CIMMYT Director General Bram Govaerts’ visit to The University of Queensland (UQ) on September 27, 2024, reinforced a long-standing partnership aimed at tackling global food security and sustainability challenges. For over 50 years, CIMMYT’s collaboration with Australian researchers has advanced wheat breeding, contributing significantly to Australia’s agricultural resilience. The visit emphasized expanding research on key crops like sorghum, millets, and legumes, while promoting sustainable practices and climate resilience in agriculture. This collaboration continues to drive innovations that benefit not only Australia but also regions across the Indo-Pacific and Africa.
CIMMYT, along with other institutions, is enhancing wheat’s heat tolerance through four GRDC investments. These projects focus on identifying heat tolerance traits and developing scalable phenotyping technologies. Utilizing advanced tools like High Performance Liquid Chromatography (HPLC), the Dualex flavonoid meter, and hyperspectral technology, these initiatives aim to create heat-tolerant wheat varieties to ensure resilience against climate change.
Australia’s smallest seed company, Rebel Seeds, has achieved a significant milestone with the Australian Hard classification for Borlaug 100, a wheat variety introduced in 2015 through the CIMMYT-Australia-ICARDA Germplasm Evaluation (CAIGE) project. This classification allows Borlaug 100 to be delivered into H2 segregations at bulk-handling sites across Queensland and northern New South Wales, benefiting local growers with better prices and enhancing its export potential. The success of Borlaug 100 underscores CIMMYT’s crucial role in providing resilient, high-yielding wheat varieties suited to diverse growing conditions globally.
Written by mcallejas on . Posted in Uncategorized.
The CAIGE Project seeks to offer the University of Sydney and Australian grain breeders access to provider sites, materials, and data at times to be agreed by the parties. Offer support to the recipient and Australian grain breeders to choose materials from CIMMYT and enter into supply orders.
The project aims to align with the Sustainable Development Goals: Contributing to SDG 2 – Zero Hunger.
Every alternate year, a set of elite spring wheat lines is shared with the CAIGE program in Australia.
Joint evaluation of CIMMYT & Australian lines across Australia, October 2022 (N=312 lines).
Data provided
Grain yield under full irrigation and drought
TKW under full irrigation and drought
Quality traits (protein, sedimentation volume etc) under full irrigation
Disease traits: Leaf and Yellow rust, and soil borne disease
Stem rust (Debre Zeit – Ethiopia and Njoro –Kenya
2022/23: Additional set of new cohorts of lines sent to Australia for quarantine and seed increase process.
CAIGE Australia team will visit CIMMYT Obregon March 2024
CIMMYT-Australia Scientists field evaluation, October 2022
Direct release of CIMMYT wheat in Australia
Commercial cultivation of Borlaug 100 wheat in Australia (commercialized by Rebel seeds)
As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.
Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.
“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.
“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.
“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”
“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.
The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.
Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.
In an interview with The Land, Alison Bentley, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat (WHEAT), emphasized the importance of developing drought-tolerant wheat varieties to see better yields in tough seasons.
Sanjaya Rajaram, a University of Sydney alumnus recognized with the World Food Prize, was a world-renowned wheat breeder and scientist. One of the world’s leading food scientists, he died on February 17 from COVID-19 in Ciudad Obregon, Mexico.
Australia’s High Commissioner to India, Barry O’ Farrell (left), observes the use of drone technology at the BISA experimental station in Ludhiana, India. (Photo: Uttam Kumar/CIMMYT).
Australia’s High Commissioner to India, Barry O’Farrell, visited the Borlaug Institute for South Asia (BISA) in Ludhiana, India, on January 20, 2021 along with his delegation.
O’Farrell acknowledged the historic role of the International Maize and Wheat Improvement Center (CIMMYT) sharing the seeds of the most recent, climate-resilient, high-yielding, and disease-resistant wheat genotypes. He also appreciated that this work is being continued with even greater vigor by BISA for the benefit of India and the whole of South Asia.
