Milton Malama is a consultant specializing in community outreach and interventions at the International Maize and wheat Improvement Center (CIMMYT). Based in Zambia, he has eight years of experience working with international agricultural organizations as well as government.
Milton holds a BSc in Agricultural Economics from the university of Zambia and a Collaborative MSc in Agricultural and Applied Economics from Makerere University and the University of Pretoria. His career extends from academic roles in Uganda and applied research across multiple projects in Zambia. As a support staff at Makerere University, he taught courses on Agricultural Commodity Marketing and Small and Medium Business Enterprise Development. His research interests are water management, smallholder agriculture, economic valuation of natural resources, and rural development.
Cynthia Chibebe is the Qualitative Research Specialist-Consultant at CIMMYT, working on the Atubandike initiative in Zambia. She has over six years of experience in both qualitative and quantitative research.
Cynthia holds a BSc in Agricultural Economics from the University of Zambia. She has contributed to research projects with organizations such as March Associates, Palm Associates, American Institutes for Research, and ACDI/VOCA. She has co-authored a paper on food and nutrition security which reflects her commitment to generating evidence-based insights that support agricultural and development initiatives in Zambia and beyond.
Cleopatra Kawanga serves as the lead for the implementation of Atubandike digital advisory tool under AID-I project at CIMMYT based in Lusaka. In this role, she works on dynamic content creation for the Viamo 667 platform, an interactive service where farmers can access timely agricultural advice on diverse farming topics. Her primary focus is ensuring that farmers have continued access to relevant agricultural information. She is dedicated to promoting inclusive e-extension approach that bridges the information gap for farmers regardless of gender, age, or location to improve agricultural productivity.
Cleopatra holds a Bachelor of Science degree from the University of Zambia and a Master of Science degree from Sokoine University of Agriculture. Her career path is in food and nutrition security. She has over 6 years of experience in work that supports food and nutrition security among smallholder farmers in Zambia.
Brian Njoroge is a Policy Analysis and Project Sustainability Plan Associate for the International Maize and Wheat Improvement Center (CIMMYT) with 4 years of experience in policy research.
He is currently undertaking an MA. in Research and Public Policy and has attained a BA. in Political Science from the University of Nairobi, Kenya. Having served at the Kenya School of Government; a training and policy advisory institution in Kenya, Brian has undertaken policy analysis and business model development for both public and private sector.
Brian Mpande is a consultant specializing in quantitative research at the International Maize and Wheat Improvement Center (CIMMYT), he also plays a coordination role for the Atubandike program. Based in Zambia, he has over six years of experience in agricultural research.
Brian holds a BSc in Agricultural Economics from the University of Zambia and an MSc in Agricultural Economics from the University of Pretoria. His professional background covers both academic roles in South Africa and Zambia, as well as applied research in agriculture and health in Zambia. As a teaching assistant, he contributed to courses on Environmental Valuation and Policy as well as the Fundamentals of Macroeconomics. His research interests include climate-smart agriculture technology adoption, with a particular focus on conservation agriculture. He is also passionate about impact assessment and digital inclusion.
Established in August 2023 and convened by CIMMYT’s Dryland Crops Program (DCP), ADCIN is a collaborative network uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable community to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.
Through this partnership, ZARI has modernized its facilities and practices, creating a model for agricultural innovation in Eastern and Southern Africa. These advancements reflect a powerful vision of enhancing the capacity of breeding programs, improving crop resilience, and boosting food security for communities across the continent.
The Challenges of Transformation
Historically, ZARI faced significant challenges that limited its potential. As Lloyd Mbulwe, Acting Chief Agriculture Research Officer at ZARI, recalls:
“We faced research-related hurdles, from outdated lab facilities and inefficient irrigation systems to limited digital infrastructure and insufficient seed storage.”
These issues hindered not only ZARI’s ability to innovate but also its capacity for collaboration with regional and international partners.
With limited resources, ZARI was unable to meet the demand for high-quality, consistent research and innovation. Data collection was often manual, errors were common, and collaboration was difficult. The lack of modern infrastructure restricted the scope of experiments and the institute’s ability to respond to critical regional issues such as climate change and food insecurity.
A New Era of Modernization and Strategic Partnerships
In partnership with ADCIN, ZARI has received targeted funding and technical support, enabling transformative upgrades across its infrastructure that are redefining its research capabilities.
“The upgrades have reshaped our research capabilities,” Mbulwe explains. “With new equipment, enhanced data management systems, and a suitable greenhouse, we’re conducting better plant breeding experiments that directly address the region’s target product profiles.”
In July 2023, CIMMYT’s Dryland Crops Program conducted breeding program assessments of ZARI’s Golden Valley location, where the national institute’s sorghum and millets breeding programs are being conducted. Mark Nas, CIMMYT’s Sorghum and MilletsBreeder for Eastern and Southern Africa, describes ZARI’s program as, “a high-potential program composed of talented and dedicated researchers and technicians, but in need of significant infrastructure upgrades if they are to meaningfully contribute to the shared regional breeding pipelines.”
With a subaward granted to ZARI by the end of 2023, Mbulwe and his team quickly worked on implementing the suggested improvements from the program assessments. Key upgrades include a greenhouse facility for speed breeding and controlled drought research, allowing researchers to rapidly produce lines for regional trials, while evaluating regional materials for drought tolerance. Enhanced water storage and solar power installations now enable uninterrupted research, even during power outages, a frequent challenge in this region. Transitioning to Starlink internet has also strengthened ZARI’s capacity for regional and international collaboration, and real-time data delivery, bridging communication gaps and enabling seamless data sharing.
Boosting Capacity for Impact
The new facilities have transformed ZARI’s capacity for impactful research. Rapid generation advance techniques, where breeding populations are quickly advanced through successive selfing generations, allow ZARI researchers to conduct multiple plantings within a year—dramatically boosting progress in line development.
Additionally, the upgrades also enable off-season research through the ZAMGRO Project, which has expanded water storage capacity from 45 cubic meters to an impressive 3,600,000 cubic meters. With year-round breeding, farming and water management research are now possible, giving ZARI an edge in breeding programs.
