. It allows the partners to have a critical look at the breeding materials on display and undertake selections of maize lines relevant to their breeding programs. In addition, the IMIC-Africa field days enable CIMMYT team to have structured dialogues with diverse stakeholders and to review and refine breeding (line and product development) strategies and approaches.

“It is key to bridge the gap between the national programs and private sector players. This platform allows us to stay ahead in terms of research, and innovative breakthroughs in the seed sector,” added Kabamba Mwansa, principal agriculture research officer, ZARI, Zambia and Southern Africa Breeding, and seed systems network coordinator.

Highlights from the Harare field day

With an impressive array of 737 CIMMYT maize lines on display, partners at the Harare field day gained insights about the performance of different materials. The materials span early-, intermediate-, and late- maturity groups to nutritious maize breeding pipelines. This comprehensive showcase enabled seed companies and NARS partners to make informed selections, tailored to their local contexts. The material on display ranged from early generation (one or two years of testing data) to advanced generation (more than three years of testing) coming from the Southern Africa breeding pipelines targeting multiple market segments.

Regional partners examine the CIMMYT maize lines displayed during field day. (Photo: CIMMYT)

One of the strategic priorities of CIMMYT’s maize breeding program in Africa is improving the nutritional quality of maize. This is exemplified by the development of provitamin A-enriched maize (PVA). On display were 169 lines originating from the PVA-enriched maize breeding pipeline. The efforts underscore CIMMYT’s commitment to address regional nutritional needs through targeted breeding initiatives.

Felix Jumbe, a partner from Peacock Seeds in Malawi reflected on the importance of the IMIC-Africa partnership. “We have been part of IMIC-Africa since its inception, and we continue to appreciate the different climate-resilient lines emerging from CIMMYT maize breeding programs in Africa. Last year, we sold out of our seed as people continue to appreciate the need for resilient maize varieties. The drought-tolerant (DT) maize lines from the consortium have been a huge selling point as most farmers are happy with it,” he said.

The field day not only showcased cutting-edge breeding innovations but also offered a historical perspective by tracing the trajectory of the most popular lines taken up under IMIC-Africa from 2019 to 2023. This served as a crucial reference point for partners, enabling them to assess the performance of newly displayed lines against established benchmarks. Furthermore, partners considered the presence of trait donors as invaluable in improving resistance to key biotic stresses or tolerance to certain abiotic stresses prevalent in Africa.

CIMMYT, NARS, and seed company partners participate in the IMIC-Africa field day in Harare, Zimbabwe. (Photo: CIMMYT)

CIMMYT partnership continues to add value

In the face of escalating environmental pressures, including climate change and pest infestations such as the fall armyworm (FAW), CIMMYT breeders have been working tirelessly to develop resilient varieties capable of withstanding these challenges. Partners such as SeedCo have embraced these robust varieties. For breeder Tariro Kusada, it is her second year of attending the IMIC- Africa field day. “We continue to see value in getting breeding materials through IMIC. The vigor from the lines on display is outstanding as compared to last year. We hope the vigor translates to yield.”

Danny Mfula from Synergy Zambia reinforced the value of the partnership. “It is always good to tap into CIMMYT’s germplasm to supplement what we have. We are glad that more FAW-tolerant hybrids are coming on board. We want to leverage on these developments as farmers have gone through a lot of challenges to control FAW,” he said.

As the harvest stage approaches, partners can select their material by assessing the performance of the lines from flowering to grain filling stages. Each plot’s harvest provides invaluable insights, guiding partners in their selections. Partners are also given the opportunity to view the improved maize lines from CIMMYT through a virtual gallery of ears from each plot, ensuring informed decision-making. By fostering dialogue, facilitating partnerships, and highlighting genetic innovations, the field days catalyze progress towards a more sustainable and resilient future for African agriculture.

Heat tolerant maize: a solution for climate change-induced 360◩ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≄40◩C), at least 5◩C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.

Six new CIMMYT maize hybrids available from South Asia Breeding Program

CIMMYT is happy to announce six new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across the tropical lowlands of South Asia and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

How does CIMMYT’s improved maize get to the farmer?
Product Profile Newly available CIMMYT hybrids Basic traits
South Asia Heat + Drought Tolerance (SAHDT) CAH219 Medium maturing, yellow, high yielding, drought and heat tolerant, to FER and TLB
CAH220
South Asia Waterlogging + Drought Tolerance (SAWLDT) CAH214 Medium maturing, yellow, high yielding, drought + waterlogging tolerant, and resistant to FER, TLB and FSR
CAH218
South Asia Drought Tolerance (SADT) CAH216 Medium maturing, yellow, high yielding, drought tolerant, and resistant to TLB and FER
CAH217

 

Performance data Download the CIMMYT-Asia Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022-2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 18 June 2024. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023 South Asia Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of South Asia.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, program manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Eight new CIMMYT maize hybrids available from Eastern Africa breeding program

How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce eight new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across eastern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22EAPP1-01-08 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, MSV, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-01-16
CIM22EAPP1-02-02 Early maturing, white, high yielding, drought tolerant, NUE, and resistant to MLN, MSV, GLS, TLB, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-02-09
CIM22EAPP1-02-18
CIM22EAPP2-03 Late maturing, white, high yielding, drought tolerant, NUE, and resistant to MSV, GLS, TLB, rust, ear rots, and root & stalk lodging tolerance
CIM22EAPP2-07
CIM21EAPP3-38 Late-maturing, high-yielding, white-grain maize hybrid bred for the highlands, with resistance to GLS, TLB, rust, ear rots, and root & stalk lodging tolerance

 

Performance data Download CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 to 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details.
Application deadline The deadline to submit applications to be considered during the first round of allocations is 15 May 2024. Applications received after that deadline are still welcome but will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023 Eastern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of eastern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, program manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Product Design Teams (PDTs): A client-oriented approach to defining market segments and target product profiles

Participants from the Kenya PDT meeting held in Nairobi. (Photo: CIMMYT)

Product design teams (PDTs) are a CGIAR Accelerated Breeding Initiative innovation created to address the aforementioned challenges under the CGIAR-NARES partnership through coordinating SPMS and related TPPs. Each seed product market segment, which in the case of CGIAR is defined at sub-regional level, represents a unique set of requirements. Attached to the segment is a TPP which describes the ideal product to meet the requirements. Taken together, the framework provides a starting point for discussions by breeding teams on investment opportunities.