The High Commissioner was happy to note that wheat germplasm is freely shared with public and private sector national partners under constant guidance and collaboration with the Indian Council of Agricultural Research (ICAR) and the Department of Agriculture Research and Education (DARE).
O’Farrell emphasized the strong collaboration between Indian and Australian research institutes. He called for even more cross-learning between scientists and other stakeholders for research, policy and capacity development in the areas of land, water, climatic resilience, environmental sustainability and germplasm enhancement for the benefit of farmers of both countries.
Witnessing science in action
Arun Kumar Joshi, CIMMYT Regional Representative for Asia and Managing Director of BISA, welcomed the group and briefed the visitors on CIMMYT and BISA’s collaboration with ICAR and DARE.
H.S. Sidhu, Principal Research Engineer at BISA, and M.L. Jat, Principal Scientist and Systems Agronomist at CIMMYT, presented the major challenges and research outputs related to climate change, the food-energy-water nexus and the overall agricultural sustainability challenges faced by India.
One of the successful examples of collaboration between Australia and India is the Happy Seeder, which addresses these challenges through conservation agriculture and sustainable intensification. O’Farrell saw the expansive wheat fields sown with the Happy Seeder and was impressed by the technology.
The group also discussed the evidence-based policy changes that have taken place, as well as future strategies for accelerated impact through new approaches, like carbon farming. A detailed discussion took place on climate-smart agriculture research, with a focus on precision water and nutrient management using digital agriculture technologies and their complementarity for boosting Happy Seeder uptake.
The High Commissioner and his delegation also visited the wheat breeding program, where CIMMYT researcher Uttam Kumar explained the development of wheat genotypes — in collaboration with ICAR-DARE and the national agriculture research system — for a range of environments, management conditions, and against various stresses, with the ultimate objective of serving the needs of smallholder farmers.
O’Farrell also appreciated the BISA-designed Phenocart for high-throughput precision phenotyping in wheat improvement. O’Farrell highlighted and appreciated that this season, BISA is conducting the largest wheat breeding trial in South Asia: currently more than 60,000 plots are planted at the BISA station in Ludhiana alone.
Assessments of wheat lines from around the world in disease trials and found a total of 19 local and international lines with good resistance to stagonospora nodorum blotch (SNB). Four lines from CIMMYT and ICARDA showed consistently low SNB response across all environments against 42 different SNB fungal isolates. Read more here.
Derek Byerlee has worked and published worldwide to promote food security and improved livelihoods through sustainable agriculture. (Photo: Elizabeth Powell/Georgetown University)
Derek Byerlee, former director of CIMMYT’s economics program, has been named an Officer of the Order of Australia, the country’s second-highest membership honor, for his distinguished service to sustainable development, poverty reduction, and food security.
The award was among those announced by Australia on June 10, 2019, as part of birthday commemorations for Queen Elizabeth II.
“This was all quite a surprise to me,” said Byerlee, currently an Adjunct Professor at Georgetown University in Washington D.C. and making arrangements to attend the award ceremony in Australia in September.
Byerlee holds CIMMYT in special regard. “CIMMYT was the highlight of my career,” he explained.
Interested in agriculture since his childhood on a sheep and wheat farm near Orroroo in the South Australian Wheat Belt, Byerlee joined CIMMYT in 1977 as one of its first economists, with stints in Mexico and South Asia. He led CIMMYT economics research during 1987-94 and is fondly remembered by colleagues and support staff from that period.
“Derek has made an immense contribution to the developing world and the profession,” said Olaf Erenstein, current director of the CIMMYT socioeconomics program. “He helped put CIMMYT and its economics program on the global map of research for development. His humble yet insightful contributions guided the way for many, including myself.”
Byerlee moved to the World Bank in 1994, heading its support to agricultural research before becoming Rural Strategy Adviser. He later led the team that produced the agency’s influential 2008 World Development Report Agriculture for Development, one of the Bank’s most respected and widely quoted publications and its first ever to focus on agricultural development.