Mbulwe shares how automated data collection systems and standardized procedures have further improved the precision and reproducibility of ZARI’s research. “Our teams are now equipped to produce high-quality data leading to actionable results,” he says. “These improvements ensure the quality of outcomes and make our processes more efficient.”
A Vision for the Future
Looking ahead, ZARI plans to scale its research impact by establishing a Center of Excellence for Climate-Smart Agriculture and establishing a biotechnology lab to advance genetic improvement. Expanding greenhouse and irrigation systems, as well as enhancing digital infrastructure for data management, are key priorities. ZARI also aims to strengthen public-private partnerships to bridge the gap between research and practical applications for farmers across Zambia and beyond.
Inspiration and Best Practices for Other NARES Institutions
ZARI’s success story serves as an inspirational blueprint for other National Agricultural Research and Extension Systems (NARES) institutions. Through strategic partnerships, targeted investments in infrastructure, and an emphasis on capacity building, ZARI has shown what is possible when organizations and their leaders commit to modernizing and adapting to the evolving challenges of agriculture.
From irrigation upgrades to energy-efficient, solar-powered facilities, ZARI’s best practices are setting the stage for similar projects in other regions. “We’ve demonstrated that modernization can make a profound difference in NARES breeding programs,” says Dr. Mbulwe. “It’s about leveraging every resource to upgrade our plant breeding capabilities to address the challenges that climate change and food security bring to our region.”
The Role of ADCIN in Agricultural Innovation
ADCIN has been instrumental in supporting this transformation. Through its technical assistance, funding, and strategic guidance, ADCIN has empowered ZARI and other NARES institutions to elevate research standards across Africa. By aligning investments with regional research priorities, ADCIN not only supports individual institutions but also strengthens agricultural networks on a continental scale. Harish Gandhi, Associate Director of CIMMYT’s Dryland Crops Program, states, “We are operating in a new and transformative model of working with our partners. We want our partners to be resourced to succeed.”
ADCIN’s efforts to enhance research capacity, foster collaboration, and improve governance have seen significant returns. “This partnership has made ZARI a stronger institution,” Mbulwe asserts. “Our research output, regional partnerships, and access to funding have all grown. ADCIN’s support reaffirms its commitment to advancing the excellence of regional breeding and other research in dryland crops across Africa.”
Take-Home Message
ZARI’s journey is a prime example of the power of strategic investment, collaboration, and a shared commitment to addressing climate and food security challenges by building the capacity of national programs through equitable subawards. As it continues to innovate, ZARI remains a symbol of progress for agricultural research across Sub-Saharan Africa. With support from ADCIN, ZARI’s advancements signal a brighter, more resilient future for African dryland crops agriculture—one rooted in science, collaboration, and the promise of food security for all.
Victor Munakabanze in his field sharing his scaling story with scientists and district agriculture officers (Photo: CIMMYT)
Each annual field tour offers a fresh perspective on the realities farmers face. It’s a window into how different agroecological conditions shape farming experiences and outcomes, revealing what works in farmers’ fields and what doesn’t under an increasingly unpredictable climate.
This year, in Zambia’s Southern Province, the story is promising, as good rains have set the foundation for a favorable crop—a stark contrast to the past season, marked by the El Niño-induced drought.
In the Choma district’s Simaubi camp, Conservation Agriculture (CA) trials paint a picture of resilience and adaptation. The area experiences a semi-arid climate with erratic rainfall averaging 600–800 mm annually, often prone to dry spells and drought years, such as the last, when only 350–400 mm were received. The soils are predominantly of sandy loam texture, with low organic matter and poor water retention capacity, making them susceptible to drought stress.
The area around Simaubi hosts seven mother trials, where a wide range of technologies are tested, and 168 baby trials, where a subset of favored technologies are adapted to farmers’ contexts. Each trial tests different maize-legumeintercropping and strip cropping systems against conventional tillage-based practices. As adoption steadily rises, more farmers are experiencing firsthand the benefits of sustainable intensification.
A Champion in the Making
Meet Victor Munakabanze, a farmer with decades of experience and a passion for learning. He began his CA journey as a baby trial implementer, experimenting with the four-row strip cropping system on a 10 m by 20 m plot, with four strips of ripped maize and four strips of ripped groundnuts. Starting in the 2020/21 season—despite a slow start—he persevered. Instead of giving up, he and his wife embarked on a learning journey that led them to scale up and champion CA technologies in their community.
Victor has been part of CA trials under the Sustainable Intensification of Smallholder Farming Systems in Zambia (SIFAZ) project in the Southern Province for five years and has seen the power of small steps in driving change. His initial trial plots sparked hope, showing him that improved yields were possible even under challenging conditions. Encouraged by these results, he expanded his CA practices to a 1.5-hectare plot during the 2024/2025 cropping season, investing in his farm using income from goat sales. He successfully integrated livestock within the cropping system, using goat manure to complement fertilizers—an approach that has not only improved soil fertility but also strengthened the farm’s sustainability.
From Experimentation to Expansion
Victor’s decision to adopt CA at scale was driven by tangible results. He found that intercropping maize and groundnuts in well-spaced rip lines could optimize overall yields better than conventional methods.
However, the transition wasn’t without challenges. In the first season, he started late and harvested little. The following year, delayed planting resulted in just four bags of maize from the 200 m². The El Niño event during the 2023/24 season wiped out his harvest completely. But through each setback, he refined his approach, improving his planting timing and weed management by incorporating herbicides when needed.
Now, his farm serves as a learning hub for fellow farmers from the surrounding community in Simaubi camp. They are drawn in by his success, curious about his planting techniques, and impressed by his ability to integrate crops and livestock. With 23 goats, a growing knowledge base, and a determination to share his experience, Victor embodies the spirit of farmer-led innovation. His story is proof that CA can be practiced beyond the trial plots—it is about ownership, adaptation, and scaling what works.
Inspiring Adoption, One Farmer at a Time
Victor’s journey highlights a crucial lesson: when farmers see the benefits of CA on a small scale, they are more likely to adopt and expand these practices on their own. His resilience, coupled with a keen eye for what works, has made him a role model in his community. From testing to real-world application, his success is growing evidence of the replicability of CA technologies. As adoption spreads, stories like Victor’s pave the way for a future where sustainable farming is not just an experiment—but a way of life.
