Skip to main content

Pillar: SystemDev

Farmer trials with improved seeds to promote seed production and improve local farming practices

In Kasoka village of Bukedea District in Uganda, Nelson Ekurutu, a dedicated farmer, is leading the way in agricultural experimentation. With support from the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project—funded by the Bill & Melinda Gates Foundation (BMGF) and implemented in partnership with CIMMYT and the National Semi-Arid Resources Research Institute (NaSARRI)—Nelson has embarked on a journey to test three new groundnut varieties: SERENUT 8, SERENUT 11, and SERENUT 14. The demonstration plots provide him with a platform to test new varieties, helping him and others understand what works best in their locality.  

While Nelson is drawn to the SERENUT 11 variety for its attractive leaves, he remains cautious, knowing that the real test will come only after the harvest. “This is my first time planting these varieties,” he says. As curious neighbors pass by and inquire about the varieties, he explains, ‘We are testing new varieties, and we’ll know more about their performance and yields after the harvest.” 

The AVISA project, which aims to improve the productivity of dryland crops such as groundnut, finger millet, and sorghum, plays a crucial role in Nelson’s work. With funding and technical support from CIMMYT and NaSARRI, farmers like Nelson are given the opportunity to test improved, drought-tolerant, and disease-resistant varieties. These varieties are designed to increase yields and help farmers become more resilient to climate change while enhancing production systems.  

Nelson is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Nelson’s demonstration plots, using seed supplied by NaSARRI, are part of this initiative. CIMMYT has been instrumental in ensuring that these varieties are adapted to the local environment, while also working with NaSARRI to build farmers’ capacity through hands-on training and technical assistance. 

In addition to groundnut, Nelson is also experimenting with finger millet and sorghum. He values the red finger millet variety  SEREMI 2 for its quick maturity and larger heads. “I planted the finger millet on April 10th, and by July this year (2024), it was ready for harvest,” he says proudly. In addition to finger millet, he is also testing several sorghum varieties—NAROSORG 2, which is red, and SESO 1, which is white. Although he likes them all, Nelson has a clear preference: “I prefer the red sorghum because birds don’t eat it as much. When mixed with cassava, it makes a good atapa.”  Atapa is a staple food in Uganda made by mixing cassava and sorghum flour and cooking it with water until it forms a firm, dough-like consistency. It is typically served as a side dish with stews, vegetables, or meat. Similar dishes are known by different names across the region—Ugali in Kenya, Sadza in Zimbabwe, and Pap in South Africa underlining its importance in African cuisine. 

Nelson showcases the SESO 1 sorghum variety that is white in color (Photo: Marion Aluoch/CIMMYT)

Nelson notes that although the white sorghum produces larger heads, it attracts more birds, requiring him to cover the heads to prevent damage. These trials represent Nelson’s first experience with these varieties, and he acknowledges the learning process involved. “The seed was sourced from NaSARRI specifically for these demonstration plots,” he explains. He believes that by seeing the results first-hand, other local farmers will be able to make informed decisions about adopting the new varieties for improved seed production.  

Nelson’s demonstration plots serve as valuable learning sites for the wider farming community. By bridging the gap between research and farmers’ needs, the AVISA project ensures that scientific innovations reach those who need them most. Reflecting on his journey, Nelson describes the testing of these new varieties as a continuous learning experience. “I’ve been growing sorghum for a long time, and when people see how I grow it, they often ask about the variety and where they can get seeds,” he says. After his harvest, Nelson plans to share the seeds with nearby farmers while keeping some for his own future planting. 

Although he hasn’t been involved in large-scale seed distribution before, Nelson sees potential for future collaboration. “ There’s a group of sunflower and groundnut farmers who have organized themselves into a SACCO to access funding,” he says, referring to the Parish Development Model (PDM) initiative. This model could offer Nelson the opportunity to expand seed distribution and help more farmers access improved varieties. 

Committed to helping local farmers adopt best practices, Nelson is eager to share his knowledge. “When people see how I grow the crops, they often ask for advice or seeds,” he says. He believes that organizing field days to showcase the new varieties would be an excellent way to engage more farmers and demonstrate the value of improved seeds. 

Nelson prefers the NAROSORG 2 sorghum variety known for its resilience and red grain colour (Photo: Marion Aluoch/CIMMYT)

One of the challenges Nelson frequently encounters is farmer’s poor planting practices. “Some farmers broadcast the seeds instead of planting them properly in rows,” he notes, stressing the importance of correct planting techniques. Despite this, he continues to share seeds and farming knowledge to help his fellow farmers to improve their yields. 

Another key issue Nelson highlights is seed recycling, a crucial aspect of sustainable farming. “When you recycle seeds too much, they get tired,” he explains. For improved varieties, Nelson recommends recycling seeds no more than three times to maintain the health of the crop. “I recycle mine only twice. The local seeds can be recycled up to 20 times, but improved varieties don’t perform as well after a few cycles.” 

Climate change is one of the biggest challenges for Nelson’s farming practices, but he remains hopeful. He believes that installing an irrigation system would help mitigate the effects of erratic rainfall and improve his yields. His willingness to try new techniques and experiment with new varieties shows his determination to find solutions in the face of adversity. 

Nelson is optimistic that his trials with ground nut, sorghum, and millet will encourage other farmers to adopt improved varieties, increase seed production and lead to greater productivity in his village and beyond. Through programs like the AVISA project—supported by CIMMYT and NaSARRI—farmers like Nelson are gaining access to better seeds, growing more resilient crops, and improving food security in their communities. 

Atubandike: Breaking down gender barriers in Zambia’s agricultural advisory services

A digital champion trained by CIMMYT in climate-smart agricultural practices, shares her knowledge with her community (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Zambia’s agricultural sector has long grappled with significant gender disparities, particularly in rural areas where women often face unique barriers to accessing essential agricultural information. Despite playing a critical role in food production, women remain significantly underrepresented as agricultural extension agents, a trend that persists not only in Sub-Saharan Africa (SSA) but also globally. Changing this narrative demands a coordinated effort from government, non-governmental organizations (NGOs), the private sector and communities to challenge deep-rooted stereotypes about women’s roles and capabilities in agriculture.[1]

The Atubandike approach, a key part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, addresses these challenges head on. Through initiatives focusing on gender-inclusive seed systems and agricultural advisories on climate-smart agricultural (CSA) practices, Atubandike is actively working to increase women’s representation among Zambia’s agricultural advisors. By equipping communities with inclusive advisory services and training women and men digital champions, Atubandike is paving the way for a more equitable agricultural future.

This blog delves into the gender biases uncovered during recent community consultations organized by the AID-I Atubandike team in Zambia’s Southern Province across various rural districts, held in November 2023, as well as July 2024.[2] These consultations, aimed at addressing gender and youth stereotypes in agriculture, highlighted Atubandike’s initiatives to reshape the agricultural landscape for women and marginalized groups.

Community dialogues reveal deep-rooted gender biases in advisory access and spring up encouraging perspectives for female advisors

Staying true to the name, Atubandike—meaning “Let’s Chat” in Tonga—the AID-I team implementing the initiative, facilitated community discussions with over 1,700 farmers in Zambia’s Southern Province to explore underlying gender challenges in agriculture. Through these conversations, deep-seated gender biases emerged as a significant barrier. Many female agricultural advisors contend with cultural stereotypes that undermine their leadership and technical skills. As one participant noted, “Women are mostly seen as subordinates to men, so it is only natural that female agricultural advisors are viewed as less capable.” Such remarks highlight the difficult path women often tread to establish their authority in agricultural roles. Unfortunately, this bias isn’t limited to men; some female farmers also expressed a preference for male advisors, sharing the belief that “a fellow woman cannot provide valuable information.”