Discussions on market segments and TPPs need to develop over time as new insights are gained. Some requirements might be overlooked, and others may be emerging due to client requirements and changes in the context. There is a need for a greater understanding of the evolving requirements of the seed companies, farmers, processors, and consumers in the market segments that CGIAR serves. It must be recognized that not all requirements of farmers or consumers are amenable to breeding or efficient to incorporate in breeding pipelines – for example, some post-harvest losses or weed management can be best addressed by appropriate storage mechanisms and improved agronomic practices, respectively.

Product design teams (PDTs) were created to address the aforementioned challenges under the CGIAR-NARES partnership by and coordinating SPMS and related TPPs. A PDT is a group of crop breeding and seed systems stakeholders for a particular crop, who work together to design or redefine TPPs. PDTs have been envisioned to be cross-functional teams that meet annually with the following aims:

  • Review the market segments at subregional and national levels, addressing critical questions, such as:
    • Do the subregional segments capture country-level requirements?
    • What is the opportunity for impact from breeding investments across market segments?
    • Are there important market segments that have not been captured?
    • What are the potential future segments that the team needs to consider?
  • Review and update TPPs for each segment, addressing questions such as:
    • Are any important traits missing?
    • Are country-specific trait values factored?
    • Are country-specific market-dominant varieties included in the market segment?
  • Discuss the needs for market intelligence for the PDT:
    • Unknowns regarding client requirements.
    • Gaps regarding product design parameters.

Director of the Global Maize program at CIMMYT, B.M. Prasanna, said, “PDT meetings serve as an important platform to understand the perspectives of diverse and relevant stakeholders. These discussions enable us to reach a common understanding of the current market requirements and redefine TPPs to reflect needs across value streams through co-creation and shared responsibility.”

The impact of PDTs

Pieter Rutsaert, seed systems specialist at CIMMYT and the CGIAR Market Intelligence Initiative, participated in several PDTs on maize and other crops, such as groundnut. “PDTs are a useful format to understand the unknowns in terms of farmer, processor, and consumer requirements and generate questions that guide future work in market intelligence,” said Rutsaert.

Product Design Team (PDT) meetings bring together breeding and seed systems stakeholders to improve understanding of country and regional needs for a specific crop. (Photo: CIMMYT)

“PDTs will help in routine review of the product requirement for a specific country and will help to remove breeder bias and ensure that all stakeholders’ views are heard and considered”, said Aparna Das, technical program manager for the Global Maize program at CIMMYT.

The main requirements for constituting PDTs for a specific country are:

  • A multidisciplinary team with 7 to 15 members, ensuring diversity of experience and providing reasonable time for decision-making.
  • Must consist of a range of stakeholders, such as: breeders from NARES (often the PDT convener/lead) and CGIAR; representatives of farmers’ groups, seed companies, and food processors; gender specialists; and market intelligence specialists.
  • 30% of members should be female.
  • Should include a member from another crop breeding network, to bring a different perspective.

Bish Das, NARS coordinator, Dragan Milic, breeding specialist, and Lennin Musundire, breeding optimization specialist, from the CGIAR Accelerated Breeding Initiative team said, “Ultimately, the client-led approach to priority setting that CIMMYT’s Global Maize program is implementing in southern and eastern Africa ensures strong alignment with partners’ priorities and client requirements and better targeting of CGIAR regional maize breeding efforts.”

Case study: maize seed systems

CIMMYT’s Global Maize program has refined variety development to meet market needs across the value chain including farmers, processors, and consumers, thus enhancing variety adoption, which is the end goal of breeding pipelines. This has been implemented through the regional CGIAR-NARES-SMEs collaborative breeding networks and having ‘a bottom-up’ approach towards developing market segments and TPPs. This refers to building an understanding of end-users’ needs through inclusive in-country and regional stakeholder PDT meetings. PDTs also ensure that there are CGIAR-NARES-SME defined roles: a national mandate for NARES partners focusing on niche markets, the consolidated national mandate for CGIAR/NARES/SMEs, and a regional mandate for CGIAR Research Centers like CIMMYT.

In 2023, maize PDT teams were established and held meetings for five countries in eastern and southern Africa: Zambia, Ethiopia, Kenya, Zimbabwe, and Uganda. These meetings brought together stakeholders from different fields who play an important role in product development and seed systems (national partners and seed companies), varietal release (representatives from regulatory agencies) and end-product users (for example, millers).

The advantages of TDPs are emphasized by Godfrey Asea, director of Research and Daniel Bomet Kwemoi, maize breeder at the National Agricultural Research Organization (NARO) in Uganda. They highlighted that the NARO maize program has now begun a systematic journey toward modernizing its breeding program. The PDT team validated the country’s market segments and aligned five product profiles with two major target production environments (TPEs), with the mid-altitude regions taking 85% of the maize seed market and the highlands accounting for 15%. “These TPPs will be reviewed annually by the PDT since market segments tend to be dynamic. The breeding program has reclassified and aligned breeding the germplasm to TPPs, which will guide effective resource allocation based on the market shares,” said Asea.

