Skip to main content

Pillar: SystemDev

Enhancing maize seed and feed security

Maize is the second most important cereal in Laos after rice, driven primarily by the demand for animal feed in neighboring countries such as China, Thailand, and Vietnam. Laos has an export-oriented maize sector, with most of the country’s production destined for these markets. The sector reached its peak in 2016, when production levels hit 6 metric tons per hectare across an area of 0.26 million hectares.

Over 90% of Laos’s maize production relies on rain-fed agriculture, with maize grain and stover serving as the primary source of feed for smallholder farmers who depend on mixed crop and livestock farming systems for their livelihoods. However, between 2016 and 2022, total maize area and production declined significantly, contracting by 64% and 70%, respectively. Several factors contributed to this decline, including volatile market prices, competition from cassava and other crops, rising production costs, and yield losses due to pests, diseases, and soil nutrient degradation because of monocropping.

Additionally, Laos relies on imported hybrid maize seed, primarily from Thailand and Vietnam, which creates a dependence on external suppliers and exposes farmers to price fluctuations. Recognizing the importance of improving maize productivity and sustainability, the Laotian government is taking steps to enhance local capacity for seed production and ensure access to affordable high-quality feed.

Enhancing local hybrid maize seed production  

Recognizing the importance of enhancing the availability and accessibility of quality maize seed and feed, CIMMYT and Laos’s National Agriculture and Forestry Research Institute (NAFRI) have initiated the evaluation of high-yielding maize hybrids for both grain and stover quality. In 2023, 12 yellow-kernel maize hybrids developed by the CIMMYT-Asia breeding program underwent evaluation in Laos. The same set of hybrids is undergoing evaluation in 2024 to identify stable and suitable germplasm. According to Siviengkhek Phommalath, director of the rice and cash crop research center at NAFRI, the 2023 evaluation provided promising results, with at least two hybrids performing better or on par with widely grown commercial ones in Laos. These hybrids exhibit high productivity, particularly in terms of grain and stover quality. However, further validation is planned for 2024, with the introduction of additional testing sites to assess performance across various environments.

Following thorough evaluations across multiple years and environments, the most suitable dual-purpose maize hybrids will be allocated to NAFRI by CIMMYT along with their parental lines, to kickstart local seed production. However, the capacity of national partners needs to be strengthened to initiate local hybrid maize seed production effectively, and this necessitates the integration and coordination of efforts among all stakeholders in the seed and feed value chains in Laos.

Capacity building across seed and feed value chains

In response to the need for capacity building in local hybrid seed production and ensuring a consistent supply of high-quality seed and feed to Laotian smallholder farmers, NAFRI has collaborated with CIMMYT under the CGIAR Sustainable Intensification of Mixed Farming Systems (SIMFS), Seed Equal, and Plant Health Initiatives to organize an international training workshop on enhancing access to quality maize seed and feed in the crop-livestock farming system of Lao PDR, which took place from May 7-9, 2024.

Workshop participants. (Photo: NAFRI)

The three-day interactive workshop, held in Vientiane, brought together 28 specialists from various organizations, including NAFRI, Souphanou Vong University, the Upland Agriculture Research Center (UARC), Provincial Agriculture and Forestry Offices (PAFO), as well as maize seed importers and grain traders from different provinces within the country.

The first day was dedicated to understanding the challenges and opportunities of the maize seed value chain. Participants were divided into three groups based on their practical backgrounds and invited to discuss challenges, stakeholder roles, and develop actionable recommendations for better coordination across value chains. This multi-stakeholder platform aimed to comprehend the challenges and opportunities of the crop-livestock farming nexus and integrate them into a more sustainable and productive system. It also served as a forum to promote synergistic partnerships among value-chain actors in enhancing local access to good quality seed and feed. The following days focused on various essential components of quality hybrid seed production, including understanding product profiles and market segments, realizing the economics of hybrid maize seed production, seed quality assurance, management of maize pests and diseases, and enhancing maize stover quality.

A collaborative approach

Workshop participants highlighted the challenges they face in acquiring maize seeds from external sources, citing inconsistent delivery times and limited availability of preferred varieties as factors that posed significant operational constraints. “The development of a competitive domestic maize seed system would ensure timely seed supply for farmers and save resources for the nation,” said Maisong Yodnuanchan, an agripreneur from Xiangkhouang province. His concerns resonated with fellow agripreneurs Bounmy Si and Teuang Sophapmixay, from Oudomxay and Hua Phan provinces, respectively, who both acknowledged the challenges associated with the current reliance on imported seeds and the potential benefits of a sustainable, locally produced seed supply.

CIMMYT and NAFRI open a workshop session. (Photo: NAFRI)

The training workshop offered valuable insights into addressing these concerns, providing a comprehensive overview of effective seed system development and the technical aspects of seed production applicable to a wide range of crops beyond maize. “This is the first ever training I received in my career and the knowledge gained will be directly applicable to my research activities at the UARC,” said researcher Malay Soukkhy. Recognizing the unique context of Laos compared to most of its neighboring countries with more established seed systems, AbduRahman Beshir, CIMMYT’s seed systems specialist for Asia and the lead trainer and facilitator for the workshop, emphasized the need for a collaborative approach to develop a custom solution for Laos. The workshop itself exemplified this collaborative spirit, incorporating a variety of engaging formats such as group discussions, lectures, assignments, and participant presentations. Subject matter specialists from CIMMYT offices in Nepal, India, and Kenya, as well as experts from Alliance Bioversity-CIAT and ILRI offices in Asia, shared valuable experiences applicable to Laos’s seed and feed systems.

Cementing partnerships

While addressing the participants, Timothy J. Krupnik, regional director for CIMMYT’s Sustainable Agrifood Systems Program in Asia, opened the workshop by acknowledging the invaluable support of NAFRI for organizing the event and collaborating under the CGIAR mixed farming initiative. He highlighted the imminent finalization of a Memorandum of Understanding (MoU) between CIMMYT and NAFRI, which will pave the way to further cement partnerships and establish a long term CIMMYT operations in Laos.