Women participating during a focus group discussion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

Studies on agricultural extension services confirm that  gender disparities in advisory roles severely  limit women farmers’ access to timely, high-quality  information in SSA and other developing regions. This, in turn, impedes their ability to boost productivity and provide for their families. [3] Agricultural Advisory Services (AAS) are often designed with men as the primary beneficiaries, overlooking the need to make services more accessible and relevant to women. The dominance of male extension agents further exacerbates this issue, especially in societies where cultural norms restrict interactions between women and men outside their immediate family. These societal norms reinforce traditional gender roles, undermining the effectiveness of women as agricultural advisors. As a result, women are often excluded from opportunities that would enable them to fully participate in, and benefit from, agricultural development. This exclusion not only limits their potential but also perpetuates poverty and inequality.

On a positive note, a more nuanced perspective also emerged during the discussions. Some community members recognized the unique strengths that female advisors bring to their work. As one participant observed, “Female advisors are more careful and easier to talk to,” noting that women often prioritize technical knowledge, while men may base advice more on personal experience. This insight provides a glimmer of hope: with increased exposure and trust, farmers could become more receptive to female advisors, recognizing their effectiveness alongside their male colleagues.

A female farmer shares her experience during a CIMMYT visit to her village where farmers were discussing gender youth and social inclusion (Photo: Moono Mwiinga Sekeleti/CIMMYT)

In some settings, women farmers even prefer female advisors, feeling more comfortable discussing issues and having a greater sense of shared experiences. According to a study conducted in Mozambique, women farmers were more likely to be reached as well as learn when agricultural content was delivered by female advisors. [4] This highlights the potential impact of gender-sensitive approaches in improving the efficacy and accessibility of advisory services for women.

Achieving equal footing for women in AAS requires addressing a broader range of barriers. This not only entails efforts to recruit and retain women in these roles but also providing equal opportunities for education and training, as well as developing explicit policies to safeguard women advisors from gender-based discrimination.

Breaking barriers: How Atubandike is transforming AAS

The goal of the Atubandike approach is to identify, understand and dismantle entrenched gender barriers in agriculture. By adopting an innovative and inclusive strategy, this initiative equips both men and women with the tools they need to become digital champions and agricultural advisors, playing pivotal roles in their communities. With a deliberate focus on increasing female representation, Atubandike ensures that at least 50% of these champions are women, amplifying their visibility and influence in the sector.

Central to Atubandike is its emphasis on community engagement through a feedback-driven process. This approach facilitates open dialogue among community members, urging them to confront existing social biases and develop practical solutions. Through these discussions, the initiative fosters collective action aimed at promoting gender equity and social inclusion. Additionally, Atubandike provides comprehensive training on gender, diversity, and inclusion, equipping its digital champions not only with technical knowledge but also with the skills required to challenge and navigate gender biases effectively.

One of the initiative’s most transformative elements is its focus on diverse role models. By ensuring that half of its village-based digital champions are women, Atubandike boosts their digital literacy, agricultural expertise, and standing as leaders and role models within their communities.[5] These women are featured prominently in digital content and on talk shows, reshaping perceptions of women as agricultural leaders and breaking down longstanding negative narratives that have historically sidelined them.

Sustaining Atubandike’s momentum: Community-driven support for female advisors

Community members balanced the discussions by proposing valuable insights and strategies to overcome the deeply rooted stereotypes that challenge female agricultural advisors. Raising community awareness about the value of female advisors emerged as a crucial approach to fostering their acceptance. As one participant emphasized, “More training on gender norms is essential so that the community can become more open-minded.” Others argued that establishing trust in female advisors from the outset could empower them as agents of change: “If we begin by placing our trust in female agricultural advisors, we can encourage other communities to do the same.”

Community leaders were urged to facilitate meetings to address any disrespect toward agricultural advisors, irrespective of gender. A farmer emphasized the necessity of mutual respect, stating, “The community should be encouraged to work cooperatively with their agricultural advisors.”

Participants also highlighted that agricultural advisors must actively demonstrate their competence to build trust. In one community, it was stressed that both female and male advisors “must practice the agricultural technologies they promote so that people can have faith in their competence.” Additionally, participants suggested that advisors wear uniforms to clearly distinguish their professional roles, signaling their commitment to serving the community in an official capacity.

A model for inclusive agricultural development

Atubandike transcends the role of a conventional agricultural advisory initiative; it stands as a beacon of inclusive development, extending its impact across Zambia and setting a model for the region. By delving into the roots of gender bias and driving practical, community-led solutions, Atubandike aligns with the AID-I project’s mission of “delivering with a difference.” Through empowering female digital champions and fostering dialogues on social equity, Atubandike demonstrates that meaningful change is both attainable and sustainable. As a testament to AID-I’s dedication to equitable innovation and resilience, Atubandike is not only reshaping gender norms in Zambia but is also establishing itself as a blueprint for inclusive impact across Southern Africa’s agricultural landscape.

[1] BenYishay, A., Jones, M., Kondylis, F., & Mobarak, A. M. (2020). Gender gaps in technology diffusion. Journal of development economics, 143, 102380.

[2] The informed consent statement and methodology used in the community conversations are available upon request m.fisher@cgiar.org.

[3]Bill & Melinda Gates Foundation. (2020). Gender and agricultural advisory services. https://www.gatesgenderequalitytoolbox.org/wp-content/uploads/BMGF_AG-Advisory-Services-Brief_web.pdf

[4] Kondylis, F., Mueller, V., Sheriff, G., & Zhu, S. (2016). Do female instructors reduce gender bias in the diffusion of sustainable land management techniques? Experimental evidence from Mozambique. World Development, 78, 436-449.

[5] Lecoutere, E., Spielman, D. J., & Van Campenhout, B. (2023). Empowering women through targeting information or role models: Evidence from an experiment in agricultural extension in Uganda. World Development, 167, 106240.

In Zimbabwe, Women Are Leading the Battle Against Climate Change

CIMMYT, through the CGIAR-supported Ukama Ustawi initiative, is supporting women farmers in Zimbabwe to lead the fight against climate change. By adopting climate-smart practices like zero tillage and growing drought-resistant crops such as orange maize, cowpeas, and lab-lab, farmers like Susan Chinyengetere are ensuring food security, generating income, and inspiring others. These techniques not only strengthen resilience against erratic weather but also enable women to balance traditional roles while driving sustainable agriculture. With access to affordable seeds, mechanization, and strong farmer networks, CIMMYT is fostering lasting solutions to climate adaptation across Zimbabwe and beyond.

Read the full story.

Navigating the seed market and transforming agricultural productivity

At the heart of the agricultural sector, grain off-takers/processors play a crucial role in ensuring that farmers have access to quality seeds that can increase productivity and improve livelihoods. One such processor, AgriNet in Uganda, led by Paul Nyande is deeply involved in managing the complex dynamics of seed and grain production, market demand and variety turnover making a significant impact on both the farming community and the wider agricultural market. 

AgriNet is known for its role in grain and legume markets. The company buys a range of grains and legumes, including sorghum, finger millet, soybeans, and maize. After buying these commodities from farmers, the company adds value by processing and packaging them for a diverse market. Their customers range from markets that demand raw grain to high-end consumers who buy blended flour for products such as porridge. AgriNet operates its own milling facility, enabling it to efficiently meet the needs of these different markets efficiently.  