Cosmas Chachi’s demo fishpond – one of the nine ponds where he trains locals in fish farming (Photo: Cosmas Chachi)
Cosmas Chachi, a 46-year-old businessman, owns Triple Blessing Supermarket in Zambia’s Luwingu District. In 2000, Cosmas identified an opportunity to address the growing demand for fresh fish in his community and started selling the product in his local area. Like many rural entrepreneurs, Cosmas faced initial challenges such as unreliable supply chains, insufficient cold storage, and limited access to financing, all of which prevented him from meeting the rising demand from local customers. Undeterred, Cosmas embarked on a transformative journey into aquaculture.
The turning point for Cosmas occurred in April 2023 when he participated in a training program on integrated aquaculture under the aegis of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, led by CIMMYT. The training implemented by the International Water Management Institute (IWMI), one of the key implementing partners of the project, emphasized sustainable intensification and equipped Cosmas with advanced skills in sustainable feed management, water quality control, efficient harvesting methods, and business management, among other areas.
A view of Cosmas Chachi’s Triple Blessings Supermarket, a thriving hub where he sells fish from his fishponds and manages his off-taking business (Photo: Cosmas Chachi)
“The training equipped me with expert knowledge in aquaculture management and skills to design and operate efficient fishponds,” Cosmas said.
With his new-found expertise, Cosmas upgraded three of his existing fishponds and built six more, each measuring 13×15 meters. To meet customer demand, he introduced a strategic stocking system, staggering the placement of 1,000 fingerlings across his nine ponds. This innovation ensured consistent fish supply even during Zambia’s annual fish ban. “By stocking and harvesting my ponds, I can maintain a steady supply even during the national fish ban when local supply decreases because some other farmers who supply my supermarket depend on fish from natural water bodies,” Cosmas shared.
Creating livelihoods and building resilience
Cosmas’ aquaculture enterprise has become an economic engine in his community, employing 25 permanent workers, primarily local youth, and offering seasonal jobs to 12 more. For Emmanuel Makumba, a shop attendant at Triple Blessing supermarket for the last eight years, the opportunity has been life changing. “The job at the supermarket helped me relocate from my village, build my own house, and send my children to a private school,” said Emmanuel.
In June 2024, his business received a significant boost with the installation of a 15-ton cold storage facility, funded by IWMI through the AID-I project. The upgrade significantly reduced post-harvest losses and enhanced Cosmas’ fish storage capacity. It ensures a steady supply for his business and the farmers he supports, strengthening the local aquaculture value chain.
“In the past, we could only purchase 50 to 100 kilograms (kg) of fish at a time, selling it at US$ 2.50 per kg,” Cosmas shared. With the new cold storage facility, Cosmas can now buy and store up to 700 kg of fish per harvest without the risk of spoilage. The effort not only secures a reliable supply for his business but also creates a dependable market for local consumers, fostering growth and sustainability in the region’s aquaculture sector.
A ripple effect of progress: Expanding aquaculture for community impact
Today, Cosmas’ success goes beyond his supermarket. He owns a thriving restaurant, offering customers a unique dining experience with fresh fish from his ponds. “The training I received during the AID-I workshops helped me transform my passion for aquaculture into a successful business. Now, in addition to the supermarket, I own a popular restaurant and outdoor fishponds, offering customers a unique dining experience,” he said.
Fish from local fish farmers before being stocked at Triple Blessings Supermarket (Photo: Cosmas Chachi)
Building on his business success, Cosmas has further expanded his impact by transforming his fishponds into practical classrooms, offering free, hands-on training to aspiring fish farmers. Over the past year, he has trained 50 farmers in sustainable aquaculture best practices.
As more farmers in Luwingu adopt these practices, local food security improves, and income streams diversify. Cosmas’ leadership is stabilizing the community’s food supply and improving diets with nutrient-rich fish. This aligns with AID-I’s broader goal to promote sustainable and scalable agricultural models.
By September 2024, the AID-I project, through IWMI’s efforts, had supported 297 fish farmers with training, market linkages, and tools for success across Northern and Luapula Provinces: creating a ripple effect of progress and also addressing Zambia’s fish supply and demand gap.The project empowers communities to adopt innovative and sustainable aquaculture practices, driving growth in fish production and ensuring a more reliable supply to meet the needs of a growing population. As fish is a critical source of protein and essential nutrients, fostering a sustainable aquaculture sector is vital for supporting Zambia’s food security and nutritional goals.
Cosmas’ journey exemplifies the power of partnerships, innovation, and resilience in driving community progress. It underscores the potential for a robust aquaculture sector in Zambia, where challenges spur solutions and success benefit entire communities. Through AID-I’s comprehensive interventions, Cosmas’ story of transformation offers a vision for sustainable development in rural Zambia, led by innovation and community empowerment.
The first harvest from the fish demonstration was attended by Mr. Sakala, District Livestock Coordinator, who was invited to observe the progress and assess the impact of the initiative (Photo : Cosmas Chachi)
A digital champion trained by CIMMYT in climate-smart agricultural practices, shares her knowledge with her community (Photo: Moono Mwiinga Sekeleti/CIMMYT)
Zambia’s agricultural sector has long grappled with significant gender disparities, particularly in rural areas where women often face unique barriers to accessing essential agricultural information. Despite playing a critical role in food production, women remain significantly underrepresented as agricultural extension agents, a trend that persists not only in Sub-Saharan Africa (SSA) but also globally. Changing this narrative demands a coordinated effort from government, non-governmental organizations (NGOs), the private sector and communities to challenge deep-rooted stereotypes about women’s roles and capabilities in agriculture.[1]
The Atubandike approach, a key part of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, addresses these challenges head on. Through initiatives focusing on gender-inclusive seed systems and agricultural advisories on climate-smart agricultural (CSA) practices, Atubandike is actively working to increase women’s representation among Zambia’s agricultural advisors. By equipping communities with inclusive advisory services and training women and men digital champions, Atubandike is paving the way for a more equitable agricultural future.
This blog delves into the gender biases uncovered during recent community consultations organized by the AID-I Atubandike team in Zambia’s Southern Province across various rural districts, held in November 2023, as well as July 2024.[2] These consultations, aimed at addressing gender and youth stereotypes in agriculture, highlighted Atubandike’s initiatives to reshape the agricultural landscape for women and marginalized groups.