NAFRI’s Director General, Chanthakhone Bualaphan, presided over the workshop and emphasized the importance of continued collaboration between CIMMYT and NAFRI. Bualaphan requested CIMMYT’s continued focus on capacity building in Laos, encompassing both human resource development and institutional strengthening. She further highlighted the establishment of a specific target for domestic hybrid maize seed production, aligning with the government’s self-sufficiency goals.  To translate plans into action, Bualaphan emphasized the need for future training programs to be more action-oriented and practical. She concluded by reiterating NAFRI’s unwavering support for CIMMYT’s expanded activities in Laos, with the ultimate objective of significantly improving the livelihoods of Laotian farmers. The workshop culminated with the presentation of certificates to participants and the development of a collaborative follow-up plan for deploying well-tailored maize germplasm within the mixed farming system of Laos.

Strengthening maize value chains in Nepal

Stakeholders collaborate in a two-day workshop to discuss the inclusive development of maize value chains in Nepal. (Photo: CIMMYT)

From April 3-4, 2024, CIMMYT hosted the International Conference on Strengthening Maize Value Chains in Nepal, organized in collaboration with the Ministry of Agriculture and Livestock Development, the Department of Agriculture (DOA), the National Agriculture Research Council (NARC), and the Agri Enterprise Center (AEC) of the Federation of Nepali Chamber of Commerce and Industry (FNCCI), with support from the United States Agency for International Development (USAID).

“Maize holds the potential to yield manifold benefits for farmers, the private sector, and the Government of Nepal, through the development of an efficient market system,” said Judith Almodovar, acting director of the Economic Growth Office at USAID Nepal. With this in mind, the two-day conference held in Kathmandu brought together government officials, policymakers, industry leaders, and experts from Nepal and the wider region to explore avenues for advancing the country’s maize sub-sector. It served as a platform for participants from India, Bangladesh, and Nepal, representing various functions of the maize value chain to share and exchange innovative commercial maize production, post-harvest, supply chain, and marketing models and policies aimed at improving efficiency, ensuring sustainability, and fostering competitiveness.

Addressing the opening session, Honorable Minister of Agriculture, Jwala Kumari Sah, highlighted the Government of Nepal’s priority to increase maize production and marketing, emphasizing the need to provide maize for food, feed, and fodder to boost incomes and improve livelihoods. While highlighting objectives and expectations from the conference, Country Representative for CIMMYT in Nepal, Dyutiman Choudhary, shared information about CIMMYT’s mandate and global expertise in maize science, as well as interventions to develop a maize seed-to-feed model in Nepal. The organization’s model fosters public-private farmer partnerships for commercial maize production as a key approach to develop an inclusive and sustainable maize sub-sector in the country. “As a result, maize yields have doubled in Nepal and farmer gate prices have increased by 50% in the last two years,” Choudhary explained.

CIMMYT scientists and partners engage in a panel discussion on maize commercialization. (Photo: CIMMYT)

Recommendations for sustainable improvement

The conference involved five different technical sessions over the course of two days, each focused on various themes related to production, marketing, international best practices, and policies. Experts from Bangladesh, India, and Nepal were involved in insightful discussions and shared valuable knowledge and experience for advancing the commercialization of the maize sub-sector in Nepal.

Participants made recommendations for the sustainable improvement of national maize production and commercialization to meet the growing demand for food, feed, and fodder while reducing reliance on imports. These include developing high-yielding, short-duration, stress-tolerant maize varieties, and identifying models for commercial maize production, post-harvest, storage, market linkages, and supportive policies for improved investment and coordination among public sectors, market actors, and service providers to meet national maize demand.

At the closing session, Govinda Prasad Sharma, secretary at the Ministry of Agriculture and Livestock Development (MOALD), notified attendees that MOALD is in the process of strengthening a national strategy for maize commercialization and that the learning from the conference will provide valuable inputs. He added that the participation of experts from neighboring countries has provided deep insights for policy development.

Opinion: Aid competes with long-term solutions to Sudan’s hunger crisis

This terrible season of global conflict just hit a particularly grim milestone in Sudan with the one-year anniversary of the violent civil war last month. One consequence of the conflict is that Sudanese families are beginning to starve — and while emergency food aid is needed, so is investment in longer-term food production.

Political, economic, and social upheaval in the country has displaced over 8 million people and left nearly 25 million people in need of urgent food assistance, including more than 14 million children. The anniversary saw major donors mark the day with more than $2 billion in new aid pledges.

While these pledges are important, the international community also needs to rethink some of its aid strategies. Emergency food assistance for those at immediate risk of starvation is understandably a high priority now, but restoring food production within the country is just as important — otherwise donors risk racing from crisis to crisis and always falling short. It is time to break away from an aid-dependency model and invest directly in farmers.

In fact, challenges to Sudan’s agriculture were likely a contributing factor to the current conflict. The livelihoods of most people in Sudan depend on the agri-food sector, which has been under pressure in recent years. Economic stagnation, weather shocks, land conflicts, high inflation, and health crises made 9.8 million Sudanese severely food-insecure by 2021.

Sudan’s already low-yielding cropping system has been hit by global tightening in fertilizer supplies. The livestock sector represents 60% of Sudan’s agricultural GDP, and has been suffering from diminished rangelands, water shortages, flood events, and lack of animal health services.

Sudan is not alone, and it’s important that the donor community understand how. Eight out of 10 of the world’s worst food crises are driven by war, persecution, and conflict, in places such as Sudan, Yemen, the Palestinian territories, Myanmar, and the Democratic Republic of Congo. The confluence of conflict, state fragility, climate change, and poverty is already overwhelming the international community’s ability to respond to escalating humanitarian needs. The international community has to put more emphasis on anticipatory action, because reaction is just not going to be enough anymore.

The need to get ahead of the growing scale of humanitarian disasters has provoked new thinking and partnerships among research, development, and humanitarian organizations, such as ours.

We are investing in better risk assessment, preparation for future food crises, and accelerated learning about how climate change is affecting agricultural productivity and production. The significant resources and expertise of the international research-for-development community can make humanitarian responses in fragile and conflict-affected states more effective and optimal.

Sudan will hopefully show how this kind of intervention can work. Our organizations are part of an international effort to partner with Sudan’s farmers to improve livelihoods in the country. We had started operating across six Sudanese states just before the outbreak of the current conflict, training farmers on how to manage their crops, livestock, and natural resources, and supporting them to access drought-tolerant seeds, with a specific focus on last-mile delivery to women and youth. When the civil war started last year, we quickly pivoted to supporting farmers in safer locations and focusing on the needs of internally displaced people in new areas.