Variety turnover is central to the processor’s work. Over time, crop varieties that have been in use for 30 or 40 years become less relevant as new research leads to the development of improved varieties. These newer varieties are better suited to evolving market needs, offering traits that align with current preferences for drought tolerance, disease resistance, and higher yields. 

Paul Nyande leads AgriNet, a company involved in managing seed and grain production (Photo: Marion Aluoch/CIMMYT)

“We have definitely seen situations where the market asked for a particular variety, and we have worked with research institutions such as National Semi-Arid Resources Research Institute (NaSARRI) to fulfill that demand. This collaboration has led to shifts in what seed companies produce to keep pace with changing agricultural conditions and market needs,” explains the processor. 

For example, through stakeholders’ interactions, AgriNet worked with NaSARRI, to communicate the market’s needs for crops such as maize and sorghum. NaSARRI produced foundation seeds based on these requirements, which the processor then marketed and distributed to specific farmers for production of certified seed that was given to grain producers. However, managing seed demand isn’t always straightforward, especially since the market can change rapidly.    

“We’ve had instances where the market suddenly surged with high demand for sorghum seeds, but we couldn’t meet it,” says Paul. “Sometimes these opportunities arrive unexpectedly, and we’re not fully prepared to supply the required volumes.” Paul notes that they still need to promote and improve productivity, as there are gaps in farming practices that hinder maximum yields. One persistent challenge is Striga, a parasitic weed that significantly reduces cereal yields. To tackle this, Paul promotes crop rotation and integration, to help farmers manage such issues. 

Despite these challenges, AgriNet has made strategic efforts to manage the risks associated with seed production. By working closely with partners like NaSARRI and using foundation seed, they have been able to balance supply and demand. The processor typically manages seed for one or two generations before reintroducing new varieties to keep up with changing market conditions. 

Paul with the CIMMYT and NaSARRI team at his office during their visit to learn more about AgriNet (Photo: Marion Aluoch/CIMMYT)
The role of technology and partnerships

A key part of AgriNet’s work is maintaining a robust supply chain. Using digital platforms, they have developed a system to profile farmers, track training sessions, monitor input distribution and communicate with farmers in real time via SMS. “We can send out information about market prices, weather updates, or available seeds. It’s a great tool, but maintaining the platform requires significant resources to maintain the platform,” says the processor. 

AgriNet currently works with around 2,000 farmers groups and have also developed an agent network to engage with these groups more effectively. Each agent works with multiple farmer groups, facilitating sales, input distribution, and grain purchases. This structure not only ensures efficient operations but also creates accountability by holding agents responsible for managing the process. 

However, one of the biggest challenges facing processors is capacity. They need to expand their storage and processing facilities to take in more grain, especially during the rainy season. Without sufficient storage and drying facilities, their ability to process large volumes of grain is limited, which in turn affects their ability to meet market demand. 

Balancing seed and grain markets

Paul emphasizes the difference between seed and grain. “For grain, we don’t face many issues. We can store it for a long time by fumigating it and keeping it safe. But seeds are different—you can’t keep them for long. They need to be used within a specific timeframe.” This dynamic adds complexity to the seed business, especially when the market shows a sudden spike in demand. 

Pricing is another challenge. “We used to think about getting seeds cheaply—from research and then to farmers. But there are costs involved, and you have to consider the seed market carefully and how it compares with others,” he says. It’s important to find the right balance between affordable prices for farmers and maintaining sustainable business operations. 

The way forward: Expanding capacity and supporting farmers

Paul is focused on expanding AgriNet’s storage and processing capabilities to better manage the supply chain and take in more grain during peak seasons. Increasing their capacity would allow them to meet the growing market demand more effectively. 

There’s also a strong need to support smallholder farmers, particularly in terms of access to quality seed. “We need to ensure that farmers have access to quality inputs at affordable prices,” he emphasizes. “Subsidizing seeds or finding sustainable ways to produce them for the most vulnerable farmers could encourage the adoption of improved varieties, which would increase yields and incomes.” 

Paul also acknowledges that improving farming practices is critical to achieving higher productivity. While they have good seed varieties available, the challenge lies in ensuring that farmers follow the correct management practices to fully realize the potential of these seeds. 

AgriNet’s efforts have not gone unnoticed. The company has been recognized as one of Uganda’s top 100 medium enterprises for 2017/2018 and 2018/2019, a testament to its commitment to quality, innovation, and market responsiveness. This recognition highlights AgriNet’s ability to navigate the complex agricultural landscape while continuously striving to improve its operations and support the farming community. 

In its mission to boost agricultural productivity, AgriNet benefits from key partnerships with NaSARRI, which works in collaboration with CIMMYT, through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project, to ensure farmers have access to improved seed varieties. By aligning research with market demands and processor capacity, CIMMYT and NaSARRI are helping to bridge the gap between innovation and practical solutions that directly benefit farmers.

Transforming Farming in Uganda: The journey of four farmers and their demonstration plots

On the lush soils of Uganda, four farmers are using awareness creation demonstration plots to showcase the performance of improved varieties of groundnut, sorghum, and finger millet and their impact on transforming transform livelihoods.  

Not only are these farmers improving their yields, but they are also inspiring their neighbours to adopt more resilient and climate-smart crops as part of a larger collaboration initiative between the National Semi-Arid Resources Research Institute (NaSARRI) and CIMMYT through the Accelerated Varietal Improvement and Seed Systems in Africa (AVISA) project. The AVISA project, funded by BMGF, aims to improve food security and resilience in the drylands of Uganda and other eight countries in eastern and southern Africa (Ethiopia, Kenya, Tanzania, Malawi, Mozambique, South Sudan, Zambia, and Zimbabwe). The efforts of these four farmers in Uganda highlight the importance of demonstration plots as a powerful tool for creating awareness and promoting transformational agricultural technologies like improved crop varieties and other recommended agronomic practices.  

Dennis Obua, a farmer from Teyawo village, has embraced improved, drought-tolerant varieties of ground nuts and finger millet (Photo: Marion Aluoch/CIMMYT)

Demonstration plots serve as practical, hands-on learning sites, where farmers can observe the performance of improved crop varieties under farming conditions in their localities. Apart from demonstrating crop performance, these demonstration plots also serve as sources of seed for the farmers, which when selected can be grown in bigger plots in subsequent seasons targeting seed production This ensures that seed of the target crop varieties are available to local farmers. Through these demonstration plots, farmers not only witness firsthand improved yields, but farmers also make informed decisions for adoption of specific varieties for their environments to improve productivity, food security and resilience, especially in regions vulnerable to climate change. They also provide a platform for knowledge sharing, as farmers can interact with other farmers, researchers and extension agents to enhance uptake of practices that lead to success. 

Farmers Driving Variety Adoption through Demonstration Plots

In Lira District, Dennis Obua, a farmer from Teyawo village, has embraced improved varieties of drought-tolerant crops. His journey into farming began in 2018 after observing the challenges faced by local farmers due to inconsistent rainfall. He started small, with a handful of finger millet seed obtained from NaSSARI, which he multiplied and shared with neighbouring farmers. With support from the seed systems unit at NaSSARI, Dennis now manages demonstration plots of groundnut, sorghum, and finger millet and promotes these crops in his community. 