Feedback on PDT meetings so far suggests positive experiences from stakeholders. Wendy Madzura, head of agronomy at SeedCo in Zimbabwe, said, “The unique PDT meeting held at CIMMYT in Zimbabwe provided a conducive environment for public and private stakeholders to have meaningful and honest discussions on the current market segments and TPPs.” Plans for continuous improvement are embedded in the PDT model. “As a follow-up to the PDT meeting, there is a need for further involvement of various stakeholders at the village, ward, and district levels to enable deeper insights and reach because the client needs are constantly changing,” said Madzura.

Heat tolerant maize hybrids: a pursuit to strengthen food security in South Asia

After a decade of rigorous effort, CIMMYT, along with public-sector maize research institutes and private-sector seed companies in South Asia, have successfully developed and released 20 high-yielding heat-tolerant (HT) maize hybrids across Bangladesh, Bhutan, India, Nepal, and Pakistan. CIMMYT researchers used a combination of unique breeding tools and methods including genomics-assisted breeding, doubled haploidy (a speed-breeding approach where genotype is developed by chromosome doubling), field-based precision phenotyping, and trait-based selection to develop new maize germplasm that are high-yielding and also tolerant to heat and drought stresses.

While the first batch of five HT maize hybrids were released in 2017, by 2022 another 20 elite HT hybrids were released and eight varieties are deployed over 50,000 ha in the above countries.

In South Asia, maize is mainly grown as a rainfed crop and provides livelihoods for millions of smallholder farmers. Climate change-induced variability in weather conditions is one of the major reasons for year-to-year variation in global crop yields, including maize in Asia. It places at risk the food security and livelihood of farm families living in the stress-vulnerable lowland tropics. “South Asia is highly vulnerable to the detrimental effects of climate change, with its high population density, poverty, and low capacity to adapt. The region has been identified as one of the hotspots for climate change fueled by extreme events such as heat waves and intermittent droughts,” said Pervez H. Zaidi, principal scientist at CIMMYT.

Heat stress impairs the vegetative and reproductive growth of maize, starting from germination to grain filling. Heat stress alone, or in combination with drought, is projected to become a major production constraint for maize in the future. “If current trends persist until 2050, major food yields and food production capacity of South Asia will decrease significantly—by 17 percent for maize—due to climate change-induced heat and water stress,” explained Zaidi.

From breeding to improved seed delivery–the CIMMYT intervention

In the past, breeding for heat stress tolerance in maize was not accorded as high a priority in tropical maize breeding programs as other abiotic stresses such as drought, waterlogging, and low nitrogen in soil. However, in the last 12–15 years, heat stress tolerance has emerged as one of the key traits for CIMMYT’s maize breeding program, especially in the South Asian tropics. The two major factors behind this are increased frequency of weather extremes, including heat waves with prolonged dry period, and increasing demand for growing maize grain year-round.

At CIMMYT, systematic breeding for HT maize was initiated under Heat Stress Tolerant Maize for Asia (HTMA), a project funded by the United States Agency for International Development (USAID) Feed the Future program. The project was launched in 2013 in a public–private alliance mode, in collaboration with public-sector maize research institutions and private seed companies in Bangladesh, Bhutan, India, Nepal, and Pakistan.

The project leveraged the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of the partners. An array of activities was undertaken, including genetic dissection of traits associated with heat stress tolerance, development of new HT maize germplasm and experimental hybrids, evaluation of the improved hybrids across target populations of environments using a heat stress phenotyping network in South Asia, selection of elite maize hybrids for deployment, and finally scaling via public–private partnerships.

Delivery of HT maize hybrids to smallholder farmers in South Asia

After extensive testing and simultaneous assessment of hybrid seed production and other traits for commercial viability, the selected hybrids were officially released or registered for commercialization. Impact assessment of HT maize hybrid seed was conducted in targeted areas in India and Nepal. Studies showed farmers who adopted the HT varieties experienced significant gains under less-favorable weather conditions compared to farmers who did not.

Under favorable conditions the yield was on par with those of other hybrids. It was also demonstrated that HT hybrids provide guaranteed minimum yield (approx. 1 t ha-1) under hot, dry unfavorable weather conditions. Adoption of new HT hybrids was comparatively high (19.5%) in women-headed households mainly because of the “stay-green” trait that provides green fodder in addition to grain yield, as women in these areas are largely responsible for arranging fodder for their livestock.

“Smallholder farmers who grow maize in stress vulnerable ecologies in the Tarai region of Nepal and Karnataka state in southern India expressed willingness to pay a premium price for HT hybrid seed compared to seed of other available hybrids in their areas,” said Atul Kulkarni, socioeconomist at CIMMYT in India.

Going forward–positioning and promoting the new hybrids are critical

A simulation study suggested that the use of HT varieties could reduce yield loss (relative to current maize varieties) by up to 36% and 93% by 2030 and by 33% and 86% by 2050 under irrigated and rainfed conditions respectively. CIMMYT’s work in South Asia demonstrates that combining high yields and heat-stress tolerance is difficult, but not impossible, if one adopts a systematic and targeted breeding strategy.

The present registration system in many countries does not adequately recognize the relevance of climate-resilience traits and the yield stability of new hybrids. With year-to-year variation in maize productivity due to weather extremes, yield stability is emerging as an important trait. It should become an integral parameter of the registration and release system.

Positioning and promoting new HT maize hybrids in climate-vulnerable agroecologies requires stronger public–private partnerships for increasing awareness, access, and affordability of HT maize seed to smallholder farmers. It is important to educate farming communities in climate-vulnerable regions that compared to normal hybrids the stress-resilient hybrids are superior under unfavorable conditions and at par with or even superior to the best commercial hybrids under favorable conditions.