Make no mistake: Implementing these interventions in the current conditions is a heavy lift. Roadblocks, skyrocketing fuel costs, denied travel permits, and breakdowns in telephone service all impede communication with farmers and the delivery of seeds, tools, and training. The threat of emergent violence is driving displacement and staff turnover.

Nonetheless, our coalition has continued to operate. Local partners, including cooperatives, microfinance institutions, and private sector players have shown themselves to be especially effective as the conflict has escalated. These cooperatives, strengthened by farmer training, enable farmers to improve their production and incomes by pooling their resources.

For example, the 72-member Al Etihad women-led farmer cooperative in South Kordofan has initiated multiple enterprises, guided by a structured business plan that steers them toward a more empowered role in local food value chains.

Through the program, last-mile seed retailers have helped nearly 6,000 farmers access agronomic advisories and seeds at a subsidized price. This has empowered farmers like Fatna Mohammed, a 48-year-old widow and mother of three, to build a better livelihood from her small-scale groundnut and vegetable production. She reports that an increased harvest of 18 sacks of groundnut, up from five sacks, enabled her to invest in her farm and better feed her family.

This unique last-mile delivery network, carefully tailored to local realities and drivers, is helping Sudanese communities to survive the current crisis and it can be activated for the rebuilding period — which cannot come soon enough.

Sudan, as with many war-affected nations, is caught in a doom loop of insecurity: Any restoration of political stability requires economic activity, but any economic activity requires political stability. Both depend on physical security, which is hard to achieve without political stability and economic activity.

While a cessation of violence and the restoration of civil order is ultimately up to the parties to the conflict, a direct, international investment in farmers is a way to potentially break the cycle, simultaneously addressing the growing hunger crisis and helping build the preconditions for peace.

Read the original piece on Devex

CIMMYT Academy invites applications for Adjunct Scientist Program: Dryland Crops Improvement

This is a competitive program in which early- and mid-career NARS scientists from focus countries* are invited to express their motivation to join a CIMMYT research team, e.g. sorghum, pearl millet, finger millet, groundnut, chickpea, or pigeon pea improvement in West or Eastern Africa, on an adjunct basis. This program aims to strengthen partnerships between CIMMYT and NARS scientists while empowering the emerging generation of scientists through world-class networking and research opportunities contributing to a regional vision of crop improvement.

Adjunct Scientists will focus on their main discipline, e.g. crop breeding, seed systems, socioeconomics, or data management, by partnering with an appropriate CIMMYT scientist. The Adjunct Scientist will work closely with the hosting CIMMYT scientist to jointly strengthen each other’s research programs. The Adjunct and his/her CIMMYT host scientist will jointly participate and learn together from exchange visits, proposal writing, strategic meetings, and travel to research fields or conferences.

Learn more and apply 

Candidates must be active employees of a National Agricultural Research Institution in an AVISA-Transition project target country* with a Ph.D. in an appropriate field, awarded not more than 10 years before applying, or an MSc with a proven record of leading breeding programs for 5-10 years. The deadline for applications is June 22, 2024.

Gridded crop modeling to simulate impacts of climate change and adaptation benefits in ACASA

Global temperatures are projected to warm between 1.5-2 degrees Celsius by the year 2050, and 2-4 degrees Celsius by 2100. This is likely to change precipitation patterns, which will impact crop yields, water availability, food security, and agricultural resilience.

To prepare for these challenges, Atlas of Climate Adaptation in South Asian Agriculture (ACASA) uses process-based simulation models that can predict crop growth, development, and yield in order to understand the response of crops to climate change. Models such as Decision Support System for Agrotechnology Transfer (DSSAT), InfoCrop, and Agricultural Production Systems Simulator (APSIM) facilitate the field scale study of the biophysical and biochemical processes of crops under various environmental conditions, revealing how they are affected by changing weather patterns.

The ACASA team, along with experts from Columbia University and the University of Florida, met for a three-day workshop in January 2024 to boost the work on spatial crop modeling. The aim was to design a modeling protocol through a hands-on demonstration on high-performance computers. When scientifically executed, gridded spatial crop modeling–even though complex and data-intensive–can be a great way to frame adaptation and mitigation strategies for improving food security, which is one of ACASA’s goals.

ACASA’s Spatial Crop Modelling Group meets in Colombo, Sri Lanka, January 2024. (Photo: CIMMYT)

Decisions on data

The group decided to use DSSAT, APSIM, and InfoCrop for simulating the impact of climatic risks on crops such as rice, wheat, maize, sorghum, millet, pigeon pea, chickpea, groundnut, soybean, mustard, potato, cotton, and more. They chose harmonized protocols across all three models with standard inputs, such as conducting simulations at 0.05 degrees. The model input data about weather, soil, crop varietal coefficients, and crop management are being collected and processed for model input formats at 5 kilometer (km) spatial resolution.

A Python version called DSSAT-Pythia is now available to accelerate spatial and gridded applications. The programming for implementing InfoCrop on the Pythia platform is in progress. InfoCrop has been proven in India for past yield estimations, climate change spatial impact, and adaptation assessments for 12 crops.

For other crucial modeling components, a work plan was created including developing regional crop masks, crop zones based on mega-commodity environments as defined by CGIAR, production systems, crop calendars, and irrigated areas by crop. Genetic coefficients will then be calculated from measured past values and recent benchmark data of varietal units.

With this information, several adaptation options will be simulated, including changes in planting dates, stress-tolerant varieties, irrigation, and nitrogen fertilizer (quantity, methods, and technology), residue/mulching, and conservation tillage. The team will evaluate impact and adaptation benefits on yields, water, and nitrogen-use efficiency based on the reported percentage change from the baseline data.

As the project progresses, this work will make strides towards realizing food security for the planet and increasing the resilience of smallholder farming practices.