In the current season of 2024 (Mar-Jul), Dennis planted three improved groundnut varieties — SERENUT 8R, SERENUT 11 and SERENUT 14, which were released in 2011. In his assessment, his preferred variety is SERENUT 14 as it yields about 14 to 16 bags per acre. The variety is drought tolerant, disease resistant, especially rot and rosette, produces a good yield and also has a good number of pods.  Under demonstration are two finger millet varieties, NAROMIL 2 and SEREMI 2 (U15) though he prefers NAROMIL 2 (released in 2017) for its drought tolerance, high yield and red colour of the grain. His success has inspired many local farmers to adopt these improved varieties, with many seeking seeds to grow on their own plots. The seed demand generated from these demonstration plots is communicated by the host farmer to the research institute, which works on making the seed available through local entities. The host farmer keeps records of seed requests and preferred varieties from farmers visiting the demonstrations. 

Bagonza Simon oversees demonstration plots, which serve as a hub for agricultural learning, showcasing groundnut, finger millet, and sorghum varieties (Photo: Marion Aluoch/CIMMYT)

At the Kihola Demonstration Centre, the farm manager, Bagonza Simon oversees demonstration plots that serve as a hub for agricultural learning. Working with NaSARRI, Simon has introduced improved varieties of groundnut (SERENUT 8R, SERENUT 11, and SERENUT 14), sorghum (NAROSORGH 2 and SESO 1), and finger millet (NAROMIL 2 and SEREMI 2). Farmers visit the center to observe these varieties and learn about their benefits. The selection of preferred sorghum varieties by farmers appears to be influenced by the degree of bird damage observed across different types. For example, the white-grained sorghum (SESO 1) suffered significant bird damage, which led farmers to naturally favor the red-grained NAROSORG-2, released in 2017. In addition to being less susceptible to bird damage, NAROSORG-2 also demonstrates drought and striga tolerance, further enhancing its appeal among farmers. 

Simon has been particularly impressed by the attributes of the groundnut variety SERENUT 8R, which has performed well despite the challenging weather conditions observed in the season characterized by very erratic rainfall patterns. His demonstration plots have become a beacon of hope and innovation, inspiring local farmers to adopt drought-tolerant crop varieties. Farmer to farmer seed exchanges are common in this locality due to seed shortages and he therefore plans to share seed from his plots to interested farmers and is working with NaSARRI to expand seed availability across the region. 

Steven Odel from Kaloka village has drought-tolerant varieties of sorghum, finger millet, and groundnut in his demonstration plot (Photo: Marion Aluoch/CIMMYT)

In Bukedea District, farmers Steven Odel from Kaloka village and Nelson Ekurutu from Kasoka village are also leading the way with their demonstration plots. Both are testing drought-tolerant varieties of sorghum, finger millet, and groundnut. While Steven encountered challenges with his sorghum crop due to midge attacks, he has had great success with NAROSORG-2, which he describes as having better germination and faster maturity, and therefore enabling the plants to escape midge attack. 

Steven is also growing red finger millet variety SEREMI2, which is very popular for its early maturity and high market demand for making porridge and local beer. He regularly hosts farmers on his plots, sharing his knowledge and experience.  

Nelson Ekurutu is trialling three new groundnut varieties—SERENUT 8, SERENUT 11, and SERENUT 14—and is optimistic about their performance. His experience with finger millet, particularly the red variety- SEREMI2, has been positive, noting its fast growth and high demand in local markets. Nelson also grows red sorghum (NAROSORG 2), which he prefers for its resistance to bird damage. These demonstration plots provide a platform for Steven and Nelson to test new varieties in their local context, helping them and others understand what works best in their locality.  

Nelson Ekurutu is trialing new varieties of ground nut, finger millet, and sorghum (Photo: Marion Aluoch/CIMMYT)

Increasing awareness and seed availability 

Utilizing these demonstrations to bring new varieties closer to farmers can further accelerate seed uptake and demand. Farmer-managed demonstrations in their own environments ensure that variety selections align with local preferences and adaptability. Farmers who consistently host these demonstrations build trust in the varieties within their communities, while also creating opportunities for local seed businesses to explore. Strengthening the linkages between research institutions, farmers, and seed producers is crucial for ensuring the rapid adoption of new and improved varieties. Additionally, the distribution of small seed packs at scale is essential to enable more farmers to test these varieties on their own farms, ensuring wider adoption and transforming livelihoods in these communities. 

Conservation Agriculture Transforming Farming in Southern Africa

CIMMYT has been at the forefront of promoting conservation agriculture (CA) in Southern Africa, leveraging over 20 years of research to enhance food security and resilience to climate change. By introducing innovative mechanized tools like basin diggers, CIMMYT has significantly reduced labor demands, making CA more accessible for smallholder farmers. The organization collaborates with partners, including FAO, to integrate CA into national policies, such as Zambia’s mechanization strategy, while also providing education and technical support to farmers. CIMMYT’s efforts empower farmers to increase yields, improve soil health, and generate additional income, exemplifying its commitment to sustainable agriculture in the region.

Read the full story.

Enhancing agricultural research with FAO’s AGRIS and AGROVOC programs: A conversation with CIMMYT’s knowledge management team

Farmer examines wheat seed (Photo: CIMMYT).

In a recent series of conversations with CGIAR knowledge management teams, Sara Jani and Valentina De Col interviewed Jesús Herrera de la Cruz, CIMMYT’s Deputy Director of Knowledge Management and Information Technologies. They discussed CGIAR’s collaboration with the Food and Agriculture Organization of the United Nations (FAO) on AGRIS and AGROVOC – two key resources in agricultural research. AGRIS is a comprehensive bibliographic database focusing on agriculture and nutrition, while AGROVOC is a multilingual thesaurus covering a wide range of agricultural terms.

Benefits of being in AGRIS

CIMMYT has shared its knowledge products with AGRIS and plans to do so more. What are the benefits of your center’s participation in AGRIS?

Jesús: When I think about it, there’s one clear benefit: projection. AGRIS allows CIMMYT to be part of one of the most important databases in our field, if not the most important. This link allows us to showcase our work on a global scale. Another critical benefit is trust. AGRIS is a trusted source of accurate and reliable information. In today’s age, where the internet is flooded with information, having a trusted source like AGRIS is invaluable. It ensures that CIMMYT’s contributions are part of a verifiable and respected database, which is crucial to maintaining the integrity and credibility of our work.

Importance for CGIAR of sharing research results through AGRIS

From a broader perspective, do you think it is important for CGIAR to share its research results with a wider community and global users through AGRIS? If so, why?

Jesús: Absolutely, and it’s not just important—it’s our mandate. As part of our commitment to make our public goods as accessible as possible, AGRIS is one of the main channels we use to fulfill this mandate. The more we share our scientific outputs, the better we fulfil our mission. This sharing aligns with our goals and enhances our ability to collaborate and fulfil our mission.

CIMMYT’s knowledge content: content types and topics  

How would you describe the knowledge content produced by your center and made available through your repository? In which specific research areas does your center publish?

Jesús: CIMMYT focuses primarily on maize and wheat improvement, genetic resources and conservation agriculture. Recently, CIMMYT has expanded its research into other crops, although these newer projects are not yet strongly reflected in our repository. We expect this to change in the coming years as new research results becomes available. In addition to our scientific content, our repository includes institutional documents, such as financial reports and other forms of historical memory. These items are often overlooked, but they provide a richer understanding of the history of our work by offering insights into the context in which our research took place.