For farmers to be able to easily access the new promising hybrids, intensive efforts are needed to develop and strengthen local seed production and value chains involving small-and medium-sized enterprises, farmers’ cooperatives, and public-sector seed enterprises. These combined efforts will lead to wider dissemination of climate-resilient crop varieties to smallholder farmers and ensure global food security.

Market segmentation and Target Product Profiles (TPPs): developing and delivering impactful products for farming communities

Experimental maize field. (Photo: CIMMYT)

With the ever-changing climate conditions, including the unpredictable El Niño, and dynamic changes in government policies, understanding farmers’ preferences and market segmentation has become crucial for implementing impactful breeding programs. Market segmentation is a strategic process which divides a market into distinct group of consumers with similar needs, preferences, and behaviors. This allows organizations to tailor their products and services to specific customer segments, thus ensuring maximum value and impact.

In today’s fast-paced and evolving agricultural landscape, market segmentation plays a vital role in helping organizations navigate the complexities of a dynamic market. CIMMYT’s maize breeding program has a successful track record in developing and delivering improved varieties that are climate-resilient, high-yielding and suited to the rainfed tropical conditions in Africa. To further strengthen the impact, it is important to have a clear understanding of the evolving needs of farmers in different agroecological regions and the emerging market scenario so that breeding processes can be tailored based on market needs and client requirements.

Questions arise on how to refine the breeding programs relative to country-specific market segments, what efforts are underway to target these markets, and how do these markets transition. Recognizing the importance of market segmentation in refining breeding programs at the country and regional levels, CIMMYT hosted two workshops on maize market intelligence in Kenya and Zimbabwe, under the CGIAR Market Intelligence Initiative for eastern and southern Africa.

“Market intelligence in breeding programs is critical to understand the evolving needs of key stakeholders, including farmers, consumers, and the seed industry. It helps continuously improve the breeding pipelines to develop and deliver impactful products in targeted market segments. The workshops brought together relevant experts from the national programs and seed companies for focused discussions to develop a harmonized breeding strategy. This would help to address the needs of smallholder maize farmers in eastern and southern Africa,” said Director of CIMMYT’s Global Maize program and One CGIAR Global Maize Breeding Lead, B.M. Prasanna.

B.M. Prasanna delivers a presentation. (Photo: CIMMYT)

The workshops constituted a strategic continuation of the Product Design Team (PDT) meetings under CGIAR Market Intelligence, with a focus on the refinement of gender-intentional target product profile design. Guided by the expertise of CIMMYT’s Global Maize program, Market Intelligence, and ABI-Maize Transform teams, the sessions saw active participation from key stakeholders including lead breeders, seed systems experts, and market specialists from the National Agricultural Research and Extension Systems (NARES), alongside collaborative engagement with seed company partners. The workshops underscored the commitment to incorporate diverse perspectives, aligning with the evolving maize market landscape in eastern and southern Africa.

“The workshop provided critical insights on opportunities to improve market penetration of improved maize varieties. There is a need to strike a balance between the needs of the farmers, seed industry, and consumers in variety development; actively involve farmers and consumers in variety selection and understanding their preferences; and focus on emerging needs of the market such as yellow maize for feed and food,” said James Karanja, maize breeding lead at the Kenya Agriculture & Livestock Research Organization, Kenya.

Insights from both workshops underscored the importance of providing breeders with pertinent information and comprehensive training. The discussions illustrated the necessity for breeders to define their objectives with a 360-degree outlook, aligning breeding programs with market segments and interfacing with CIMMYT’s regional vision.

Workshop participants. (Photo: CIMMYT)

“The market intelligence workshop is an excellent initiative for the breeding programs. It shows how traits can be identified and prioritized, based on farmers’ requirements. The maize value chain is broad, and the synergy between the developer of the product (breeder), the producer (farmer), and the consumer needs to be effective. Hence, streamlining of the market segments and eventually the target product profiles is key in ensuring that the breeders develop improved products/varieties with relevant traits that address the needs of farmers, consumers, and the seed industry,” said Lubasi Sinyinda, breeder from the Zambia Agricultural Research Institute, Zambia.

Another participant, Lucia Ndlala, a maize breeder at the Agricultural Research Council, South Africa, echoed similar enthusiasm. “The workshop was exceptionally informative, providing valuable insights into target product profiles and market segments. This knowledge will undoubtedly prove instrumental in shaping future breeding strategies,” she said.

When applied through a breeding lens, market segmentation is a vital tool in refining breeding programs at both country and regional levels, enabling breeders to better understand and address the diverse needs of the farmers, and ensuring that the improved varieties are tailored to market segments.

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

CIMMYT scientists recognized for significant research impact

CIMMYT applies high quality science to develop more resilient agrifood systems. This year three scientists from CIMMYT are included in Clarivate’s 2023 Analysis of the most highly cited academic papers.

Jill Cairns participates at a plenary session. (Photo: Alfonso Cortés/CIMMYT)

While CIMMYT’s mission does explicitly require academic publication from its scientists, “the recognition reflects extensive networking with academia, opening doors for new technologies to benefit resource-poor farmers and consumers as well as lending scientific kudos to CIMMYT and underpinning fundraising efforts,” says Distinguished Scientist and Head of Wheat Physiology, Matthew Reynolds.

Maize Physiologist Jill Cairns and collaborators spearheaded the application of high throughput phenotyping for maize-breeding in sub-Saharan Africa, which she says, “would not have been possible without involving leading academic experts like JL Araus at Barcelona University.”

José Crossa chairs the session: adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

Biometrician and Distinguished Scientist JosĂ© Crossa has pioneered wheat genetic analysis and use of artificial intelligence to solve crop research questions. “With machine learning tools like Deep Learning, there is a golden opportunity to understand the many complex dimensions of crop adaptation, so data-driven breeding models will have the necessary precision to target complex traits,” he explains. Crossa is widely respected by leading academics in biometrics for his insights on bridging statistical theory to solve real world problems.