Blog written by Anooja Thomas, University of Florida; Apurbo K Chaki, BARI, Bangladesh; Gerrit Hoogenboom, University of Florida; S Naresh Kumar, ICAR-IARI, India

Harnessing econometric and statistical tools to support climate-resilient agriculture

Globally, climate extremes are adversely affecting agricultural productivity and farmer welfare. Farmers’ lack of knowledge about adaptation options may further exacerbate the situation. In the context of South Asia, which is home to rural farm-based economies with smallholder populations, tailored adaptation options are crucial to safeguarding the region’s agriculture in response to current and future climate challenges. These resilience strategies encompass a range of risk reducing practices such as changing the planting date, Conservation Agriculture, irrigation, stress-tolerant varieties, crop diversification, and risk transfer mechanisms, e.g., crop insurance. Practices such as enterprise diversification and community water conservation are also potential sector-specific interventions.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) aims to identify hazard-linked adaptation options and prioritize them at a granular geographical scale. While doing so, it is paramount to consider the suitability of adaptation options from a socioeconomic lens which varies across spatial and temporal dimensions. Further, calculation of scalability parameters such as economic, environmental benefit, and gender inclusivity for prioritized adaptation are important to aid climatic risk management and developmental planning in the subcontinent. Given the credibility of econometric and statistical methods, the key tenets of the approach that are being applied in ACASA are worth highlighting.

Evaluating the profitability of adaptation options

Profitability is among the foremost indicators for the feasible adoption of any technology. The popular metric of profitability evaluation is benefit-to-cost ratio. This is a simple measure based on additional costs and benefits because of adopting new technology. A benefit-to-cost ratio of more than one is considered essential for financial viability. Large-scale surveys such as cost of cultivation and other household surveys can provide cost estimates for limited adaptation options. Given the geographical and commodity spread, ACASA must resort to the meta-analysis of published literature or field trials for adaptation options. For example, a recent paper by International Food Policy Research Institute (IFPRI) based on meta-analysis shows that not all interventions result in a win-win situation with improvements in both tradable and non-tradable outcomes. While no-till wheat, legumes, and integrated nutrient management result in an advantageous outcome, there are trade-offs between the tradable and non-tradable ecosystem services in the cases of directed seed rice, organic manure, and agroforestry2.

Quantification of adaptation options to mitigate hazards

Past studies demonstrate the usefulness of econometric methods when analyzing the effectiveness of adaptation options such as irrigation, shift in planting time, and crop diversification against drought and heat stress in South Asia. Compared to a simple cost-benefit approach, the adaptation benefits of a particular technology under climatic stress conditions can be ascertained by comparing it with normal weather conditions. The popular methods in climate economics literature are panel data regression and treatment-based models. Subject to data availability, modern methods of causal estimation, and machine learning can be used to ascertain the robust benefits of adaptation options. Such studies, though available in literature, have compared limited adaptation options. A study by the Indian Council of Agricultural Research-National Institute of Agricultural Economics and Policy Research (ICAR-NIAP), based on ‘Situation Assessment Survey of Agricultural Households’ of National Sample Survey Office (NSSO), concluded that though crop insurance and irrigation effectively improve farm income and reduce farmers’ exposure to downside risk, irrigation is more effective than crop insurance1.

Statistical models for spatial interpolation of econometric estimates

Since ACASA focuses on gridded analysis, an active area of statistical application is the spatial interpolation or downscaling of results to a more granular scale. Many indicators used for risk characterization are available at coarser geographical units or points from surveys. Kriging is a spatial interpolation method where there is no observed data. Apart from spatial interpolation of observed indicators, advanced Kriging methods can be potentially used to interpolate or predict the estimates of the econometric model.

ACASA’s approach involves prioritizing adaptation options based on suitability, scalability, and gender inclusivity. Econometric and statistical methods play a crucial role in evaluating the profitability and effectiveness of various adaptation strategies from real world datasets. Despite challenges such as limited observational data and integration of econometric and statistical methods, ACASA can facilitate informed decision-making in climate risk management and safeguard agricultural productivity in the face of climatic hazards.


1 Birthal PS, Hazrana J, Negi DS and Mishra A. 2022. Assessing benefits of crop insurance vis-a-vis irrigation in Indian agriculture. Food Policy 112:102348. https://doi.org/10.1016/j.foodpol.2022.102348

2 Kiran Kumara T M, Birthal PS, Chand D and Kumar A. 2024. Economic Valuation of Ecosystem Services of Selected Interventions in Agriculture in India. IFPRI Discussion Paper 02250, IFPRI-South Asia Regional Office, New Delhi.

Blog written by Prem Chand, ICAR-NIAP, India and Kaushik Bora, BISA-CIMMYT, India

Unlocking insights from literature: exploring adaptation options in ACASA

To address the vulnerability of increased climate risks which impact agriculture, it is imperative to identify location-specific adaptation options. Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is working on identifying commodity specific hazards at different geographical regions and the key adaptation options aligned with geography and hazards. This has been done for major cereal crops (rice, wheat, and maize), coarse grains (millets), oilseeds (coconut, mustard), legumes and vegetable crops (chickpea, potato), livestock, and fisheries. In ACASA, Systematic Literature Review (SLR) serves as a fundamental tool to identify key climate adaptation options and assess their effectiveness, considering agroecological factors.

Literature reviews are a customary approach for researchers to grasp existing knowledge and findings. The SLR methodically establishes clear research objectives, employs structured search queries to identify relevant literature, applies defined exclusion criteria, and extracts data for scientific analysis. This structured approach facilitates mapping the literature, validating findings, identifying gaps, and refining methodologies thereby minimizing biases, and ensuring comprehensive coverage of evidence.

Commodity-specific research questions, aligned with the problem/population, intervention, comparison/consequences, outcome, and time PICO(T) framework, have been used to guide the search process. By utilizing keywords specific to these questions, ACASA sourced literature from reputable databases such as Web of Science, Scopus, Google Scholar, and local databases of South Asian countries: Bangladesh, India, Nepal, and Sri Lanka. Local databases and gray literature further bolstered the understanding of local conditions and broadened the coverage of studied literature.

Systematic Literature Review (SLR)

The searched literature was then filtered using the well-established Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) framework. PRISMA provides a minimum set of evidence-based literature to be used for further analysis. Let us look at maize as an example of a commodity under analysis in ACASA. For maize, a total of 1,282 papers were identified and based on four exclusion criteria pertaining to adaptation options, quantitative assessment, hazard, and risk only of which 72 papers were shortlisted. The PRISMA framework supported in getting a manageable dataset for in-depth analysis while ensuring transparency in the overall filtering process.

After filtering through PRISMA, a bibliometric analysis was conducted which contained research trend analysis, regional distribution patterns, adaptation option categorizations, and a co-occurrence analysis. Useful patterns in popularity of studied adaptation options, hazards, and their linkages were observed through this analysis. For instance, drought was the most studied hazard, while pest diseases and economics were major hazard impacts studied for the maize literature. In terms of adaptation options, stress tolerant varieties were the most popular adaptation option. Further, co-occurrence analysis provided linkages between adaptation options and hazards, and demonstrated that researchers have also studied bundled technologies.