With a Bachelor of Agricultural Sciences from the University of Adelaide, a master’s degree on Agricultural Economics from the University of New England, New South Wales, and a doctoral degree in agricultural economics from Oregon State University, prior to CIMMYT Byerlee worked in the Agricultural Economics program of Michigan State University and at Njala University, Sierra Leone.
Since retiring from the World Bank, he has held diverse consultancy and advisory roles, including Chair of the Standing Panel on Impact Assessment of CGIAR, Member of the Technical Advisory Committee of the Global Agricultural and Food Security Program, and Visiting Scholar at Stanford University.
Byerlee has published widely on agriculture research policy and impacts, farming systems and technology adoption, food pricing policy and land-use changes, and is a Fellow of the American Association of Agricultural Economics.
“Working with these excellent students gives me a sense of optimism about the future of the world,” Byerlee stated in a recent article in The Flinders News.
This story, part of a series on the international agricultural research projects of recipients of the Crawford Fund’s International Agricultural Student Award, was originally posted on the Crawford Fund blog.
Researcher Tamaya Peressini performs disease evaluations 10 days post infection at CIMMYT’s glasshouse facilities.
In 2018, Tamaya Peressini, from the Queensland Alliance for Agriculture and Food Innovation (QAAFI), a research institute of the University of Queensland (UQ), travelled to CIMMYT in Mexico as part of her Honours thesis research, focused on a disease called tan spot in wheat.
Tan spot is caused by the pathogen Pyrenophora triciti-repentis (Ptr) and her project aimed to evaluate the resistance of tan spot in wheat to global races to this pathogen.
“The germplasm I’m studying for my thesis carries what is known as adult plant resistance (or APR) to tan spot, which has demonstrated to be a durable source of resistance in other wheat pathosystems such as powdery mildew,” Peressini said.
Symptoms of tan spot on wheat plants.
Tan spot is prevalent worldwide, and in Australia causes the most yield loss out of the foliar wheat diseases. In Australia, there is only one identified pathogen race that is prevalent, called Ptr Race 1. For Ptr Race 1, the susceptibility gene Tsn1 in wheat is the main factor that results in successful infection in Ptr strains that carry Toxin A. However, globally it is a more difficult problem, as there are seven other pathogen races that consist of different combinations of necrotrophic toxins. Hence, developing cultivars that are multi-race resistant to Ptr presents a significant challenge to breeders, as multiple resistant genes would be required for resistance to other pathogens.
“At CIMMYT, I evaluated the durability of APR I identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum,” Peressini explained.
“The benefit of studying this at CIMMYT was that I had access to different strains of the pathogen which carry different virulence factors of disease, I was exposed to international agricultural research and, importantly, I was able to create research collaborations that would allow the APR detected in this population to have the potential to reach developing countries to assist in developing durably resistant wheat cultivars for worldwide deployment.”
Recent work in Dr Lee Hickey’s laboratory in Queensland has identified several landraces from the Vavilov wheat collection that exhibited a novel resistance to tan spot known as adult plant resistance (APR). APR has proven to be a durable and broad-spectrum source of resistance in wheat crops, namely with the Lr34 gene which confers resistance to powdery mildew and leaf stem rust of wheat.
“My research is focused on evaluating this type of resistance and identifying whether it is resistant to multiple pathogen species and other races of Ptr. This is important to the Queensland region, as the northern wheat belt is significantly affected by tan spot disease. Introducing durable resistance genes to varieties in this region would be an effective pre-breeding strategy because it would help develop crop varieties that would have enhanced resistance to tan spot should more strains reach Australia. Furthermore, it may provide durable resistance to other necrotrophic pathogens of wheat,” Peressini said.