Importance of AGRIS for agricultural research institutions such as CGIAR

Do you think it is important for agricultural research institutions or networks such as CGIAR, to have access to a comprehensive bibliographic database such as AGRIS? If so, what are the specific benefits of having access to such a database?

Jesús: As I mentioned earlier, having access to AGRIS is more than important— it is essential. AGRIS is a cornerstone for ensuring we remain compliant with our mandate. It’s a trusted source that provides control and guarantees the credibility of the content within it. This reliability is invaluable to researchers and readers alike. AGRIS is a source of truth and its role in maintaining the integrity of our scientific output cannot be overstated.

Improving searchability and interoperability with AGROVOC

CGIAR contributes to and uses AGROVOC as a common vocabulary. How does this collaboration affect the discoverability and interoperability of your data?

Jesús: Absolutely. AGROVOC significantly enhances the discoverability and interoperability of our data. By using controlled vocabularies such as AGROVOC, we can ensure consistent and accurate data exchange across platforms. AGROVOC is the definitive controlled vocabulary in our field, and it plays a crucial role in maintaining the standardization necessary for seamless interoperability. For us, it’s not just a tool, it’s a cornerstone of our data management strategy, and it’s essential that it continues to be the standard.

The discussion focused on the role of AGRIS in increasing the visibility and accessibility of CIMMYT’s research results. By continuing to strengthen links with the AGRIS and AGROVOC programs, the CGIAR is well placed to increase the global impact of its research and ensure that vital agricultural knowledge reaches those who need it most around the world.

For more info on the CGIAR and FAO collaboration:

Report: https://hdl.handle.net/10568/116236

Brief: https://hdl.handle.net/10568/116448

Webinar: https://youtu.be/0klZSY1c0UU?si=mlVvEQSpF1KNFSvG

Exploration of options for functional seed systems and understanding of market needs for cereals and pulses in sub-Saharan Africa

Participants of the seed systems and market intelligence team at the retreat in Kenya (Photo: CIMMYT).

The Seed Systems and Market Intelligence Team of the Sustainable Agrifood Systems (SAS) Program convened for a three-day retreat in Kenya. The retreat provided an opportunity to review ongoing research on seed systems and market intelligence conducted across CIMMYT projcts and CGIAR initiatives.

The event featured oral and poster presentations highlighting key findings from current research activities, fostering constructive feedback from colleagues. Discussion focused on strengthening the team’s technical capacity and ensuring its responsiveness to CIMMYT’s research programs and the broader CGIAR science agenda.

During the retreat, team members presented research spanning a wide range of topics. One key area focused on understanding the demands of farmers, processors, and consumers, for future crop traits, with the aim of informing breeding systems programs to maximize their impact.

The team highlight challenges faced by agro-processors, such as rancidity in pearl millet, which affects the shelf life of processed millet flour. Research also explored groundnut processing across different countries, revealing varied market demands.

In Malawi, groundnut markets prioritize grain size, color and uniformity-driven largely by export requirements-while oil content is less of a focus. In contrast, Nigerian markets demand high oil content for kuli kuli production and show a preference for early maturing varieties. Meanwhile, in Tanzania, an emerging peanut butter market has created opportunities for new groundnut varieties tailored to this product.

Seed systems research in Kenya highlighted how information and economic incentives for farmers and agro-dealers can serve as effective policy options to boost the adoption of new maize hybrids. These strategies have the potential to increase the market share of newly introduced hybrids in the maize seed sector.

The team showcased the impact of providing variety-specific, independently evaluated yield data for commercially available seed products under local conditions to guide farmers’ seed choices. Additionally, they explored the use of rebates as incentives for agro-dealers to stock new products and actively encourage farmers to try them. The role of price discounts and targeted information at the retail level for newly released varieties was also discussed as a way to promote adoption among farmers.

Another key area of research focused on how farmers perceive existing promotional materials distributed by seed companies. Feedback indicated that most leaflets and posters were not visually engaging. Farmers expressed a preference for materials that include visuals of plant stands, cob sizes, yield potential, and other critical details, presented in local languages like swahili.

Looking ahead, the team outlined a new four-year project supported by the Impact Assessment Group under the Genetic Innovations Action Area. This initiative will build on the current findings to generate further evidence on how information can accelerate farmer adoption of new seed products. It will also examine the role of agro-dealers as key information agents to disseminate knowledge effectively to farmers.

The meeting also highlighted the assessment of varietal turnover in Ethiopia and the role of the DNA Fingerprinting (DNA FP) approach in improving the accuracy of varietal identification. Accurate data generated through this method supports more robust studies on varietal adoption, turnover, and impact. It also enables the assessment of whether released varieties are being cultivated within their target agro-ecologies and contributes to understanding varietal diversity within production systems.

Discussions emphasized the relevance of the DNA FP approach for accurate data collection and its potential for broader application beyond Ethiopia, Tanzania, and Nigeria, where the IMAGE project is currently active. Expanding its use to other regions would further strengthen research efforts in seed systems and market intelligence.

Paswel Marenya, associate program director of SAS Africa, commended the team for the depth and breadth of their research and encouraged greater visibility of results within CIMMYT and beyond. As a key outcome of the meeting, the team committed to increasing its visibility in seed systems and market intelligence research while building a stronger, more qualified team to achieve this goal.

In terms of staffing, the team has a solid presence in Africa but aims to expand its reach through enhanced resource mobilization. Efforts are underway to strengthen the Seed Systems and Market Intelligence team’s presence in other regions where CIMMYT operates, including Latin America (LATAM) and South Asia.

CIMMYT and Novo Nordisk Foundation expand collaboration to drive sustainable agriculture

Building on the success of their initial project, CropSustaiN, CIMMYT and the Novo Nordisk Foundation are proud to announce an expanded partnership aimed at tackling agriculture’s biggest challenges. This enhanced collaboration will broaden efforts to transform farming practices, reduce environmental impacts, and support farmers worldwide.

From specific solutions to a broader vision:
The initial partnership focused on developing innovative wheat varieties through Biological Nitrification Inhibition (BNI), significantly reducing the need for nitrogen fertilizers. Now, this expanded collaboration sets a foundation for exploring a wider range of initiatives, including:

  • Climate-smart crop systems with reduced greenhouse gas emissions.
  • Advanced agricultural technologies for greater resilience and sustainability.
  • Inclusive tools to empower farmers globally.

Bram Govaerts, CIMMYT’s director general, said:
“This partnership exemplifies how collaboration and science can transform agriculture, addressing both food security and environmental sustainability on a global scale.”
This next phase reflects a shared commitment to creating a sustainable future by turning scientific innovation into actionable, real-world impact for millions of farmers worldwide.

Strengthen the soil, strengthen the future of agri-food systems: The Economics of Healthy Soils for Sustainable Food Systems

Soil health is not just a medium for healthy crop production; it’s also a vital pillar to support sustainable food production and ultimately a nation’s economy. In India, where over 45% of the population works in agriculture, soil health underpins household and national food security, rural incomes and the economy at large. Despite this dependence, the ratio of agricultural production to the national income, i.e. GDP has fallen from 35% in 1990 to 15% in 2023, a decline driven by low productivity, shrinking farm incomes, and environmental degradation (Government of India, 2023).

A tractor operates in an agricultural field in India (Photo: CIMMYT).