SLR helped understand the effectiveness of certain adaptation options. Going ahead, this step will be fully realized through a “meta-analysis” which will be pivotal in quantifying the evidence and prioritizing adaptation options for different agroecologies. SLR has proven to be an effective research method to build a comprehensive database that can be used across different thematic areas of ACASA. Adaptation options enlisted through SLR can be further substantiated through expert elicitations via heurism, crop modelling, cost-benefit analysis, and other important pillars of ACASA to identify efficient and cost-effective options.

SLR also provided the ACASA team with the opportunity to identify certain literature gaps such as uneven geographical coverage and excessive emphasis on certain adaptation options versus the rest. Conceptualization of systematically reviewing climate adaptation options in the South Asian context by integrating bibliometric and meta-analysis adds novelty to the current efforts of ACASA.

Blog written by Aniket Deo, BISA-CIMMYT India; Niveta Jain, ICAR-IARI India; Roshan B Ojha, NARC Nepal; and Sayla Khandoker, BARI Bangladesh

Greater successes through NARS partnerships

Map: BISA works with National Agricultural Research Systems (NARS) of South Asia to develop ACASA.

Atlas of Climate Adaptation in South Asian Agriculture (ACASA) is different from many projects supported by our team. I would love to dive into the promising features of the ACASA platform and the exciting technical advances being made, but I want to focus here on how the Borlaug Institute for South Asia (BISA) has organized this program for greater and longer-term impact.

BISA is a strong regional partner and is the lead institution for the ACASA program. In fact, we could have simply asked BISA to build the ACASA platform and known they would make a great technical product. However, our goal is not just to have great technical products, but also to improve the lives of small-scale producers. For any great technical product to deliver impact, it must be used.

From day one, the ACASA program has not just kept the users’ needs in mind, indeed they have kept the users themselves engaged on the project. By establishing strong, financially supported partnerships with the National Agricultural Research Systems (NARS) in Bangladesh, India, Nepal, and Sri Lanka, they are achieving four key outcomes, among many others:

  1. Benefit from local expertise regarding national agricultural practices, climate risks, and solutions
  2. Leverage NARS connections to national and subnational decision makers to inform product requirements
  3. Establish national ownership with a partner mandated to support users of the product
  4. Strengthen climate adaptation analytics across South Asia through peer-to-peer learning.

These outcomes lead to more accurate and appropriate products, user trust, and the long-term capacity to maintain and update the ACASA platform. The latter being essential given the constantly improving nature of our understanding of and predictions around climate and agriculture.

If this model of working has such advantages over “if you build it, they will come”, you might wonder why we do not use it in all cases. This approach requires divergence from business-as-usual for most researchers and is not without a cost. The BISA team are not only putting deep emphasis on the technical development of this product, but they are also spending considerable time, effort, and budget to create a program structure where the NARS are catalytic partners. The NARS teams are empowered on the project to contribute to methodologies used beyond their national boundaries, they have the task of making the best data available and validating the outputs, the responsibility of understanding and representing stakeholder requirements, and the ownership of their national platform for long-term use. BISA has developed a structure of accountability, provided funding, facilitated team-wide and theme-specific workshops, and shared decision-making power, which all presents additional work.

In the end, we encouraged this approach because we see too many decision support tools and platforms developed by international researchers who merely consult with users a few times during a project. These efforts may result in building captivating products, meeting all the needs brainstormed by the research team, but their future is sitting in a dusty (and unfortunately crowded) corner of the internet. While this approach seems fast and efficient, the efficiency is zero if there is no value gained from the output. So, we look for other ways to operate and engage with partners, to work within existing systems, and to move beyond theoretically useful products to ones that are used to address needs and can be evolved as those needs change. BISA has been an exemplary partner in building and supporting a strong ACASA team, and we are eager to see how each NARS partner leverages the ACASA product to generate impact for small-scale producers.

Tess Russo is a senior program officer at the Bill & Melinda Gates Foundation, based in Seattle, United States.  

Responsible sourcing: how farmers, companies work together

CIMMYT challenges the idea that “win-win” partnerships require equals, proving smallholder farmers and large agri-food companies in Mexico can benefit mutually. Through sustainable sourcing, over 1.15 million tons of maize and wheat have been commercialized, benefiting both parties. Initiatives with companies like Bimbo, Heineken, and NestlĂ© enhance environmental sustainability while boosting farmers’ productivity. Led by Director General Bram Govaerts, CIMMYT pioneers sustainable farming, aligning with UN’s Sustainable Development Goals.

Read the full story.

Eight new CIMMYT maize hybrids available from Eastern Africa breeding program

How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce eight new, improved tropical maize hybrids that are now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across eastern Africa and similar agroecologies in other regions. NARES and seed companies are hereby invited to apply for licenses to pursue national release, scale-up seed production, and deliver these maize hybrids to farming communities.

Newly available CIMMYT hybrids Key traits
CIM22EAPP1-01-08 Intermediate-maturing, white, high yielding, drought tolerant, NUE, and resistant to GLS, TLB, MSV, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-01-16
CIM22EAPP1-02-02 Early maturing, white, high yielding, drought tolerant, NUE, and resistant to MLN, MSV, GLS, TLB, ear rots, and root & stalk lodging tolerance
CIM22EAPP1-02-09
CIM22EAPP1-02-18
CIM22EAPP2-03 Late maturing, white, high yielding, drought tolerant, NUE, and resistant to MSV, GLS, TLB, rust, ear rots, and root & stalk lodging tolerance
CIM22EAPP2-07
CIM21EAPP3-38 Late-maturing, high-yielding, white-grain maize hybrid bred for the highlands, with resistance to GLS, TLB, rust, ear rots, and root & stalk lodging tolerance

 

Performance data Download CIMMYT Eastern Africa Maize Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2022 to 2023 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details.
Application deadline The deadline to submit applications to be considered during the first round of allocations is 15 May 2024. Applications received after that deadline are still welcome but will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrids were identified through rigorous, years-long trialing and a stage-gate advancement process which culminated in the 2023 Eastern Africa Regional On-Farm Trials. The products were found to meet the stringent performance and farmer acceptance criteria for CIMMYT’s breeding pipelines that are designed to generate products tailored in particular for smallholder farmers in stress-prone agroecologies of eastern Africa.