Reynolds has built initiatives like the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) that transfer cutting-edge technologies—from many of the best academic institutions in the world—to application in breeding, helping to widen wheat gene pools globally.

Matthew Reynolds speaks at a workshop. (Photo: Alfonso Cortés/CIMMYT)

All three scientists achieved the same recognition last year. As in 2022, Reynolds was awarded for his contribution to scientific literature in plant and animal sciences, while Cairns and Crossa were awarded for their contributions to scientific literature across several fields of research (cross fields).

Since 2001, Clarivate’s Highly Cited Researchers list has identified global research scientists and social scientists who have demonstrated significant and broad influence in their field(s) of research. It recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.

In 2023, the list recognizes 6,849 individuals from more than 1,300 institutions across 67 countries and regions.

Every drop of water matters: Leading global research institutes ally to aid farmers in dry and saline ecosystems

CIMMYT and ICBA sign a memorandum of understanding. (Photo: ICBA)

Dubai/Mexico City, 10 January 2024 – An award-winning not-for-profit agricultural research center recognized for its work on sustainable agriculture in the Middle East and North Africa is joining forces with the global organization whose breeding research has contributed to half the maize and wheat varieties grown in low- and middle-income countries.

The International Center for Biosaline Agriculture (ICBA) and CIMMYT have signed an agreement to jointly advance the ecological and sustainable intensification of cereal and legume cropping systems in semi-arid and dryland areas.

“Farmers in such settings confront enormous risks and variable conditions and often struggle to eke out a livelihood, but they still comprise a critical part of the global food system and their importance and challenges are mounting under climate change,” said Bram Govaerts, director general of CIMMYT. “ICBA brings enormously valuable expertise and partnerships to efforts that will help them.”

The specifics of the two centers’ joint work are yet to be defined but will cover soil health, salinity management approaches, crop productivity and breeding, gender-transformative capacity development, and finding markets for underutilized crops, among other vital topics.

Established in 1999 and headquartered in the United Arab Emirates (UAE), ICBA conducts research and development to increase agricultural productivity, improve food security and nutrition, and enhance the livelihoods of rural farming communities in marginal areas. The center has extensive experience in developing solutions to the problems of salinity, water scarcity and drought, and maintains one of the world’s largest collections of germplasm of drought-, heat- and salt-tolerant plant species.

“We are excited about the synergies our partnership with CIMMYT will create. It will focus on a range of areas, but the priority will be given to developing breeding and cropping system innovations to improve farmers’ food security and nutrition, while enhancing water security and environmental sustainability, and creating jobs and livelihoods in different parts of the world,” said Tarifa Alzaabi, director general of ICBA.

Based in Mexico but with projects in over 80 countries and offices throughout Africa, Asia and Latin America, CIMMYT operates a global seed distribution network that provides 80% of the world’s breeding lines for maize and wheat, including many that offer superior yields and resilience in dry conditions and in the presence of crop diseases and pests.

The center is also conducting breeding and seed system development for dryland crops such as sorghum, millet, groundnut, cowpea, and beans, known for their climate resilience and importance as foods and sources of income for smallholder farm households and their communities.

With global and local partners, CIMMYT is also refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.

As part of the new agreement, the centers will also explore research collaborations with universities and research institutions in the UAE to develop and test maize varieties that are suitable for the UAE’s climate and soil conditions, as well as organizing training programs and workshops for farmers, extension workers, and other stakeholders in the UAE to build their capacity in maize production and management.

About ICBA

The International Center for Biosaline Agriculture (ICBA) is a unique applied agricultural research center in the world with a focus on marginal areas where an estimated 1.7 billion people live. It identifies, tests, and introduces resource-efficient, climate-smart crops and technologies that are best suited to different regions affected by salinity, water scarcity, and drought. Through its work, ICBA helps to improve food security and livelihoods for some of the poorest rural communities around the world.

www.biosaline.org

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

staging.cimmyt.org

For more information or interviews:

CIMMYT

Sarah Fernandes

Head of Communications

s.fernandes@cgiar.org

ICBA

Abdumutalib Begmuratov

Head of Knowledge Management and Communications

a.begmuratov@biosaline.org.ae

Combatting maize lethal necrosis in Zimbabwe

Maize is a staple crop in Zimbabwe, playing a vital role in the country’s agricultural landscape as food for its own people and an export good. However, behind every successful maize harvest lies the quality of seed and resistance to diseases and stresses.

Amidst the multitude of diseases that threaten maize crops, one adversary is maize lethal necrosis (MLN). Though not native to Zimbabwe, it is crucial to remain prepared for its potential impact on food security.

What is maize lethal necrosis?

MLN is a viral disease, caused by a combination of two virus diseases. The disease emerged in Kenya in 2011 and quickly spread to other countries in eastern Africa. The introduction of MLN to Africa was likely affected by the movement of infected seed and insect vectors. MLN has had a severe impact on regional maize production, leading to yield losses of up to 90%.

Recognizing the need to equip seasoned practitioners with the knowledge and skills to effectively diagnose and manage MLN, CIMMYT organized a comprehensive training on MLN diagnosis and management, targeting 25 representatives from Zimbabwe’s Plant Quarantine Services.

From students to experienced technicians, pathologists and plant health inspectors, this was an opportunity to refresh their knowledge base or an introduction to the important work of MLN mitigation. “This training for both advanced level practitioners and students is crucial not only for building competence on MLN but also to refresh minds to keep abreast and be prepared with approaches to tackle the disease once it is identified in the country,” said Nhamo Mudada, head of Plant Quarantine Services.

