Skip to main content

research: Global maize program

When the worm won’t wait: Battling Fall Armyworm with science, seeds and farmer-led solutions

The destructive Fall armyworm in a farmer’s field (CIMMYT)

Farmers in southern Africa face a double tragedy: drought in one season or flooded fields in another. Shredded leaves, twisted tassels, and frizzled maize cobs reflect more than just a failed harvest; they signal a deepening threat to food security and livelihoods. Compounding this hardship is the growing threat of pests and diseases, many of which are fuelled by climate change. Chief among them is the fall armyworm (FAW) (Spodoptera frugiperda), an invasive pest that arrived in Africa nearly a decade ago and continues to undermine smallholder farmers’ resilience, devouring crops stalk by stalk. 

Maize is central to food security in Zambia and Malawi, where it occupies up to 80% of cultivated land and accounts for over half of the daily calorie intake. In Zambia alone, more than 90% of smallholder households grow maize, underscoring its economic and political weight. Yet, in recent years, farmers have had to contend with losses not just from erratic rainfall and poor soils, but from pests and diseases that seem to multiply with each season. 

A recent CIMMYT-led study across 1,100 farming households in Malawi and Zambia, as part of the Southern African Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, highlights the long-recognized challenge of FAW damage. The study confirms that FAW is not only persistent but also costly. During 2023/2024 season, 70% of surveyed farmers reported FAW damage to their maize fields. On average, FAW infestations resulted in a 13.5% to 30% reduction in maize yields, translating to more than 230 kg of lost grain per hectare. Other crops were also heavily affected, with the rosette virus reducing groundnut yields by 27% and soybean rust causing up to 25% losses in soybean fields. 

The effects of FAW extend beyond crop harvests. It has also been shown to significantly undermine household income and food security. Although the 2023/2024 losses are slightly lower than earlier estimates, which ranged from 22% to 67% across Africa, they are still substantial enough to affect food security and livelihoods. Furthermore, the combined effects of FAW, rosette disease and rust had large income and food security impacts.  Households facing the triple burden of these pests and diseases – FAW, groundnut rosette virus and soybean rust on their three most important crops are twice as likely to experience food insecurity as compared to experiencing just one of these threats.  

In response, many farmers are turning to pesticides, improved seeds and crop rotation. However, as the data indicates, pesticides alone are far from being a comprehensive solution. They are often costly, frequently misapplied, and carry significant risks to both human and the environment. Moreover, FAW is increasingly developing resistance to commonly used pesticide formulations. Access to agricultural extension services remains limited: only 27% of surveyed farmers in Zambia and 54% in Malawi reportedly receiving such support. Without proper guidance on when and how to apply pesticides, their misuse can end up doing more harm than good. 

These findings highlight a broader challenge: the urgent need for sustainable, science- and data-driven solutions that are practical for farmers. At the core of the response is a new generation of maize hybrids with tolerance to FAW. CIMMYT in collaboration with its partners using conventional breeding has developed new generation of hybrids with native genetic (non-transgenic) tolerance to FAW. The breeding process is complex, requiring years of field testing across diverse agroecological zones to ensure adaptability and performance. 

In 2023, three FAW tolerant maize varieties developed by CIMMYT were officially released by the Zambia Agriculture Research Institute (ZARI) and sub-licensed to seed companies for commercialization. With support from AID-I and the CGIAR Sustainable Farming program, CIMMYT and partners are actively promoting these hybrids among smallholder farmers. The AID-I project has provided critical support to accelerate seed production of these hybrids. Zamseed and AfriSeed are leading efforts to bring these varieties to market. 

Mebby Chipimo Munyemba, a proud farmer showcasing her FAW-tolerant maize field in Mazabuka, Zambia (CIMMYT)

Through the Sustainable Farming program, on-farm trials have been established across three agroecological gradients in Siavonga, Mazabuka, and Mbala districts to test the performance under farmer conditions and understand their impact on farmer outcomes. There are two treatments, which include growing the FAW-tolerant maize variety alone, and intercropping it with other legumes. Rather than assuming a one-size-fits-all solution, CIMMYT is using randomized control trials (RCTs) to assess the real-world performance of these varieties under varying conditions. The goal is not only to validate the science but to build a stronger case for scaling. 