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, program manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

Cargill Mexico and CIMMYT award top food security and sustainability projects in Mexico

Cargill Mexico and CIMMYT presented the 2023 edition of the Cargill-CIMMYT Award for Food Security and Sustainability, which aims to acknowledge and promote projects and actions that contribute to mitigating and resolving the food problems facing the country.

With this award, Cargill and CIMMYT seek to promote actions and projects that contain innovative ideas on technologies, productive inputs, agronomic practices, marketing models, collaboration schemes, among others, that result in a sustainable and scalable increase in agricultural production in Mexico.

From left to right, Fernando Guareschi, president of Cargill Mexico; winners Eduardo Cruz and Heriberto López, youth; Arturo Ortiz, opinion leader; Carlos Barragån, producer; Andrés Mandujano, researcher; and, Bram Govaerts, CIMMYT director general. (Photo: CIMMYT)

“The objective of this initiative is to identify and acknowledge technological innovations, actions, and practices that contribute to strengthening food security and sustainability in the Mexican countryside,” said Fernando Guareschi, president of Cargill Mexico. “The award-winning projects represent an achievement for the producers, researchers, opinion leaders, and young people who participate in each project. It is an indicator for us that we are on the right path to meet our goal of nourishing the world in a safe, responsible, and sustainable way.”

The 2023 edition of the award acknowledges innovations that lead to better integration of basic grain value chains, as well as productive market practices that improve the quality of life of producers in communities or agricultural centers.

“For CIMMYT, the partnership with Cargill has been key to recognizing and promoting the talent and innovation of the actors in the basic grains value chains in Mexico who share our determination to transform agricultural systems to make them more resilient, sustainable, and inclusive and, thus, strengthen food security for all Mexicans,” said Bram Govaerts, CIMMYT director general.

Within the framework of the awards ceremony, the winning projects were recognized in categories: researchers, producers, opinion leaders, and youth in the Mexican agricultural sector.

The winners of the 2023 edition of the Cargill–CIMMYT Award were –

  • AndrĂ©s Mandujano Bueno in the researchers category, with the project “Algorithms to optimize the use of nitrogen fertilizer.”
  • Carlos BarragĂĄn GarcĂ­a in the producers category, with the project “Family agriculture and agribusiness.”
  • Arturo Javier Ortiz GarcĂ­a in the opinion leaders category, with the project “Agricultural Islands.”
  • Eduardo Cruz Rojo in the youth category, with the projects “New production methods for the Mezquital Valley area.”

In this edition, projects were assessed by a jury and a committee of experts from the agricultural and food sector, who had the responsibility of determining the winners. Projects for each category were assessed with specific criteria:

  • Producers of basic grain production systems such as maize, wheat, barley, and sorghum.
  • Scientists and researchers in agronomy, genetics, improvement of maize, wheat, barley, or sorghum, and information and telecommunications technologies applied to the agrifood sector.
  • Leaders of associations of producers, technicians, and communication professionals who work in the agrifood sector in Mexico.
  • Youth who have carried out outstanding activities in the sustainable agricultural sector in Mexico, have implemented a pilot program in their community, or have contributed to agricultural technological innovation.

About Cargill

Cargill is committed to supplying food, ingredients, agricultural solutions, and industrial products to nourish the world safely, responsibly, and sustainably. Located at the center of the supply chain, we collaborate with farmers and customers to source, manufacture, and supply products vital to life.

Our 160,000 team members innovate with purpose, providing customers with the essentials so that businesses grow, communities thrive, and consumers live well. With 159 years of experience as a family business, we look to the future while staying true to our values. We prioritize people. We aim for excellence. We do the right thing, today, and for future generations. For more information, visit Cargill.com and our News Center.

 About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

For more information, visit cimmyt.org.

Read the original article in Spanish.

A sense of belonging: fostering gender equality and social inclusion in agricultural research

Efforts to improve gender equality and social inclusion are under the spotlight in many workplaces around the world. At CIMMYT, where values of Excellence, Integrity, and Teamwork guide the organization through its 2030 Strategy, commitment to shaping a more inclusive workplace is changing the face of scientific research.

In alignment with the CGIAR Gender, Diversity and Inclusion (GDI) Action Plan for 2023-2024 to achieve gender parity goals, CIMMYT has implemented multiple initiatives to make improvements across its workstreams and geographical locations.

“This is the start of a journey to harness and empower talent from across CIMMYT’s employee base,” said Director General, Bram Govaerts. “Starting with the actions outlined below, CIMMYT aims to become a leader in promoting gender equality and social inclusion in agricultural research and development.”

Empowering women

At CIMMYT, our commitment to gender equality is reflected in our global workforce. During the first half of 2023, women represented one in every three staff members. Across all roles, the current hiring rate for women is 43% in 2023 compared to 21% in 2020, with a particularly positive trend in regional offices, where the percentage has increased from 24% in 2021 to 43% in 2023. Annual improvements are also visible in the number of internationally recruited female staff, as 46% of these roles are filled by women in 2023, compared to 19% in 2022.

In our headquarters in Mexico, there is no major gender gap above 10%, even at the highest level, and 35-40% of employees are women. 50% of the members of the senior leadership team are women, with a significant number of women from diverse backgrounds forming part of our broader management structure. Progress is also visible in our regional offices. In Kenya and TĂŒrkiye, 43% and 40% of team members are women respectively, with both countries reaching the CGIAR target of 40/40/20 parity. For the first time, women represented at least 20% of employees in Bangladesh and Nepal in 2023.

However, we recognize there are still areas where CIMMYT must improve gender parity. While the overall gender balance continues to improve, the proportion of women working at CIMMYT globally rests at 32.5%, which is a statistic that can be increased. Gender gaps exceeding 10% can be observed in India and Nepal, where efforts are bridging gaps and forming environments where talent knows no gender.

Advancing equality by region

The impressive diversity of our workforce is one of our greatest strengths, and CIMMYT always seeks new ways to champion its people. As a global organization with presence in 88 countries, benefits are tailored to each region to target the specific needs of employees in each locality.