India faces an annual economic loss of  ₹2.54 trillion annually—about 2% of its GDP—due to land degradation and unsustainable land-use practices (TERI, 2018). For smallholder farmers, soil degradation is a silent economic burden that reduces yields and increases input costs. In Bihar, studies by the Cereal Systems Initiative for South Asia (CSISA) show that droughts have a lasting impact on soil quality and agricultural productivity, with increasing frequency and severity exacerbating vulnerabilities in states like of Bihar and its neighboring states (Nageswararao et al., 2016; Singh et al., 2022).

The frequency of these drought conditions pushes farmers into a vicious cycle of low productivity, high costs for irrigation, and a growing dependence on non-farm income sources exacerbating the state’s vulnerability to drought (Kishore et al., 2014).

“CIMMYT India scientists greatly value the opportunity to collaborate with colleagues from ICAR and other NARES partners in supporting farmers to enhance soil health and achieve sustainable productivity”, said Alison Laing, CSISA project lead in India. “We are proud of the contribution we make alongside the Indian national systems to improving farmers’ livelihoods”, she added

Investing in solutions for soil resilience

Addressing soil degradation and climate challenges requires investment in climate-resilient agricultural technologies, and robust agronomic research. Evidence-based policies are critical to sustain agriculture, improve farmer well-being and ensure food and economic security.

A promising innovation is the Soil Intelligence System (SIS), launched in 2019 under CSISA. Initially operational in Andhra Pradesh, Bihar, and Odisha, SIS generates high-quality soil data and digital maps to provide farmers with precise agronomic recommendations. These recommendations help reduce fertilizer and water overuse, improving efficiency and reducing greenhouse gas emissions. By empowering smallholder farmers with data-driven decision-making, SIS exemplifies how technology can enhance productivity and sustainability.

SIS’s success extends beyond the farm. Data-driven insights have influenced policies like the Andhra Pradesh State Fertilizer and Micronutrient Policy, demonstrating the potential of soil health management to drive systemic agricultural reforms.

Working in Andhra Pradesh, Bihar and Odisha, SIS uses soil spectroscopy and digital mapping to improve sustainable soil management, reduce costs and increase productivity for smallholder farmers. (Photo: CIMMYT)

The 3M Framework: measure, monitor and manage

This year’s World Soil Day theme, “Caring for Soils: Measure, Monitor, Manage,” highlights the importance of data driven soil management. By measuring key indicators like organic carbon levels and erosion rates, and monitoring changes overtime, policymakers can develop sustainable strategies for soil restoration.

Scaling initiatives like SIS is crucial. Robust soil monitoring programs can inform better alignment between subsidies and sustainable practices. Together with state and central governments, NGOs, and other research organizations, CIMMYT is actively collaborating with farmers to measure, monitor and manage soil health for long-term sustainability and resilience.

 

References:

  1. Government of India (2023). Contribution of agriculture in GDP. Department of Agriculture & Farmers Welfare. Accessed online.
  2. TERI (2018). Economics of Desertification, Land Degradation and Drought in India, Vol I. The Energy and Resources Institute. Accessed online.
  3. Nageswararao, M.M., Dhekale, B.S., & Mohanty, U.C. (2016). Impact of climate variability on various Rabi crops over Northwest India. Theoretical and Applied Climatology, 131(503–521). https://doi.org/10.1007/s00704-016-1991-7.
  4. Singh, A. & Akhtar, Md. P. (2022). Drought-like situation in Bihar: Study and thought of sustainable strategy. IWRA (India) Journal, 11(1). Accessed online.
  5. Kishore, A., Joshi, P.K., & Pandey, D. (2014). Droughts, Distress, and Policies for Drought Proofing Agriculture in Bihar, India. IFPRI Discussion Paper 01398. https://ssrn.com/abstract=2545463.

The other revolution that was born in Mexico: The legacy of sustainable transformation and its new roots

Members of the Maíz Criollo Kantunil group next to a plot of land cultivated using sustainable practices (Photo: Jenifer Morales/CIMMYT)

The Mexican Revolution was not the only transformative movement to emerge in Mexico. Another profound transformation began in the Mexican countryside, and today, far from guns, today it continues to drive a more peaceful and resilient society through the integration of science, innovation and ancestral knowledge. 

In the 1960s, Mexico set a precedent for global agricultural change. Today, that movement has evolved into a sustainability approach that responds to today’s challenges: climate change, biodiversity loss and the need to ensure food security. Under CIMMYT’s leadership, the Hub model has established itself as a key tool for delivering scientific solutions to producers, strengthening resilient and sustainable agricultural systems. 

At CIMMYT, we believe that ensuring food security means not only producing healthier food but also conserving natural resources such as soil and water and promoting the well-being of farmers and their communities. Through the Hub model, we have promoted practices such as the sustainable management of staple crops such as maize and related crops, and the use of strategies to strengthen the seed system to meet the challenges of the agricultural sector. 

A clear example of this approach is the Maíz Criollo Kantunil group in Yucatán. Led by Edgar Miranda, this collective of eight families has adopted innovative practices such as regenerative agriculture, efficient water use and agroecological pest management. By linking with the Hub model, the group has been able to conserve native seeds, strengthen local agroecology and generate social and productive benefits for their community. 

“Our main objective is that the next generations will have seeds available to meet their food needs,” said Edgar Miranda. “We work with sustainable practices that allow us to conserve our resources and produce healthy crops,” he added. 

In addition to supporting producers, the Hub model fosters associativity and community participation, essential pillars for building inclusive and resilient food systems. These activities are in line with national initiatives such as strengthening production chains, but also reflect CIMMYT’s commitment to a global approach to sustainable development. 

CIMMYT’s strategy in Mexico not only supports producers in transforming their agricultural systems, but also promotes strategic alliances with public and private actors. These collaborations strengthen the integration of scientific solutions and sustainable practices, stimulate innovation in rural communities, and promote resilience to the challenges of climate change. With an approach based on science, inclusiveness and continuous learning, CIMMYT continues to contribute to building a more equitable, sustainable and prosperous future for Mexico and the world. 

ZARI promotes climate-smart agriculture to strengthen research excellence, innovation, and sustainability

The Zambia Agricultural Research Institute (ZARI) has undergone a significant transformation, fueled by a strategic subgrant from the Bill & Melinda Gates Foundation through the Africa Dryland Crop Improvement Network (ADCIN). Established in August 2023 and convened by CIMMYT through its Dryland Crops Program (DCP), ADCIN is a collaborative network aimed at uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable network to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.

This support has led to the modernization of ZARI’s research facilities, improved irrigation systems, and enhanced data management capabilities, positioning the institute as a leader in climate-smart crop research. Key advances include speed breeding and controlled drought research, which have led to higher crop yields and better adaptation to climate challenges. These improvements have not only strengthened Zambia’s agricultural research capacity but also fostered regional collaboration and knowledge sharing, benefiting farmers, scientists, and institutions across Southern Africa. The institute’s improved infrastructure, including expanded water storage and solar power, has ensured uninterrupted research, even during power outages. As a model for other NARES institutions, ZARI’s transformation highlights the critical role of strategic investment in agricultural research to address the growing challenges of climate change and food security across Africa.

We caught up with Dr. Loyd Mbulwe, the Ag. Chief Agriculture Research Officer at ZARI, to get more insight into the upgrade.

Q: What were some of the challenges ZARI faced before the upgrades?

A: ZARI faced several research-related challenges that hampered its potential for innovation. These included limited access to essential research equipment, inadequate funding for critical projects, and insufficient capacity for data management and analysis. Collaboration and knowledge sharing with regional and international partners were also limited.