Community dialogues reveal deep-rooted gender biases in advisory access and spring up encouraging perspectives for female advisors
Staying true to the name, Atubandike—meaning “Let’s Chat” in Tonga—the AID-I team implementing the initiative, facilitated community discussions with over 1,700 farmers in Zambia’s Southern Province to explore underlying gender challenges in agriculture. Through these conversations, deep-seated gender biases emerged as a significant barrier. Many female agricultural advisors contend with cultural stereotypes that undermine their leadership and technical skills. As one participant noted, “Women are mostly seen as subordinates to men, so it is only natural that female agricultural advisors are viewed as less capable.” Such remarks highlight the difficult path women often tread to establish their authority in agricultural roles. Unfortunately, this bias isn’t limited to men; some female farmers also expressed a preference for male advisors, sharing the belief that “a fellow woman cannot provide valuable information.”
Women participating during a focus group discussion (Photo: Moono Mwiinga Sekeleti/CIMMYT)
Studies on agricultural extension services confirm that gender disparities in advisory roles severely limit women farmers’ access to timely, high-quality information in SSA and other developing regions. This, in turn, impedes their ability to boost productivity and provide for their families.[3]Agricultural Advisory Services (AAS) are often designed with men as the primary beneficiaries, overlooking the need to make services more accessible and relevant to women. The dominance of male extension agents further exacerbates this issue, especially in societies where cultural norms restrict interactions between women and men outside their immediate family. These societal norms reinforce traditional gender roles, undermining the effectiveness of women as agricultural advisors. As a result, women are often excluded from opportunities that would enable them to fully participate in, and benefit from, agricultural development. This exclusion not only limits their potential but also perpetuates poverty and inequality.
On a positive note, a more nuanced perspective also emerged during the discussions. Some community members recognized the unique strengths that female advisors bring to their work. As one participant observed, “Female advisors are more careful and easier to talk to,” noting that women often prioritize technical knowledge, while men may base advice more on personal experience. This insight provides a glimmer of hope: with increased exposure and trust, farmers could become more receptive to female advisors, recognizing their effectiveness alongside their male colleagues.
A female farmer shares her experience during a CIMMYT visit to her village where farmers were discussing gender youth and social inclusion (Photo: Moono Mwiinga Sekeleti/CIMMYT)
In some settings, women farmers even prefer female advisors, feeling more comfortable discussing issues and having a greater sense of shared experiences. According to a study conducted in Mozambique, women farmers were more likely to be reached as well as learn when agricultural content was delivered by female advisors.[4] This highlights the potential impact of gender-sensitive approaches in improving the efficacy and accessibility of advisory services for women.
Achieving equal footing for women in AAS requires addressing a broader range of barriers. This not only entails efforts to recruit and retain women in these roles but also providing equal opportunities for education and training, as well as developing explicit policies to safeguard women advisors from gender-based discrimination.
Breaking barriers: How Atubandike is transforming AAS
The goal of the Atubandike approach is to identify, understand and dismantle entrenched gender barriers in agriculture. By adopting an innovative and inclusive strategy, this initiative equips both men and women with the tools they need to become digital champions and agricultural advisors, playing pivotal roles in their communities. With a deliberate focus on increasing female representation, Atubandike ensures that at least 50% of these champions are women, amplifying their visibility and influence in the sector.
Central to Atubandike is its emphasis on community engagement through a feedback-driven process. This approach facilitates open dialogue among community members, urging them to confront existing social biases and develop practical solutions. Through these discussions, the initiative fosters collective action aimed at promoting gender equity and social inclusion. Additionally, Atubandike provides comprehensive training on gender, diversity, and inclusion, equipping its digital champions not only with technical knowledge but also with the skills required to challenge and navigate gender biases effectively.
One of the initiative’s most transformative elements is its focus on diverse role models. By ensuring that half of its village-based digital champions are women, Atubandike boosts their digital literacy, agricultural expertise, and standing as leaders and role models within their communities.[5] These women are featured prominently in digital content and on talk shows, reshaping perceptions of women as agricultural leaders and breaking down longstanding negative narratives that have historically sidelined them.
Sustaining Atubandike’s momentum: Community-driven support for female advisors
Community members balanced the discussions by proposing valuable insights and strategies to overcome the deeply rooted stereotypes that challenge female agricultural advisors. Raising community awareness about the value of female advisors emerged as a crucial approach to fostering their acceptance. As one participant emphasized, “More training on gender norms is essential so that the community can become more open-minded.” Others argued that establishing trust in female advisors from the outset could empower them as agents of change: “If we begin by placing our trust in female agricultural advisors, we can encourage other communities to do the same.”
Community leaders were urged to facilitate meetings to address any disrespect toward agricultural advisors, irrespective of gender. A farmer emphasized the necessity of mutual respect, stating, “The community should be encouraged to work cooperatively with their agricultural advisors.”
Participants also highlighted that agricultural advisors must actively demonstrate their competence to build trust. In one community, it was stressed that both female and male advisors “must practice the agricultural technologies they promote so that people can have faith in their competence.” Additionally, participants suggested that advisors wear uniforms to clearly distinguish their professional roles, signaling their commitment to serving the community in an official capacity.
A model for inclusive agricultural development
Atubandike transcends the role of a conventional agricultural advisory initiative; it stands as a beacon of inclusive development, extending its impact across Zambia and setting a model for the region. By delving into the roots of gender bias and driving practical, community-led solutions, Atubandike aligns with the AID-I project’s mission of “delivering with a difference.” Through empowering female digital champions and fostering dialogues on social equity, Atubandike demonstrates that meaningful change is both attainable and sustainable. As a testament to AID-I’s dedication to equitable innovation and resilience, Atubandike is not only reshaping gender norms in Zambia but is also establishing itself as a blueprint for inclusive impact across Southern Africa’s agricultural landscape.
[1] BenYishay, A., Jones, M., Kondylis, F., & Mobarak, A. M. (2020). Gender gaps in technology diffusion. Journal of development economics, 143, 102380.
[2] The informed consent statement and methodology used in the community conversations are available upon request m.fisher@cgiar.org.