Maize plants showing maize lethal necrosis (MLN). (Photo: CIMMYT)

Expectations were diverse, ranging from sharpening understanding of key signs and symptoms to learning from country case examples currently ridden with the disease. With CIMMYT’s guidance, practitioners learned how to identify MLN infected plants, make accurate diagnoses, and implement management strategies to minimize losses.

“For over 10 years, these trainings have been important to raise awareness, keep local based practitioners up to speed, help them diagnose MLN, and make sure that they practice proper steps to tackle this disease,” said L.M Suresh, CIMMYT maize pathologist and head of the MLN screening facility in Kenya.

Identifying the specific MLN causing viral disease affecting a maize plant is the first step in combating MLN. Determining whether it is a biotic or abiotic disease is critical in establishing its cause and subsequent diagnosis. By implementing proper diagnostic techniques and understanding the fundamentals of good diagnosis, practitioners can bring representative samples to the lab and accurately identify MLN.

Tackling MLN in Zimbabwe

Initiated in 2015 at Mazowe as a joint initiative between the Government of Zimbabwe and CIMMYT, a modern quarantine facility was built to safely import maize breeding materials from eastern Africa to southern Africa and enable local institutions to proactively breed for resistance against MLN.

The MLN quarantine facility at the Plant Quarantine Institute is run by the Department of Research and Specialist Services (DRSS) and is mandated to screen maize varieties imported under strict quarantine conditions to ensure that they are MLN-free.

Training participants pose outside of the MLN screening facilities. (Photo: CIMMYT)

To date, CIMMYT and partners have released 22 MLN resistant and tolerant hybrids in eastern Africa. CIMMYT’s research and efforts to combat MLN have focused on a multidimensional approach, including breeding for resistant varieties, promoting integrated pest management strategies, strengthening seed systems, and enhancing the capacity of farmers and stakeholders.

“Support extended through valuable partnerships between CIMMYT, and the collaborations have played a pivotal role from surveillance to diagnostics and building capacity,” said Mudada.

Feedback and insights

Chief Plant Health Inspector for Export and Imports Biosecurity, Monica Mabika, expressed gratitude for the training. “It is always an honor when we have expert pathologists come through and provide a valuable refresher experience, strengthening our understanding on issues around biosecurity and learning what other countries are doing to articulate MLN,” she said.

Students learn how to screen maize plants for MLN. (Photo: CIMMYT)

Among the students was Audrey Dohwera from the University of Zimbabwe, who acknowledged the importance of the training. “I have been attached for 2 months under the pathology department, and I was eager to learn about MLN, how to detect signs and symptoms on maize, how to address it and be able to share with fellow farmers in my rural community,” she said.

With the knowledge gained from this training, practitioners are well equipped to face the challenges that MLN may present, ultimately safeguarding the country’s maize production status.

How CGIAR maize breeding is improving the world’s major staple crop for tropical regions

Maize production is surging due to its diversified end uses. While it is already the first staple cereal globally, it is expected to emerge as the world’s predominant crop for cultivation and trade in the coming decade. Globally, it serves primarily as animal feed, but it is also a vital food crop, particularly in sub-Saharan Africa, Latin America, and in some areas in Asia. 

Climate change is, however, altering the conditions for maize cultivation, especially in the rainfed, stress-prone tropics. Abiotic stresses like heat, drought, and floods, as well as biotic threats such as diseases and insect pests are becoming more frequent. These have a disproportionate impact on the resource-constrained smallholders who depend on maize for their food, income, and livelihoods. 

In a race against time, crop breeders are working to enhance maize’s resilience to the changing climates. Among others, CIMMYT and the International Institute of Tropical Agriculture (IITA), working within CGIAR’s Accelerated Breeding Initiative, are utilizing breeding innovations to develop climate-resilient and nutritionally enriched maize varieties needed by the most vulnerable farmers and consumers.  

Better processes

Improving maize yields in the rainfed, stress-prone tropics is challenging. Nevertheless, CGIAR’s efforts have significant impacts, as breeding programs embraced continuous improvement and enhanced efficiency over the years.  

To increase genetic gains, CIMMYT maize breeding program implemented a systematic continuous improvement plan. Sixty percent of CIMMYT’s maize lines in Eastern and Southern Africa (ESA) are now developed through technologies that speed up breeding cycle and improve selection intensity and accuracy; these include doubled haploid technology, high-throughput phenotyping, molecular marker-assisted forward breeding, and genomic selection. The breeding cycle time has been reduced from five or six years to only four years in most of the maize product profiles. Product advancement decisions now incorporate selection indexes, and specialized software aid in the selection of parental lines for new breeding starts. 

CIMMYT and IITA maize teams are working together to investigate several key traits in maize for discovery, validation, and deployment of molecular markers. CGIAR maize team developed a framework for implementing a stage-gate advancement process for marker-trait pipeline, which enables informed decision-making and data-driven advancements at multiple stages, from marker-trait discovery proposal to marker discovery, validation, and deployment. Consolidating research efforts and implementing this process is expected to increase efficiency and collaboration in maize breeding programs.

An example of maize biotic stress exacerbated by climate change: fall armyworm (FAW) larvae, highly destructive pests, emerge out from an egg mass placed on a maize leaf. (Photo: A. Cortés/CIMMYT)

At the end of the breeding process, breeders must ensure the quality assurance and quality control (QA/QC) of the parental lines of the new varieties. Seed quality, which includes genetic purity, genetic identity, and verification of parentage – is critical in maize breeding and commercial seed production.  

CIMMYT has worked to enhance the capacity of NARES and seed company partners in Eastern and South Africa (ESA), Asia, and Latin America, in utilizing molecular markers for QA/QC in breeding and commercial seed production. This has resulted in more reliable and accurate outcomes. In addition, webinars and user-friendly software have boosted results for NARES maize breeders, regulatory agencies, and seed companies. These combined efforts mean a dependable, cost-effective, and efficient QA/QC system for the maize seed value chain in the Global South. 