In terms of infrastructure, ZARI struggled with outdated laboratory facilities, inefficient greenhouse and irrigation systems, and limited storage space for seeds and plant materials. The institution’s ICT infrastructure was inadequate to support modern agricultural research needs. Operational efficiency was hampered by manual data collection, inefficient research protocols, and inadequate standard operating procedures.

Q: How has the upgrade helped ZARI overcome these challenges, and how has it improved the quality and quantity of research coming out of ZARI?

A: Recent upgrades at ZARI have significantly improved its research capabilities. New equipment and increased funding have supported larger projects, while improved data management systems have streamlined data handling and fostered greater collaboration with regional and international partners. The addition of a modern greenhouse and upgraded irrigation systems has improved water management and allowed for more controlled experiments. Expanded seed storage capacity now ensures the secure preservation of critical plant material for future research.

Automated data collection systems have reduced errors and increased efficiency, while standardized research procedures have improved the quality and reproducibility of results. Improved research documentation and targeted staff training programs have further enhanced research skills, enabling the team to produce more impactful results.

The newly constructed greenhouse facility enhances crop breeding and genetics research, enabling efficient off-season studies.  (Photo: ZARI/Zambia)
Q: How has ZARI’s research capacity improved with the upgraded facilities and new equipment?

A: ZARI has undergone significant upgrades to improve its research capacity. The new greenhouse facility has improved crop breeding and genetics research, allowing for more efficient off-season research. Speed breeding, a technique that accelerates crop generation turnover by two to five times through controlled environmental conditions, has been a game changer. The greenhouse also enables controlled drought research, providing insights into the development of climate-resilient crops. The ZAMGRO project has increased ZARI’s water storage capacity from 45 m² to 3.6 million m², enabling year-round farming and improved water management. The subgrant also enabled the installation of solar power, addressing the electricity challenges caused by recent droughts. The move to Starlink internet connectivity has also improved ZARI’s online capabilities, providing reliable, uninterrupted internet access, even in remote research sites.

An aerial view of the installed solar panels, that has resolved electricity challenges and mitigating power outages. (Photo: ZARI/Zambia)
Q: Looking ahead, what are ZARI’s future plans? Are there any further upgrades or expansions planned for the future?

A: ZARI’s future plans focus on increasing its research impact through strategic partnerships and innovation. The institute aims to establish a center of excellence for climate-smart agriculture and develop a biotechnology laboratory to advance genetic improvement and crop resilience. Expanding greenhouse and irrigation systems and improving digital infrastructure for data management are also priorities. ZARI also plans to strengthen collaborations with international research institutions and pursue public-private partnerships to transfer technology from research to practical applications. In addition, ZARI is committed to human resource development through targeted training, fellowships, and mentorship programs to nurture future researchers.

Q: What steps is ZARI taking to ensure the long-term sustainability of the upgraded facilities and research programs?

A: ZARI has implemented a comprehensive plan to ensure the long-term sustainability of its upgraded facilities and research programs. Key areas include maintenance of facilities, continuation of research programs, capacity building, partnerships, and knowledge sharing. ZARI has secured funding from partners and donors, diversified its income streams, and developed sustainable research funding models. Staff training, mentoring programs, and collaboration with international experts are key to ensuring that the research team stays abreast of new technologies. Strategic partnerships with private sector companies, joint research initiatives, and technology transfer agreements have further strengthened ZARI’s research capabilities. Regular impact assessments and collaborations with universities, research institutes, and government agencies further strengthen ZARI’s research capabilities and ensure that programs remain relevant and impactful.

An aerial view of the water storage system during installation. This has increased the capacity to support year-round farming and improved water management. (Photo: ZARI/Zambia)
Q: In what ways can this facility upgrade serve as a model or inspiration for other NARES facilities in the region? Are there any best practices that ZARI would recommend for similar projects?

A: The ZARI facility upgrade serves as a model for other NARES institutions in several significant ways. First, it highlights the importance of strategic partnerships, demonstrating how collaboration with regional and international organizations can lead to meaningful progress. Second, it emphasizes capacity building, with a focus on investing in staff training and development to improve institutional performance.

There are also several inspirational aspects to ZARI’s transformation. It demonstrates the transformative impact that research modernization can have on NARES breeding programs and shows the potential for improving agricultural research capacity. In addition, the upgrade is highly regionally relevant, addressing pressing regional challenges.

Finally, ZARI’s best practices provide valuable lessons for other institutions. The irrigation upgrade is an outstanding example, tailored to address the unique challenges posed by climate change in the region.

Unboxing the Starlink hardware: Transitioning to Starlink ensures reliable and uninterrupted internet access, even in remote research sites. (Photo: ZARI/Zambia)
Q: What was ADCIN’s role in facilitating this strategic investment, and how does it fit into the broader vision of strengthening NARES institutions across Africa?

A: ADCIN plays a key role in supporting the development and modernization of NARES institutions across Africa. Its contributions can be seen in three key areas. First, ADCIN provides technical assistance by offering expertise in research infrastructure development. Second, it provides financial support by mobilizing the resources needed to upgrade facilities. Third, ADCIN provides strategic guidance, ensuring that investments are aligned with regional research priorities and agendas.

This support fits into the broader vision of strengthening NARES institutions across the continent. ADCIN’s efforts focus on improving research capacity through upgrading facilities and equipment, fostering collaboration by promoting regional and international partnerships, and improving research quality through stronger research management and governance. As a result of ADCIN’s support, NARES institutions such as ZARI have seen significant improvements. Research output and impact have increased, regional collaboration has been strengthened, and institutions now have better access to international funding. By supporting ZARI’s strategic investments, ADCIN reaffirms its commitment to strengthening NARES institutions and promoting excellence in agricultural research across Africa.

Agro fair in Kailali rejuvenates farmers

In May, CIMMYT, in collaboration with the local government, organized an Agriculture Fair in Janaki Rural Municipality, Kailali district, Nepal, introducing farmers to modern farming techniques and machinery. The event inspired farmers like Ramfal Badayak, chairman of Biz Briddhi Krishak Cooperative, to adopt advanced tools, leading his cooperative to purchase two plant cultivators that now save time and labor for all members. With over 40 stalls and more than 4,000 daily visitors, the fair also benefited local suppliers by enabling direct sales to farmers, reducing costs by eliminating middlemen. This transformative event exemplified the potential of such platforms to modernize agriculture and support local communities.

Read the full story.

Sustainable Agri-Food Colombia: a boost for resilient agriculture

Biofortified corn crop in Colombia (Photo: CIMMYT)

CIMMYT, in collaboration with the Bioversity-CIAT Alliance and the Ministry of Agriculture and Rural Development of Colombia, is contributing to the Sustainable Agri-Food Colombia project. This transformative initiative aims to reshape Colombia’s agricultural sector by fostering sustainable and resilient agri-food systems. Several research institutions are also part of this mission as strategic implementing partners.

The goal of Sustainable Agri-Food Colombia is to address the environmental and production challenges facing Colombian agriculture, while ensuring food security and sustainability. Through the implementation of innovative technologies, better agricultural practices and adaptation to climate change, it aims to improve the competitiveness of Colombian producers and reduce pressure on natural resources. In this sense, the project contributes to the achievement of the United Nations Sustainable Development Goals (SDGs), especially those related to climate action, life on earth and reducing inequalities. 

CIMMYT is collaborating in this project to join efforts to strengthen farmers’ capacities, as Sustainable Agri-Food Colombia focuses not only on agricultural production, but on the entire agri-food system, seeking to build more inclusive and efficient value chains, from production to the consumer, emphasizing community participation and knowledge transfer in an inclusive manner, involving women, youth and marginalized rural communities in decision-making processes and technology adoption. 