[4] Kondylis, F., Mueller, V., Sheriff, G., & Zhu, S. (2016). Do female instructors reduce gender bias in the diffusion of sustainable land management techniques? Experimental evidence from Mozambique. World Development, 78, 436-449.
[5] Lecoutere, E., Spielman, D. J., & Van Campenhout, B. (2023). Empowering women through targeting information or role models: Evidence from an experiment in agricultural extension in Uganda. World Development, 167, 106240.
CIMMYT has been at the forefront of promoting conservation agriculture (CA) in Southern Africa, leveraging over 20 years of research to enhance food security and resilience to climate change. By introducing innovative mechanized tools like basin diggers, CIMMYT has significantly reduced labor demands, making CA more accessible for smallholder farmers. The organization collaborates with partners, including FAO, to integrate CA into national policies, such as Zambia’s mechanization strategy, while also providing education and technical support to farmers. CIMMYT’s efforts empower farmers to increase yields, improve soil health, and generate additional income, exemplifying its commitment to sustainable agriculture in the region.
Women and youth are essential drivers of agricultural and economic resilience in Zambia’s rural farming communities. However, they frequently encounter significant barriers such as restrictive social norms and inadequate access to vital resources which hinder their ability to participate fully in the economy.
Female youth sharing her views (Photo: Moono Seleketi).
Recognizing the critical roles of women and youth in shaping the present and future of Zambian agriculture, the ‘Atubandike’ approach, under CIMMYT’s USAID-funded Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub project, has been actively engaging with communities to address systemic barriers faced by these groups. This initiative combines digital tools with face-to-face interactions, creating spaces where community members can share their stories, challenges, and questions to co-create solutions.
Atubandike, which means ‘let’s have a conversation’ in the local Tongo language, was launched in Zambia in 2023 as an advisory service. The model represents a scalable, community-led approach that empowers marginalized groups, including women and youth, as active contributors and leaders in agriculture. With each interaction building upon the previous one, this ongoing work advances the broader mission of fostering inclusivity and resilience across Zambia’s agricultural sector.
To uncover and tackle the structural barriers faced by women and youth, the Atubandike team recently engaged over 1,700 farmers across 14 communities in Southern Zambia, gaining critical insights into the biases that persist in rural areas.
Stereotypes and structural barriers
The community conversations highlighted generational divides and deeply rooted stereotypes that cast youth as disengaged or disinterested in farming. Older community members opined that young people are more drawn to urban lifestyles and reluctant to take on the demanding labor associated with agriculture. One elderly farmer said: “Many youths prefer a comfortable lifestyle and quick money. They don’t have the patience for the hard work farming requires.”
In contrast, younger participants shared that this perception overlooks the genuine obstacles they face such as limited access to land, financing, training, and mentorship opportunities. They emphasized that their lack of involvement often stems from these barriers rather than a lack of motivation.
Young male farmer speaking (Photo: Moono Seleketi).
The consultations also underscored pervasive gender norms that limit women’s roles in agriculture. Despite their significant contributions to household food security, female farmers are often relegated to secondary roles, focusing on ‘women’s crops such as groundnuts, while men cultivate staple crops such as maize and cash crops such as soybean. A participant shared, “The community always perceives men as the real farmers because they are considered the heads of the household.” This perception frequently limits women’s access to critical resources and their decision-making power within the agricultural sphere.
However, through Atubandike’s sessions, communities are beginning to confront these entrenched norms, shedding light on the vital contributions of women and youth in agriculture. This shift is laying the groundwork for a more equitable approach, where both men and women, young and old, are recognized as essential to farming success and household resilience. As these conversations grow, Atubandike is paving the way for solutions that promise meaningful and lasting change for both women and youth in agriculture.
Community-driven solutions
Building youth capacity through skills and leadership: Many community members expressed a strong desire to see more youth involved in agricultural activities, emphasizing the importance of hands-on training. “We need to get the youth involved in actual farming [tasks] such as irrigation and crop management. It keeps them busy and teaches them valuable skills,” shared one local leader.
To support this vision, Atubandike is training young community members as digital champions, equipping them with both technical expertise and leadership skills that allow them to mentor their peers and encourage youth participation in agriculture. These digital champions not only extend the reach of Atubandike’s initiatives but also serve as relatable role models, inspiring other young people to engage in agriculture as well as see it as a viable and rewarding path.
Towards a more inclusive future for Zambian agriculture
The Atubandike initiative – by fostering open community dialogue, empowering digital champions, and promoting household-level collaboration – lays the foundation for a more inclusive future for Zambian agriculture. As each community engagement builds momentum, CIMMYT, through the AID-I project, creates a cycle of empowerment and growth that ensures women and youth are not only heard but also empowered to lead.
Women celebrating at community meeting (Photo: Moono Seleketi).
Amidst the challenges of erratic weather patterns and economic constraints, building resilience through cross-generational and gender-inclusive collaboration is crucial. Atubandike is addressing these geographic and social challenges and paving the way for a future where every farmer, regardless of age or gender, plays a pivotal role in Zambia’s agricultural success.
The Zambia Agricultural Research Institute (ZARI) has undergone a significant transformation, fueled by a strategic subgrant from the Bill & Melinda Gates Foundation through the Africa Dryland Crop Improvement Network (ADCIN). Established in August 2023 and convened by CIMMYT through its Dryland Crops Program (DCP), ADCIN is a collaborative network aimed at uniting over 200 scientists from more than 17 countries across sub-Saharan Africa. Its mission is to create a dynamic and sustainable network to develop and deliver improved varieties of dryland crops in the region. By leveraging the collective expertise of its multidisciplinary members, ADCIN strives to accelerate the access of enhanced crop varieties to smallholder farmers.
This support has led to the modernization of ZARI’s research facilities, improved irrigation systems, and enhanced data management capabilities, positioning the institute as a leader in climate-smart crop research. Key advances include speed breeding and controlled drought research, which have led to higher crop yields and better adaptation to climate challenges. These improvements have not only strengthened Zambia’s agricultural research capacity but also fostered regional collaboration and knowledge sharing, benefiting farmers, scientists, and institutions across Southern Africa. The institute’s improved infrastructure, including expanded water storage and solar power, has ensured uninterrupted research, even during power outages. As a model for other NARES institutions, ZARI’s transformation highlights the critical role of strategic investment in agricultural research to address the growing challenges of climate change and food security across Africa.