Better tools 

With traditional means, obtaining a genetically homozygous or true-to-type maize line requires six to eight generations of inbreeding, and thus, more than ten years for developing a new hybrid. The technique of doubled haploid (DH), which enables derivation of 100% genetically homozygous lines in just two generations, is now integral to modern maize breeding. CIMMYT has pioneered the development of tropical maize DH technology, by developing and disseminating tropicalized haploid inducers, establishing centralized DH facilities in Mexico, Kenya and India, and providing DH development service to partners.  

Regional on-farm trials (ROFTs) is a crucial step in maximizing the impact of breeding investments. ROFTs help scientists understand performance of the pipeline hybrids under diverse farmers’ management conditions, besides environment, soil variability, etc. 

In ESA, ROFT networks for maize are expanded significantly over the last few years, from 20-30 sites per product profile to up to 300 sites, encompassing a wide range of smallholder farming practices. The experimental design was simplified to use less germplasm entries to be tested per farm, making it easier for the farmers to participate in the network, while improving data quality. Collaboration with NARES, seed companies, NGOs, and development partners was significantly stepped up to capture the social diversity within the target market segments. Gender inclusion was prioritized.

Training workshop organized by CIMMYT at the Maize Doubled Haploid Facility in Kunigal, India. (Photo: CIMMYT)

Strengthening the capacity of NARES and SMEs to systematically access and utilize improved maize germplasm is critical for increasing genetic gains in the stress-prone tropics. But partner institutions are at different stages of evolution, which means capacity strengthening must be tailored to institutional strengths and constraints.  

Accelerated Breeding has been strengthening regional CGIAR-NARES-SME collaborative maize breeding networks via activities such as exchanging elite tropical germplasm (inbred lines, trait donors, and breeding populations) through field days, and widely disseminating CIMMYT maize lines (CMLs) requested by institutions globally.  

Partners participate in CGIAR maize stage-advancement meetings – they are given access to multi-location trial data and participate in the selection process of promising hybrids to be advanced from the different breeding stages. CGIAR maize teams also assessed the capacity of different NARES institutions, and formulated continuous improvement plans in consultation with respective NARES teams for further support.  

Better varieties

Systematic integration of new breeding techniques and innovations in CGIAR maize breeding pipelines are leading to better varieties, at a much faster pace, and at lower cost. Given the impacts of climate change, this is indeed the need of the hour.  

Maize breeders need to respond rapidly to emerging and highly destructive insect-pests and diseases. For instance, the invasion of fall armyworm (FAW) in Africa (since 2016) and Asia (since 2018) has ravaged maize crops across more than 60 countries. CGIAR maize team in Africa responded to this challenge and made progress in identifying diverse sources of native genetic resistance to FAW, resulting in elite hybrids and open-pollinated varieties (OPVs) adapted to African conditions. 

Since 2017, CIMMY has strengthened the maize insectary capacity of KALRO-Katumani by optimizing the FAW mass rearing protocol and screening of maize germplasm under FAW artificial infestation at Kiboko Station, Kenya. The station now has sixteen 1,000m net houses. The intensive work since 2018 led to identification of FAW-tolerant inbred lines by CIMMYT and their distribution to over 90 public and private institutions in 34 countries. 

NARES partners across 13 countries in Africa have undertaken national performance trials of three FAW-tolerant hybrids developed by CIMMYT. Kenya, Zambia, Malawi, South Sudan and Ghana released the three hybrids in 2022-23, while several more countries are expected to release these hybrids in the coming months.

Drought and heat tolerant maize ears are harvested through a CIMMYT project. (Photo: J.Siamachira/CIMMYT)

Climate change is also exacerbating maize diseases. Affecting at least 17 countries in the Americas, the Tar Spot Complex (TSC) disease affects maize in the cool and humid regions. It causes premature leaf death, weakens plants, and reduces yields by up to 50%. CIMMYT maize team in Mexico has mapped genomic regions conferring TSC resistance, and is using these markers in breeding programs.  

The Global South is also particularly vulnerable to drought and high temperature stresses. In the past five years, 20 drought- and heat-tolerant maize hybrids have been released in Asia, including Bangladesh, Bhutan, India, Nepal, and Pakistan. Socio-economic studies in India and Nepal showed that farmers who adopted these hybrids realized higher grain yields, and increased income compared to the non-adopters. 

In 2022, certified seed production of CGIAR multiple stress-tolerant maize varieties reached 181,119 metric tons in sub-Saharan Africa (from 72,337 tons in 2016). This is estimated to cover ~7.4 million hectares, benefiting over 46 million people in 13 countries. 

With maize facing unprecedented threats from climate change-induced stresses in the rainfed stress-prone tropics, CGIAR maize breeding programs working closely with NARES and private sector have demonstrated remarkable success in breeding as well as deploying climate resilient maize.  These efforts rely on better processes and modern breeding tools, leading to drastically reduced breeding cycle time, cost saving, and improved efficiency.  

The resulting improved varieties–resilient to major environmental stresses, diseases and insect-pests–are increasingly adopted by smallholders across sub-Saharan Africa, South Asia, and Latin America, showing that tomorrow is already here. The work continues to ensure that maize remains a constant source of food security and prosperity for generations to come in the tropical regions.

Strengthening seed systems emphasized to enhance Bhutan’s seed and food security initiatives

Quality seed is a crucial agricultural input for enhancing crop production and productivity per unit of land. However, in many developing countries, including Bhutan, ensuring the availability, affordability, and accessibility of quality seed, especially of preferred varieties, remains a significant challenge for farmers. Maize is the second most important cereal in Bhutan after rice. However, the total area dedicated to cereal cultivation in Bhutan has been decreasing due to factors such as rural-urban migration, urban expansion, and the effects of climate change.