  • The creation of a Gratuity and Provident Trust Fund in Bangladesh, fostering gender equality by providing equal opportunities for financial stability and growth.
  • Standardized benefits in India, such as a uniform transport allowance and upgraded housing allowance that ensures fair financial benefits for all employees regardless of job grade.
  • Enhanced food coupons and savings funds for employees in Mexico, as well as an after-school program for the children of colleagues working at the headquarters.
  • Responding to economic challenges in Pakistan with a 20% general salary increase, a bonus of US $400, and the introduction of a gender-neutral transport allowance.
  • An increased allowance for children’s education in Zimbabwe.

In addition, Flexible Work Arrangements (FWA), parental leave, disability access improvements, and translation services showcase CIMMYT’s dedication to equality and inclusion.

Fulfilling careers for all

Investing in our people means ensuring that learning opportunities are equally accessible to all, empowering employees to reach their maximum capabilities. “We actively work to foster a culture and environment where all staff feel confident sharing their perspectives, their contributions are highly valued, and they see a path for growth within the organization,” said Deputy Director of Human Resources, Jean-Flavien Le Besque.

In 2023, 1,189 staff members participated in 431 training courses, with the number of participants increasing by nearly 23% in the same year. Additional e-learning opportunities available in both English and Spanish provide opportunities for professional development in health and safety, communications, personal efficiency, and critical thinking, all which aid staff with the development of valuable skills. These online courses supplement regular training on teamwork, hostile environment awareness, and diversity, equity, and inclusion.

The CIMMYT Academy also plays a significant role in training staff to be future leaders. In 2022, 52 students enrolled into the Academy; 52% of these students are women, underscoring CIMMYT’s commitment to developing everyone’s talent. Staff can also access a Tuition Grant scheme to pursue a higher-level degree.

Next steps

While these initiatives have strengthened gender equality and social inclusion at CIMMYT, further efforts are required to achieve true equity in all corners of the organization. These projects so far are just a glimpse into ongoing work to achieve the CGIAR GDI aims and will be built upon using employee feedback and specialist expertise.

“These successes are just the start of our pledge to ensure CIMMYT is inclusive and safe for all,” said Associate Scientist and Cropping Systems Agronomist, Mazvita Chiduwa. “We want to be an organization that is renowned not just for scientific excellence, but also for the way we champion all groups to reach the best of their ability, thrive in the workplace, and enjoy a positive work-life balance.”

Unanswered questions and unquestioned answers

Over the past few decades, Conservation Agriculture (CA) has moved from theory to practice for many farmers in southern Africa. CA is a system that involves minimum soil disturbance, crop residue retention, and crop diversification among other complimentary agricultural practices. One reason for its increasing popularity is its potential to mitigate threats from climate change while increasing yields.

However, there are limits to the adaptation of CA, especially for smallholder farmers. Challenges are both agronomic (e.g. lack of sufficient crop residues as mulch, weed control, pest and disease carryover through crop residues), socio-economic, and political (both locally and regionally).

A recent paper, Unanswered questions and unquestioned answers: the challenges of crop residue retention and weed control in Conservation Agriculture systems of southern Africa, published in the journal Renewable Agriculture and Food Systems in February 2024, led by CIMMYT and CGIAR scientists examines two specific challenges to more widespread CA adaptation: how to deal with trade-offs in using crop residue and finding alternatives to herbicides for weed control.

For crop residue, the two most prevalent actions are using leftover crop residue for soil cover or feeding it to livestock. Currently, many farmers allow livestock to graze on crop residue in the field, leading to overgrazing and insufficient ground cover. This tradeoff is further challenged by other multiple household uses of residues such as fuel and building material. The most common way to control weeds is the application of herbicides. However, inefficient and injudicious herbicide use poses a threat to human health and the environment, so the research team set out to identify potential alternatives to chemical weed control as the sole practices in CA systems.

“The answer to the question ‘how should farmers control weeds?’ has always been herbicides,” said lead author Christian Thierfelder, CIMMYT principal cropping systems agronomist. “But herbicides have many negative side effects, so we wanted to question that answer and examine other potential weed control methods.”

What to do with crop residue

Previous research from the region found that ungrazed areas had long-term positive effects on soil fertility and crop yields. However, it is common practice for many farmers in Malawi, Zambia, and Zimbabwe to allow open grazing after the harvest in their communities. Livestock are free to graze wherever they wander, which results in overgrazing.

“Open grazing systems help keep costs down but are very inefficient in terms of use of resources. It leads to bare fields with poor soil,” said Thierfelder.

Maize on residues. (Photo: CIMMYT)

While it is easy to suggest that regulations should be enacted to limit open grazing, it is difficult to implement and enforce such rules in practice. The authors found that enforcement is lacking in smaller villages because community members are often related, which makes punishment difficult, and there is an inherent conflict of interest among those responsible for enforcement.

Controlling weeds

Weeding challenges in CA systems have been addressed worldwide by simply using herbicides. However, chemical weeding is often not affordable and, sometimes, inaccessible to the smallholder farmers and environmentally unfriendly.

Using herbicides, though effective when properly applied, also requires a degree of specialized knowledge, and without basic training, this may be an unviable option as they may pose a risk to the health of the farmers. Thus, alternatives need to be identified to overcome this challenge.

Some alternatives include mechanical methods, involving the use of handheld tools or more sophisticated tools pulled by animals or engines. While this can be effective, there is the possibility of high initial investments, and intercropping (a tenet of CA) forces farmers to maneuver carefully between rows to avoid unintended damage of the intercrop.

Increasing crop competition is another potential weed control system. By increasing plant density, reducing crop row spacing, and integrating other crops through intercropping, the crop competes more successfully with the weeds for resources such as light, moisture, and nutrients. When the crop seed rate is increased, the density of the crops increases, providing more cover to intercept light, and reducing the amount of light reaching the weeds thereby controlling their proliferation.

A holistic approach

“What we learned is that many of the crop residue and weed challenges are part of broader complications that cannot be resolved without understanding the interactions among the current scientific recommendations, private incentives, social norms, institutions, and government policy,” said Thierfelder.

Continuing research into CA should aim to examine the social and institutional innovations needed to mainstream CA as well as strengthen and expand the research on weed control alternatives and focus on the science of communal grazing land management to enhance their productivity.

Unlocking the power of collaboration in global wheat science

CIMMYT Global Wheat Program (GWP) scientists visited National Agricultural Research Systems (NARS) partners in Pakistan, Nepal, and India during February 2024. The key purpose was to review current approaches and explore new opportunities to enhance collaborative wheat improvement activities.