We caught up with Dr. Loyd Mbulwe, the Ag. Chief Agriculture Research Officer at ZARI, to get more insight into the upgrade.
Q: What were some of the challenges ZARI faced before the upgrades?
A: ZARI faced several research-related challenges that hampered its potential for innovation. These included limited access to essential research equipment, inadequate funding for critical projects, and insufficient capacity for data management and analysis. Collaboration and knowledge sharing with regional and international partners were also limited.
In terms of infrastructure, ZARI struggled with outdated laboratory facilities, inefficient greenhouse and irrigation systems, and limited storage space for seeds and plant materials. The institution’s ICT infrastructure was inadequate to support modern agricultural research needs. Operational efficiency was hampered by manual data collection, inefficient research protocols, and inadequate standard operating procedures.
Q: How has the upgrade helped ZARI overcome these challenges, and how has it improved the quality and quantity of research coming out of ZARI?
A: Recent upgrades at ZARI have significantly improved its research capabilities. New equipment and increased funding have supported larger projects, while improved data management systems have streamlined data handling and fostered greater collaboration with regional and international partners. The addition of a modern greenhouse and upgraded irrigation systems has improved water management and allowed for more controlled experiments. Expanded seed storage capacity now ensures the secure preservation of critical plant material for future research.
Automated data collection systems have reduced errors and increased efficiency, while standardized research procedures have improved the quality and reproducibility of results. Improved research documentation and targeted staff training programs have further enhanced research skills, enabling the team to produce more impactful results.
The newly constructed greenhouse facility enhances crop breeding and genetics research, enabling efficient off-season studies. (Photo: ZARI/Zambia)
Q: How has ZARI’s research capacity improved with the upgraded facilities and new equipment?
A: ZARI has undergone significant upgrades to improve its research capacity. The new greenhouse facility has improved crop breeding and genetics research, allowing for more efficient off-season research. Speed breeding, a technique that accelerates crop generation turnover by two to five times through controlled environmental conditions, has been a game changer. The greenhouse also enables controlled drought research, providing insights into the development of climate-resilient crops. The ZAMGRO project has increased ZARI’s water storage capacity from 45 m² to 3.6 million m², enabling year-round farming and improved water management. The subgrant also enabled the installation of solar power, addressing the electricity challenges caused by recent droughts. The move to Starlink internet connectivity has also improved ZARI’s online capabilities, providing reliable, uninterrupted internet access, even in remote research sites.
An aerial view of the installed solar panels, that has resolved electricity challenges and mitigating power outages. (Photo: ZARI/Zambia)
Q: Looking ahead, what are ZARI’s future plans? Are there any further upgrades or expansions planned for the future?
A: ZARI’s future plans focus on increasing its research impact through strategic partnerships and innovation. The institute aims to establish a center of excellence for climate-smart agriculture and develop a biotechnology laboratory to advance genetic improvement and crop resilience. Expanding greenhouse and irrigation systems and improving digital infrastructure for data management are also priorities. ZARI also plans to strengthen collaborations with international research institutions and pursue public-private partnerships to transfer technology from research to practical applications. In addition, ZARI is committed to human resource development through targeted training, fellowships, and mentorship programs to nurture future researchers.
Q: What steps is ZARI taking to ensure the long-term sustainability of the upgraded facilities and research programs?
A: ZARI has implemented a comprehensive plan to ensure the long-term sustainability of its upgraded facilities and research programs. Key areas include maintenance of facilities, continuation of research programs, capacity building, partnerships, and knowledge sharing. ZARI has secured funding from partners and donors, diversified its income streams, and developed sustainable research funding models. Staff training, mentoring programs, and collaboration with international experts are key to ensuring that the research team stays abreast of new technologies. Strategic partnerships with private sector companies, joint research initiatives, and technology transfer agreements have further strengthened ZARI’s research capabilities. Regular impact assessments and collaborations with universities, research institutes, and government agencies further strengthen ZARI’s research capabilities and ensure that programs remain relevant and impactful.
An aerial view of the water storage system during installation. This has increased the capacity to support year-round farming and improved water management. (Photo: ZARI/Zambia)
Q: In what ways can this facility upgrade serve as a model or inspiration for other NARES facilities in the region? Are there any best practices that ZARI would recommend for similar projects?
A: The ZARI facility upgrade serves as a model for other NARES institutions in several significant ways. First, it highlights the importance of strategic partnerships, demonstrating how collaboration with regional and international organizations can lead to meaningful progress. Second, it emphasizes capacity building, with a focus on investing in staff training and development to improve institutional performance.
There are also several inspirational aspects to ZARI’s transformation. It demonstrates the transformative impact that research modernization can have on NARES breeding programs and shows the potential for improving agricultural research capacity. In addition, the upgrade is highly regionally relevant, addressing pressing regional challenges.
Finally, ZARI’s best practices provide valuable lessons for other institutions. The irrigation upgrade is an outstanding example, tailored to address the unique challenges posed by climate change in the region.
Unboxing the Starlink hardware: Transitioning to Starlink ensures reliable and uninterrupted internet access, even in remote research sites. (Photo: ZARI/Zambia)
Q: What was ADCIN’s role in facilitating this strategic investment, and how does it fit into the broader vision of strengthening NARES institutions across Africa?
A: ADCIN plays a key role in supporting the development and modernization of NARES institutions across Africa. Its contributions can be seen in three key areas. First, ADCIN provides technical assistance by offering expertise in research infrastructure development. Second, it provides financial support by mobilizing the resources needed to upgrade facilities. Third, ADCIN provides strategic guidance, ensuring that investments are aligned with regional research priorities and agendas.
This support fits into the broader vision of strengthening NARES institutions across the continent. ADCIN’s efforts focus on improving research capacity through upgrading facilities and equipment, fostering collaboration by promoting regional and international partnerships, and improving research quality through stronger research management and governance. As a result of ADCIN’s support, NARES institutions such as ZARI have seen significant improvements. Research output and impact have increased, regional collaboration has been strengthened, and institutions now have better access to international funding. By supporting ZARI’s strategic investments, ADCIN reaffirms its commitment to strengthening NARES institutions and promoting excellence in agricultural research across Africa.