In Siavonga, where high temperatures and erratic rainfall create ideal conditions for FAW outbreaks, early results show promising benefits from using FAW-tolerant maize varieties. Preliminary foliar damage assessment indicates significantly reduced infestation levels compared to susceptible varieties. In contrast, the benefits in Mazabuka are less pronounced, while in Mbala – a cooler, higher-altitude location with lower pest pressure- no major gains have yet been observed. These location-specific findings are critical for informing hyperlocal, evidence-based policymaking.  Equally important is building awareness and trust among farmers, ensuring they know these improved varieties exist and understand how to grow them applying good agronomic practices. Through AID-I, CIMMYT is working to close that gap, demonstrating the business case for investing in FAW tolerant maize seed to the private sector, and equipping farmers with knowledge that goes beyond what is in the bag.  

For example, a survey carried out in Malawi, Tanzania and Zambia revealed that awareness of FAW-tolerant maize varieties remains low, with only 19% of farmers in Malawi, 34% in Tanzania and 39% in Zambia had heard of FAW-tolerant maize varieties. This underscores the urgent need to scale up awareness campaigns and initiatives to stimulate demand. Encouragingly, among the farmers who are aware of these varieties, the majority expressed a willingness to purchase them at prices comparable to those of other hybrid maize varieties. This indicates a strong business case for private sector investment in seed multiplication and distribution to meet potential demand and expand access to FAW-tolerant maize hybrids. 

For many farmers in Southern Africa, the FAW remains a persistent threat. However, through science, strong partnerships, and a commitment to field-based evidence, the tide is turning, one trial, one variety, one growing season at a time. 

Four New CIMMYT maize hybrids available from LATAM Breeding Program

CIMMYT is happy to announce four new, improved tropical and subtropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Latin America and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits Target Agro-ecology
CIM22LAPP1A-10 Intermediate maturing, white, high yielding, and resistant to TSC, MLB and Ear rots Lowland tropics
CIM22LAPP1A-11
CIM22LAPP1C-10 Intermediate maturing, yellow, high yielding, and resistant to TSC, MLB and Ear rots
CIM22LAPP2A-28 Intermediate-maturing, white, high-yielding, and resistance to GLS and Ear rots. Mid-altitudes/

Spring-Summer season

 

Performance data Download the CIMMYT LATAM Maize Regional (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 and 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is January 31st, 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the LT23-STG5-THW, LT23-STG5-THY, and 01-23MASTCHSTW Stage 5 Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of Latin America.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Debora Escandón, Project Administrator, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

 

Five New CIMMYT maize hybrids available from Southern Africa Breeding Program

CIMMYT is happy to announce five new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across Southern Africa and similar agro-ecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM23SAPP1A-02 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, Ear rots, and MSV
CIM23SAPP1A-11
CIM23SAPP1B-02 Late maturing, white, high yielding, drought tolerant, low-nitrogen tolerant, and resistant to MSV, TLB, and Ear rots
CIM22NUVA-75 Across maturity groups, PVA biofortified, orange grain, high yielding, drought-tolerant, NUE, resistant to GLS, TLB, ear rots, MSV
CIM23NUVA-13

 

Performance data Download the CIMMYT Southern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2021/22, 2022/23, and 2023/24 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline for submitting applications to be considered during the first round of allocations is 10 January 2025. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023/24 Southern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored especially for smallholder farmers in stress-prone agroecologies of Southern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

 

APPLY FOR A LICENSE

 

 

Climate Change and Child Malnutrition in Zimbabwe: Evidence to Action

Climate Change and Child Malnutrition in Zimbabwe: Evidence to Action will generate evidence to understand the effects of climate change on child malnutrition in rural Zimbabwe. The overarching hypothesis is that climate change and related weather events indirectly increase child malnutrition by increasing food insecurity and decreasing dietary diversity.

This project will use a multisectoral approach to evidence generation and co-creation of community and policy action that incorporates village, district, provincial and national participation. The project aims to generate evidence linking climate change to malnutrition and co-develop mitigation strategies with communities that directly address the link between climate change and malnutrition.

The project has four activities:

  1. Examine the relationship between climate change in rural Zimbabwe and patterns of malnutrition utilizing environmental data (rainfall, temperature) and national Zimbabwe survey data (livelihoods, climate change mitigation strategies, dietary diversity and child malnutrition).
  2. Explore community understanding of the relationships between climate change and malnutrition with a mixed methods approach in two districts (survey and community-led workshops).
  3. Co-develop and refine climate-smart strategies that address the effects of climate change on malnutrition with agricultural and health cadres.
  4. Develop a communication plan with policymakers to disseminate findings about the relationship between climate change to child malnutrition.