The collaboration between international CGIAR research centers, such as the Bioversity-CIAT Alliance and CIMMYT, together with key stakeholders in Colombia, demonstrates that the future of agriculture depends on an integrated vision that combines science, innovation and collaboration. This lays the foundation for transforming agriculture and food in Colombia for the benefit of people and the planet. 

‘I have bigger plans ahead’ – The journey of Tichaona from odd-job man to agricultural entrepreneur

Tichaona transporting hay bales using his acquired two-wheel tractor (Photo: Dorcas Matangi, CIMMYT)

In the heart of Mbire’s Ward 2 in Zimbabwe, Tichaona Makuwerere has earned the trust of his community, not just as a farmer but also as a resourceful problem-solver. His journey began with “piece jobs” — manual labor that barely made ends meet. From providing firewood and bricks to renting an ox-drawn cart, Tichaona’s days were filled with tough and gritty work. Occasionally, he crossed into Zambia to collect baobab fruit for sale, returning with livestock pesticides, which he traded locally.

However, stability remained elusive. Jobs were scarce, and community hiring often favored personal connections. Undeterred, Tichaona turned to self-employment in 2007, offering ox-drawn ripping services to farmers. His commitment didn’t go unnoticed. When the CGIAR Agroecology Initiative (AEI) came to Mbire, the community recognized Tichaona’s entrepreneurial spirit and nominated him as a service provider.

Catalyst for change: CGIAR Agroecology Initiative 

The CGIAR-funded Transformational Agroecology across Food, Land, and Water Systems (AE-I) aims to empower farmers like Tichaona to lead their communities toward sustainable agricultural practices.

AE-I brings together farmers and stakeholders to address local challenges and develop practical solutions in Mbire and Murewa. Through Agroecological Living Landscapes (ALLs)—collaborative spaces for innovation—various stakeholders work to identify, co-design, test, and adopt agroecological practices. One challenge identified was that agroecology can be labor-intensive, highlighting the need to reduce labor demands by integrating mechanization for manual activities such as crop planting, manure transportation, and threshing. Partnering with private sector organizations like Kurima Machinery, AE-I provides farmers in Mbire and Murewa with the tools and training necessary to make mechanized services more accessible.

Equipped for success through training and support 

Tichaona’s journey with AE-I began with intensive training at Gwebi College of Agriculture in Zimbabwe, where he learned the intricacies of machine operation, repair, and business management. The hands-on experience gave him the confidence he needed. “It was a turning point,” said Tichaona. “The training gave me skills that are hard to come by here. I learned how to run and sustain an agricultural service business.”

In addition, Kurima Machinery provided practical guidance and support when delivering his new equipment kit, which included a two-wheel tractor, trailer, grass cutter, chopper grinder, ripper, thresher, and basin digger. Although Tichaona had no prior experience with engines, his determination, along with Kurima’s ongoing virtual support, helped him develop the skills needed to operate and maintain the equipment.

Scaling up from oxen to efficient mechanization

The kit has dramatically transformed Tichaona’s way of working. Where he once struggled with oxen, the two-wheel tractor can now complete a three-hour task in just 30 minutes. This leap in efficiency has enabled him to expand his services beyond ripping and transportation. Tichaona now offers grass cutting, baling, grinding, threshing, and basin digging services.

Mechanization has not only streamlined his business but also significantly increased his clientele. Previously, he served around 50 clients per year; now, with the tractor, he supports over 200 annual clients, many of whom are repeat customers. In a region where animal feed is scarce during the dry season, Tichaona’s baling services have become especially valuable. Over the past year, he has produced more than 3,000 bales, even attracting safari operators who use the bales as bait for animals.

“Hatisi kumira kutsvaga mabasa” (We keep going forward and look for new jobs), Tichaona reflected with pride. In his drive to grow, he has further diversified his services to include grinding forest products such as Faidherbia albida, acacia, and Piliostigma thonningii pods, producing affordable livestock feed for farmers. He acquired these skills during livestock feed production training at the ALLs.

Mechanization has not only improved productivity but also mitigated environmental risks. Grass cutting and baling have curbed the practice of uncontrolled burning, which previously caused frequent veld fires in Mbire and Murehwa. In recognition of the project’s success in promoting sustainable land use, the Environmental Management Authority (EMA) has invested in additional service kits for other wards.

Transporting grass bales in Mbire for local farmers (Photo: Dorcas Matangi, CIMMYT)
Strengthening Resilience Amid Climate Uncertainty

Tichaona’s services have become indispensable in a community grappling with erratic weather patterns and prolonged droughts. By baling grass, sorghum stalks, and crop residues, he enables farmers to store feed for their livestock, mitigating risks during drought seasons. The benefits extend beyond livestock care—his machinery has helped farmers expand cultivable areas despite a shrinking planting season.

Moreover, Tichaona has stepped up as a water carrier during the dry months. With wells drying up, villagers often dig makeshift wells in distant riverbeds. Using his tractor, Tichaona fetches water from the borehole for the community. His efforts free up time for farmers to focus on land preparation and other critical tasks, boosting their productivity.

Building a Lasting Legacy at the Community Level

Tichaona’s success has translated into significant improvements for his family. His increased income has allowed him to build a new home and purchase land in Guruve town. He has also invested in goats for his children as a form of social security. “Kudya kaviri kwaitonetsa, ikozvino takutodya uye atichatenderi kuti muenzi asvika abve pamba asina kudya (We could barely afford two meals a day, but now we eat more than four meals. We ensure that no visitor leaves without eating),” he shared.

His generosity extends beyond his family. Tichaona provides free transportation for vulnerable residents, including the elderly, and offers free grinding services to low-income families. These acts of kindness have solidified his reputation as a respected and valued member of the community.

A Model of Adaptability and Determination

Tichaona’s journey has not been without challenges. Mechanical issues, such as trailer body wear, brake replacements, and two-wheel tractor bearing failures, have tested his resourcefulness. He stocks essential spare parts, conducts regular maintenance, and leverages Kurima Machinery’s support network for troubleshooting and repairs. Collaborating with other AE-I operators, he shares tips and techniques for maintaining machinery, ensuring consistent and reliable services.

As his confidence and skills grow, Tichaona is planning to expand his offerings. He envisions adding oil pressing for sunflower and groundnut as well as peanut butter production. Already, he has invested in a grinding mill operated by his wife, allowing him to focus on field services. His ambitions extend to poultry farming, where he plans to use his chopper grinder to produce feed, incorporating local products into his supply chain.

“Ndine hurongwa hukuru” (I have bigger plans ahead), Tichaona said. He dreams of drilling a borehole to support horticulture production, a venture that would benefit not only his family but also nearby farmers by providing easier access to water. His ultimate goal is to establish a comprehensive agricultural service hub, offering everything from land preparation to livestock feed production, to strengthen the community’s resilience.

A Model for Agroecological Transformation

Tichaona’s story exemplifies the far-reaching impact of empowering local service providers in rural agriculture. Through the CGIAR Agroecology Initiative, he transformed from being a community handyman to a pioneering agricultural entrepreneur in Mbire. His contributions not only enhanced agricultural efficiency and overall life for himself and his community, but also offered a blueprint for sustainable development in agriculture. His story reminds us that when local expertise is supported and equipped, it can transform communities into models of resilience and sustainable growth.