Atubandike (“Let’s Chat”) is a phygital platform co-developed by CIMMYT, Viamo, and farmers to transform agricultural information channels in Zambia’s Eastern and Southern Provinces. Through the toll-free 667 platform, 4,000 farmers – more than 50% of whom are women – access an interactive voice response (IVR) menu powered by a Viamo Database (see infographic). The platform delivers timely and engaging pre-recorded messages on climate-smart agriculture (CSA); enables farmers to ask questions, which informs content for the platform’s biweekly “talk shows” (like radio shows but on a mobile phone); and provides a space for them to share their stories as “peer farmer experiences” on the platform.
(Infographic: Eugune Mumiah, Project Milieu Group)
Atubandike’s model involves farmers as co-creators, not merely recipients, of advisory content. Their contributions are curated by a content committee – with farmer, government, and scientist representation – before being published on the 667 platform. Village-based digital champions (50% women, 42% youth aged 18-29) play a crucial role in supporting farmers’ digital skills and promoting trust in digital advisory; they also act as intermediaries between farmers and CIMMYT to address time-sensitive farming questions immediately.
The Atubandike initiative mobilizes local communities to take collective action in challenging social norms that underpin digital access divides. Through community-driven efforts, digital champions are nominated and social changemakers selected to promote inclusive access to the platform.
Together, we are advancing awareness and uptake of CSA practices to boost agricultural productivity and climate change adaptation, using on-the-ground insights to continuously refine Atubandike’s services and ensure every farmer, across the spectrum of demographic groups, thrives in today’s dynamic agricultural landscape.
Dr Sieg Snapp is Program Director, Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT)
Climate change is upending weather patterns across Africa, presenting dire challenges for farming communities. In Zambia, the impact is particularly harsh. Agriculture is the lifeblood of the economy, with two-thirds of the country’s workforce employed in agriculture, and 78% of these workers are women.
The country faced a severe El Niño during the 2023/2024 season, causing a severe drought that devastated over 1 million hectares of cropland. The president declared it a national disaster. El Niño events typically result in catastrophic drops in crop yields, often reducing maize harvests by 30-40%. These events not only impact food security but also hinder economic growth, with the agricultural sector’s contribution to Zambia’s GDP dropping from 9.4% to 3.39%.
The devastating El Niño-induced drought in Zambia is starkly illustrated by the story of Melody Limweta, a 31-year-old farmer. She and her husband, Collins Manenekela, have seen their already fragile livelihood pushed to the brink by severe water shortages. Typically, they rely on dry season gardening and small-scale farming, including raising chickens, during the rainy season. However, the drought has dried up local water sources, making gardening impossible and sharply reducing their income. The couple’s practice of planting maize in the same field each year with recycled seeds and traditional methods has worsened their situation, as the El Niño-induced rainfall deficits have led to poor yields. Their primary source of food and income has withered in the field due to insufficient rainfall.
A consortium of partners led by the International Maize and Wheat Improvement Center (CIMMYT) have joined together as a rapid delivery hub for these challenging times, providing vital support to rural communities and families such as Melody and Collins. Farmers have a strong voice in this unique delivery mode. With support from the people of the U.S. government, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) is promoting access to drought-tolerant crops, climate-busting and nutritious legume seeds, agricultural advice and early warning systems to combat climate change. AID-I provides critical support to ensure that millions of smallholder farmers in the Haut-Katanga region of DR Congo, Malawi, Tanzania, and Zambia have access to information and innovations needed for gains in food production that help buffer drought, flood and rising food, fuel, and fertilizer prices.
Speed and Scale: planting drought-tolerant maize
The idea of the ADI-I as a rapid delivery hub is to make available innovations and agronomic information at both speed and scale. Traditional farming methods and crops struggle with climate extremes like El Niño, which bring prolonged dry spells and heatwaves. Drought-tolerant maize varieties offer a promising solution by enhancing agricultural resilience. These adapted maize varieties yield 30-50% more than traditional ones under drought conditions, as demonstrated in recent trials during El Niño periods. However, these improved varieties are only useful when in farmers’ hands.
Working with local partners, AID-I is scaling drought-tolerant maize varieties to help Zambian farmers manage unpredictable weather patterns. In the 2023/2024 season, approximately 27% of Zambia’s smallholder farmers saw a significant boost in their maize harvests, benefiting over 900 thousand people in drought-affected regions, owing to drought-tolerant maize varieties. Over six hundred thousand households planted drought-tolerant maize varieties and produced 235 thousand metric tons of maize, accounting for 19% of Zambia’s maize production in the 2023/2024 season. This is huge return, as only 10% of the maize-growing area being planted with these resilient varieties.
Crop diversification for family nutrition
In addition to drought-tolerant maize, studies indicate that diversifying with legume crops is crucial for managing weather extremes, especially droughts and for improving soil health. Planting legumes helps spread the risk with varied planting and harvest times, cushioning the impact of erratic rainfall on crop yields. Women can feed their families due to crops like peanuts that mature early and need less rainfall. The benefits are sustained over time, as combining legumes with cereals improves overall nutrition and soil health, even amid unpredictable weather.
To support this effort, AID-I linked over 2,000 farmers to high-quality seeds for groundnuts (peanuts) and soybeans. On average, each household harvested about 80 kg of groundnuts and 175 kg of soybeans, earning roughly $75 and $58, respectively. Collectively, this initiative produced about 205 metric tons of these crops, accounting for around 14.3% of Zambia’s total production in the drought-stricken season. Farmers had a voice in choosing which crop varieties to grow through a feedback system called ‘let’s chat’ where with an ordinary flip phone farmers could call in and learn from their neighbour’s recorded commentary and testimonials. For the first time ever, farmers could provide comments on which crops they preferred, providing a lifeline of communication with agritraders, government and agricultural advisors.
A recent assessment found that Zambian women made up 60% of those benefiting from cowpeas, 65% from groundnuts, 62% from soybeans, and 36% from drought-tolerant maize.