Objectives:

  1. Use environmental data and national-level survey data on climate change and shocks related to climate change and examine associations with nutritional outcomes including food security, dietary diversity and child malnutrition.
  2. Conduct household surveys to understand how agricultural and child feeding practices change under climate variability.
  3. Conduct community workshops using community walks and River of Life Methodology to understand community perspectives on the relationship between climate change and child malnutrition.
  4. Co-develop and refine climate-smart strategies that communities can implement to directly address the relationship between climate change and malnutrition.
  5. Pilot implementation of strategies in two sites utilizing community health and agricultural extension workers.
  6. Share results with policy makers to contextualize malnutrition in the context of climate change policy.

Abou Togola

Abou holds a PhD degree in Entomology from the University of Lome (Togo Republic) in collaboration with Kobe University (Japan). He received his MSc in Entomology, and a Master’s degree in Project Management.

Abou has previously worked as a Host Plant Resistance Entomologist for Cowpea and Maize at the International Institute of Tropical Agriculture (IITA). In that role, he collaborated with the breeders to derive improved varieties with insect-pest resistance, and making these varieties accessible to the smallholder farmers across West Africa. His contributions extend to the identification of the Fall Armyworm in West Africa in 2016, and in developing and disseminating Integrated Pest Management (IPM) strategies against this invasive pest.

Before joining IITA, Abou held positions at the AfricaRice and the International Crop Research Institute for Semi-Arid Tropics (ICRISAT). His extensive professional background centers on researching integrated management options against insect-pests affecting tropical crops, including maize, cowpea, rice, sorghum, groundnut, pearl millet, cotton, fruit trees, and vegetables. Abou is passionate about implementing IPM, including host plant resistance, biological control, cultural practices, and other natural protective strategies. He also brings a wealth of experience to capacity building initiatives for NARES partners across Africa. Furthermore, he has successfully supervised numerous MSc and PhD students in Entomology.

Dragan Milic

Dragan Milic is responsible for providing support to the National Agriculture Research Systems (NARS) in Africa, assisting them in the development of breeding improvement plans aimed at delivering increased genetic gains for smallholder farmers. These enhancement strategies will specifically target product profiles, optimization of breeding schemes, utilization of genotyping, automation, mechanization, appropriate breeding software, and establishment of connections with seed producers.

Milić also extends support to national breeding teams in African countries, implementing a comprehensive internal breeding pipeline optimization plan supported by the Excellence in Breeding platform. Furthermore, he assists national partners in integrating and establishing breeding networks with CGIAR institutes and regional and national collaborators.

Before joining CIMMYT, Dragan Milić spent his professional career at the Institute of Field and Vegetable Crops (IFVCNS) in Novi Sad, Serbia. He served as the Head of the Forage Breeding team at IFVCNS and possesses over 20 years of experience in breeding, seed production, and leadership in conventional and molecular alfalfa/forage breeding. Dragan Milić has been a visiting scientist at the Samuel Roberts Noble Foundation and UC Davis through different scholarships funded by the Serbian and US governments.

His main expertise is related to forage and grain legumes breeding, field-based experiment phenotyping, legume genetics, and forage and grain legumes seed systems. He was involved in defining strategies based on conventional and molecular breeding efforts towards variety selection and the development of improved forage/alfalfa germplasm for Southern East Europe and Asia. Dragan is the author of many alfalfa/grain legumes varieties released in Serbia, Belarus, Morocco, Turkey, Ukraine, and the EU.

Xuecai Zhang

Xuecai Zhang is a Senior Scientist and Maize Molecular Breeder with CIMMYT’s Global Maize Program. In 2011, he joined CIMMYT as an assistant breeder at the lowland tropical maize breeding program in Mexico. In 2015, he started to lead the maize molecular breeding lab in Mexico to implement modern molecular breeding tools and technologies for accelerating the genetic gain of the Latin American maize breeding pipelines. From 2024, he coordinates the maize collaborations between CIMMYT and China.

Zhonghu He

Zhonghu He serves as a Distinguished Scientist and Country Representative in China for CIMMYT and a Research Professor at the Chinese Academy of Agricultural Science. Research areas include quality improvement of Chinese products and disease resistance, molecular marker development and application, and cultivar development.

Major contributions include the development and validation of 50 functional markers, the release of 36 improved cultivars, author/coauthor of more than 400 papers in refereed journals including 180 publications in international journals, and training more than 80 postgraduates and visiting scientists.

Received the First-Class Award and Prestigious Award in Science and Technology Progress from State Council in 2008 and 2015, selected as Fellow of Crop Science Society of America in 2009 and Fellow of American Society of Agronomy in 2013, the Guanghua Award from Chinese Academy of Engineering in 2010, the China Agriculture Elite Award in 2012, and the National Labor Medal in 2020.