NARS partners described their current priorities and recent changes in their activities, while CIMMYT shared recent modernization efforts of its wheat breeding and highlighted opportunities to enhance collaborative wheat improvement. GWP representatives included Interim Wheat Director Kevin Pixley, and scientists Naeela Qureshi, Velu Govindan, Keith Gardner, Sridhar Bhavani, T.P. Tiwari, and Arun K Joshi.

Representatives from the Pakistan Agricultural Research Council (PARC) and CIMMYT meet to identify chances for improved cooperation in wheat breeding research. (Photo: Awais Yaqub/CIMMYT)

Planning the future of South Asian wheat

In each country, CIMMYT and NARS leaders held a one-day meeting to review and plan their wheat improvement partnership, with attendance from 25-30 wheat scientists in each country. The sessions aimed to review and identify bottlenecks to the wheat impact pathway in each country, describe recent changes in the breeding programs of CIMMYT and NARS partners, and prioritize and agree updates to the NARS-CIMMYT wheat improvement collaborations.

NARS partners highlighted their wheat improvement programs through field visits to research stations. Visitors attended Wheat Research Institute (ARI), Faisalabad and National Agricultural Research Center (NARC), Islamabad in Pakistan; National Wheat Research Program (NWRP), Bhairahawa and National Plant Breeding & Genetics Research Center (NPBGRC), Khumaltar in Nepal; and Indian Institute of Wheat and Barley Research (IIWBR), Punjab Agricultural University (PAU), Borlaug Institute for South Asia (BISA), and the Indian Agricultural Research Institute (IARI) in India.

The GWP team also visited: Faisalabad Agricultural University, with a special focus on collaborative zinc biofortification work in Pakistan; farmers’ fields in Nepal to see participatory evaluations of elite wheat lines (candidates for release as new varieties) and to hear from farmers about challenges and expectations from improved varieties; and the Lumbini Seed Company to learn about the crucial role of seed companies, bottlenecks, and opportunities in the pathway from research to impact in farmers’ fields.

NARS scientists and directors in all three countries were enthusiastic about the opportunities for enhanced partnership to adopt some of the modernizing technologies that AGG has brought to CIMMYT. Partners are especially keen to –

  1. Receive earlier generation varieties, segregating breeding lines to empower them to select in their own environments.
  2. Model and explore strategies to shorten their breeding cycles.
  3. Apply quantitative genetics tools to better select parents for their crossing blocks.
  4. Adopt experimental designs that improve efficiency.
  5. Explore opportunities for co-implementing improvement programs through shared testing schemes, communities of practice (e.g. for quantitative genetics or use of exotic germplasm to address challenges from climate change), and more.
A highlight of the trip in Nepal: visiting on-farm trials, where farmers share insights about their preferences for improved varieties, where they often mentioned tolerance over lodging. (Photo: CIMMYT)

“The visit provided CIMMYT and NARS wheat scientists with the opportunity to exchange experiences and ideas, and to explore ways of enhancing collaborations that will strengthen our joint impact on wheat farmers and consumers,” said Pixley.

Following these visits, the Bangladesh Wheat and Maize Research Institute (BWMRI) soon reached out to CIMMYT to request a similar review and planning meeting, with a vision to modernize and strengthen their wheat improvement partnership.

Arun K Joshi receives prestigious Sh. VS Mathur Memorial Award

The Society for the Advancement of Wheat and Barley Research (SAWBAR), ICAR-IIWBR, Karnal, bestowed the prestigious Sh. VS Mathur Memorial Award 2023 for outstanding contribution in the field of Wheat Crop Improvement.

T Mohapatra, former secretary of India’s Department of Agricultural Research and Education and director general of the Indian Council of Agricultural Research (ICAR), and Gyanendra Singh, director of the Indian Institute of Wheat & Barley Research (IIWBR) at ICAR, presented the award at the ceremony on March 27, 2024.

As recipient of this award Joshi, who is the managing director of the Borlaug Institute for South Asia (BISA), CIMMYT country representative for India, and CIMMYT regional representative for South Asia, also delivered the Sh. VS Mathur memorial lecture during the ceremony. In his speech, Joshi spoke about past and present developments in wheat improvement and emphasized the importance of wheat across the globe, touching on the post-Green Revolution era and the critical timeline of events in wheat improvement. He delved into the factors responsible for variations in wheat yield and how to meet the rising demand for wheat consumption.

Arun Kumar Joshi receives the Sh. VS Mathur Memorial Award. (Photo: CIMMYT)

Joshi advised that countries like India must bridge the yield gap by improving management in farmers’ fields, co-learning from other spring wheat-growing countries like Mexico and Egypt, and investing in science to address climate change. He also discussed opportunities to integrate modern science across all disciplines: genomics, gene editing, mechanization, robotics, AI, weed management, water, and nutrient use efficiency.

Talking about the future of wheat production, Joshi stressed the need to focus on traits that will be more important in the future, with an emphasis on accelerated genetic gain, gene-edited wheat, and how to breed heat-tolerant (40° C) varieties using various innovative tools and technologies.

About CIMMYT:

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

For more information, visit cimmyt.org.

About the Society for the Advancement of Wheat and Barley Research (SAWBAR):

SAWBAR was founded in 2007 and is housed at ICAR-Indian Institute of Wheat and Barley Research Karnal (Haryana) India. The Society presently has 300 life members and more than 320 annual and student members. SAWBAR is playing a significant role in bringing wheat and barley researchers on one platform for the exchange of innovative research and dissemination of knowledge related to the latest research happenings in the area of wheat and barley improvement. Annually, SAWBAR gives awards to pioneer cereal workers in various award categories.

About the Sh. VS Mathur Memorial Award:

The Sh. VS Mathur Memorial Award was constituted in year 2018 in the memory of eminent wheat worker Sh. VS Mathur. Mathur was one of the pioneer wheat workers who worked tirelessly with MS Swaminathan and HK Jain and developed a large number of high-yielding wheat varieties viz. Heera, Moti, Janak (HD 1982), Arjun (HD 2009), HD 2177, HD 2182, HD 2204, HD 2236, HD 2278, HD 2281, HD 2285, HD 2329, HD 2307 and HD 2327 for various regions of India.