Forewarned is forearmed – early-warning systems
Weather information services, especially early warnings about upcoming droughts, are vital for helping farmers adapt to climate change. Accurate and timely weather forecasts enable farmers to make informed decisions about planting, resource use, and crop management. This reduces losses and boosts productivity. Research shows that access to climate information can significantly increase crop yields and incomes, with some farmers experiencing up to a 66% boost in yields and a 24% rise in income.
The forecast of an El Niño for the 2023/2024 season prompted an early warning campaign to raise awareness about the hazards associated with El Niño and provide response mechanisms for smallholder farmers. AID-I used an Interactive Voice Response platform hosted by Viamo, a global social enterprise that uses mobile technology to connect people to valuable information and services. This rapid El Niño advisory campaign reached over 500 thousand farmers, with 60% male and 40% female listeners, and 93% of them under 35 years old. The campaign provided crucial advice on planting schedules, drought-resistant crops, and water-saving techniques.
Additionally, AID-I established demonstration sites that showcased effective winter crop production methods and introduced over 2,000 farmers to innovative agricultural practices. These interventions significantly improved farmers’ ability to respond to the drought.
Looking ahead
Scaling the adoption of drought-tolerant maize, improved legumes, and timely advisories is vital to protecting Zambia’s agriculture from climate extremes. The introduction of an AID-I-supported digital advisory campaign in September 2023 was a turning point for farmers like Melody and Collins. By engaging with the content, they learned about improved seeds, crop rotation, and better agronomic practices, which helped them cope with ongoing challenges and protect their resources. Initiatives like this can help families on the margins survive and rebuild agricultural production faster.
AID-I’s impact on families like Melody and Collins shows that investing in rapid delivery hubs is crucial for building resilience in farming communities. Expanding such initiatives will ensure more smallholder farmers have access to the innovations needed to maintain or increase food production amid climatic challenges.
Additionally, studies by organizations like Springer and the American Geophysical Union highlight the importance of integrating rapid delivery hubs into mainstream agricultural programs to enhance climate resilience and food security. Therefore, this necessitates an open call for international development allies—including donors, governments, NGOs, and businesses—to incorporate initiatives like AID-I into broader agricultural agendas, essential for fostering resilience and ensuring the future stability of farming communities in Zambia and beyond.
*Dr. Sieg Snapp is a leading agricultural scientist, renowned for creating the “mother and baby” trial design, a global method that enhances farmer-researcher collaboration, improving genetics and soil management in 30 countries. As Program Director at CIMMYT in Mexico, she oversees sustainable agrifood systems research, leading a large team focused on supporting smallholder farmers in Latin America, Africa, and Asia. Her work emphasizes gender-aware, inclusive development and has fostered partnerships for sustainable agricultural practices. A Professor at Michigan State University with over 180 publications, Dr. Snapp has also significantly influenced agricultural policy and technology adoption in Africa. Her contributions have earned her numerous prestigious awards, and she holds a Ph.D. from the University of California Davis.
While maize is the primary staple food crop in Zambia, its productivity on farmers’ fields reaches on average only about 20 percent of what it could achieve with good agronomic practices. Some reasons for this inefficiency are use of traditional varieties, low fertilizer use, and ineffective weed and pest control.
Closing the gap between potential and realized yields would have major benefits for farmers in Zambia, both in terms of income and food security at the household and national levels. One possibility to increase maize productivity is by increasing crop diversity through the inclusion of legumes in maize-based farming systems. This could be done through intercropping, growing legumes in the rows between maize plants, or crop rotations and alternating maize and legumes in the same field from season to season.
CIMMYT scientists, along with collaborators from the Zambia Agriculture Research Institute (ZARI) and the University of Zambia’s School of Agricultural Science, set out to determine which cropping systems might lead to increased productivity for maize farmers in Zambia and their results were published in the journal Field Crops Research.
“There is great potential in Zambia to increase yields to help ensure food security,” said Mulundu Mwila, PhD candidate and scientist at ZARI. “We wanted to determine the cropping systems that offered the most benefits.”
Setting up the study
For this research, ZARI and CIMMYT scientists established maize-based cropping systems trials, comprising maize monocropping, and maize-legume rotations and intercrops under both ‘conventional’ tillage, and Conservation Agriculture, across 40 farms in a variety of agroecological zones in Zambia. The team also conducted household surveys in the same communities hosting the on-farm trials to determine the share of households with enough cultivated land to benefit from the tested cropping systems.
Researchers found that the tested cropping systems produced more maize per hectare compared to non-trial host farms in the same region. The greatest positive effect uncovered was that maize-legume rotations in Zambia’s Eastern Province had the potential to increase maize yield by 1 to 2 tons per hectare, per growing season. “The Eastern Province trials showed better results because of stable and adequate rainfall amounts and distribution and because of using groundnut as a rotation crop,” said Mwila.
Researchers attributed the small effect of legumes on maize yield in the Southern Province to low levels of biomass production and nitrogen fixation, due to low and erratic rainfall, and to low residue incorporation because of livestock grazing. Conversely, the small effect of legumes on maize yield in the Northern Province might be attributed to the high rainfall amount in the region, leading to high rates of leaching of residual nitrogen during the growing season as well as the use of common beans as the preceding crop.
Finding the right amount of land
With evidence showing the potential benefits of maize-legume rotations, the availability of land is a constraint for small farms across sub-Saharan Africa, thus it is important to quantify the land area needed for farmers to implement maize-legume rotations.
“Our findings match prior research showing the benefits of maize-legume rotations in Eastern Zambia” said Silva. “However, implementing maize-legume rotations remains a challenge for many smallholders due to small farm sizes.”
Nearly 35, 50, and 70% of the surveyed farms in the Northern, Eastern, and Southern Provinces, respectively, had enough land to achieve the same level of maize production obtained on their farm with the yields of the maize-legume rotations tested in the on-farm trials. “With our findings showing increased maize yields, and our efforts to determine the amount of land needed for food and nutrition security at household level, the next steps can be to facilitate methods to disseminate this information to policy makers and to farmers that have enough land area to benefit from diversified cropping systems,” said Silva.
For farmers with not enough land to reap the benefits of maize-legume rotations, intercropping legumes within the maize has shown promising results. The researchers also call for further research to specify the contributing factors to small farms not seeing benefits from maize-legume rotations.