Between 2016 and 2021, the areas under rice and maize cultivation have contracted by 55% and 64%, respectively (FAOSTAT, 2022). This huge reduction in cereal cultivation, combined with relatively low productivity, has led Bhutan to rely on imports to bridge the gap and meet the demand for essential food crops, including maize. The Bhutanese government is committed to enhancing domestic capacity and fostering self-sufficiency in major food crops and discourages the import of seed, especially of hybrid maize.

AbduRahman Beshir, seed systems specialist at CIMMYT, displays incomplete fertilization of maize cobs. (Photo: Passang Wangmo/ARDC-Wengkhar)

Hybrid maize seed to offset deficit

Recognizing the significance of improving maize productivity, the Agriculture Research & Development Center (ARDC) in Bhutan is working on the development and deployment of hybrid maize that has the potential to double yields compared to non-hybrid varieties. In 2020, Bhutan officially released its first hybrid maize variety, Wengkhar Hybrid Maize-1 (WHM-1), which was sourced from CIMMYT. Furthermore, several other hybrid maize varieties from CIMMYT are currently in the pipeline for release and evaluation, including those tolerant to fall armyworm (Spodoptera frugiperda), the most important maize pest in Bhutan.

Despite the testing and release of hybrid maize varieties, the production of high-quality seed—vital for realizing the benefits of hybrid maize for Bhutanese farmers—has yet to take place. The seed industry in Bhutan is primarily informal, with the majority of farmers relying on farm-saved seed of often inferior quality. The absence of a formalized seed system, coupled with a lack of the necessary skills and technical expertise across the seed value chain, presents considerable challenges in building a competitive and vibrant seed sector in Bhutan.

Training workshop emphasizes the strengthening of seed systems

To ensure a consistent supply of high-quality maize seed to Bhutanese farmers, which is essential for seed and food security and improved productivity, ARDC in collaboration with CIMMYT, under the CGIAR Seed Equal Initiative, carried out an international training workshop on quality seed production and distribution, with the main focus on hybrid maize, from 13–15 November 2023 at ARDC-Wengkhar, Mongar.

The three-day workshop involved 30 participants from diverse organizations, including the National Seed Centre, the College of Natural Resources, extensions agents from the eastern region, the Bhutan Food and Drug Authority, and agriculture research and development centers. The workshop aimed to enhance participants’ technical skills in understanding and applying the principles and practices of quality hybrid maize seed production; to promote synergistic partnerships among various seed sector stakeholders for initiating and scaling up quality hybrid maize seed production in Bhutan; and to exchange experiences and lessons to be learned from South Asian countries that can be applied to strengthening Bhutan’s seed system.

Participants discuss during the workshop. (Photo: AbduRahman Beshir/CIMMYT)

“This is the first kind of training I have received on hybrid maize seed production, and it was very relevant, action-oriented and applicable to our condition in Bhutan,” says Kinley Sithup, a researcher at ARDC-Wengkhar, Mongar, and adds that the training workshop was a useful forum for identifying key challenges and the role of stakeholders across the seed value chain, which were discussed in detail during the group work in the training.

Recently, the Bhutanese government has restricted the import of hybrid maize seed in order to promote import substitution and enhance local seed production. “In light of the unavailability of imported hybrid seeds, it’s crucial for us to intensify our efforts in scaling up local seed production,” says Dorji Wangchuk, project director of the Commercial Agriculture and Resilient Livelihood Enhancement Program (CARLEP), while addressing the participants during the opening.

The training workshop covered courses on seed system components, maize breeding concepts, hybrid seed production principles, the development of a seed roadmap on production and marketing, hybrid seed pricing and marketing approaches, seed quality control and certification, among others. A field visit along with hands-on training at ARDSC Lingmethang enriched the learning experience. In addition, experiences from other South Asian countries on hybrid seed production and marketing were shared during the training.

A group photo with the participants of the seed systems training workshop in Bhutan. (Photo: ARDC)

Team up for seed production

A significant outcome is the planned initiation of the inaugural hybrid maize seed production group in Udzorong, Trashigang, scheduled for January 2024 in collaboration with extension, the National Seed Center, and the Bhutan Food and Drug Authority. This initiative, supported by CARLEP-IFAD and CIMMYT, reflects a dedicated effort to strengthen Bhutan’s seed sector and enhance maize production for the benefit of local farmers. Fast-track variety release and seed deployment are important to Bhutanese smallholder farmers to mitigate the challenges of lower productivity. “CIMMYT is ready to continue working with partners in Bhutan,” says Program Director of the Global Maize Program at CIMMYT and the One CGIAR Plant Health Initiative lead, BM Prasanna, while delivering his messages online. Prasanna added that CIMMYT has licensed three fall armyworm-tolerant hybrids for Bhutan, and partners need to team up for the release and seed-scaling of the hybrids.

The training workshop on hybrid maize seed was the first of its kind to be held in Bhutan and was conducted under the CGIAR Seed Equal Initiative in collaboration with ARDC and CARLEP. AbduRahman Beshir, seed systems specialist at CIMMYT, delivered the main courses, with additional virtual presentations from CIMMYT staff from India and Kenya.

Three new CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce three new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across southern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22SAPP1-15 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM22SAPP1-12 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22SAPP2-10 Extra-early to early-maturing, white, high-yielding, drought tolerant, NUE, resistant to GLS, MSV, TLB

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 26, 2024. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the southern Africa Stage 5 On Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored for smallholder farmers in stress-prone agroecologies of southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced regarding the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Pamela Sithole, project coordinator, Global Maize Program, CIMMYT office in Zimbabwe.

APPLY FOR A LICENSE