The plant material Peressini studied in her honors thesis was a recombinant inbred line (RIL) population, with the parental lines being the APR landrace — carries Tsn1 — and the susceptible Australian cultivar Banks — also carries Tsn1. To evaluate the durability of resistance in this population to other strains of Ptr, this material along with the parental lines of the population and additional land races from the Vavilov wheat collection were sent to CIMMYT for Tamaya to perform a disease assay.
“At CIMMYT I evaluated the durability of APR identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum. After infection, my plant material was kept in 100 per cent humidity for 24 hours (12 hours light and 12 hours dark) and then transferred back to regular glasshouse conditions. At 10 days post infection I evaluated the resistance in the plant material.”
From the evaluation, the APR RIL line demonstrated significant resistance compared to the rest of the Australian plant material against both pathogens. The results are highly promising, as they demonstrate the durability of the APR for both pre-breeding and multi-pathogen resistance breeding. Furthermore, this plant material is now available for experimental purposes at CIMMYT, where further trials can validate how durable the resistance is to other necrotrophic pathogens and also be deployed worldwide and be tested against even more strains of Ptr.
“During my visit at CIMMYT I was able to immerse myself in the Spanish language and take part in professional seminars, tours, lab work and field work around the site. A highlight for me was learning to prepare and perform toxin infiltrations for an experiment comparing the virulence of different strains of spot blotch,” Peressini said.
During her stay in Mexico, Peressini had a chance to visit the pyramids of Teotihuacán and other cultural landmarks.
“I also formed valuable friendships and research partnerships from every corner of the globe and had valuable exposure to the important research underway at CIMMT and insight to the issues that are affecting maize and wheat growers globally. Of course, there was also the chance to travel on weekends, where I was able to experience the lively Mexican culture and historical sites – another fantastic highlight to the trip!”
“I would like to thank CIMMYT and Dr Pawan Singh for hosting me and giving the opportunity to learn, grow and experience the fantastic research that is performed at CIMMYT and opportunities to experience parts of Mexico. The researchers and lab technicians were all so friendly and accommodating. I would also like to thank my supervisor Dr Lee Hickey for introducing this project collaboration with CIMMYT. Lastly, I would like to thank the Crawford Fund Queensland Committee for funding this visit; not only was I able to immerse myself in world class plant pathology research, I have been given valuable exposure to international agricultural research that will give my research career a boost in the right direction,” Peressini concluded.
Group photo of agricultural attachés at CIMMYT. Photo: CIMMYT/P.Arredondo
Agricultural attachés from 10 Mexican embassies visited the headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on February 15. Countries represented included, Australia, Belgium, France, Germany, Hungary, Israel, Kazakhstan, Spain, the Netherlands and New Zealand.
Annie Tremblay, who was representing the Netherlands, gave a presentation on agriculture in the Netherlands. She emphasized the most commonly traded commodities between the Netherlands and Mexico and said she sees Mexico as a “sleeping giant” in the flower-trading world.
Following Tremblay’s presentation, Martin Kropff talked about how CIMMYT works globally to improve livelihoods. As Kropff explained CIMMYT’s biofortification work, he stressed that in a perfect world people would be able to diversify their diets and get nutrients from all kinds of plants, but that many people CIMMYT serves are living on less than two dollars a day. “This is not the solution, but it is a solution.”
Bram Govaerts gave a presentation about the work Sustainable Intensification Program in Latin America (SIP-LatAm) is doing and discussed the importance of public-private partnerships to the MasAgro program. This underscored Kropff’s points about the importance of public-private partnerships to CIMMYT and the importance of corporate social responsibility.
The final presentation to the group of attachés was by Hans Braun and Carolina Saint Pierre on the Global Wheat Program. They emphasized wheat as a good source of fiber, antioxidants, micronutrients and protein. The presentation focused on global partnerships in the wheat program and meeting future production goals.
The attachés then toured the CIMMYT campus, learning about the germplasm bank and biodiversity, the global wheat and maize breeding programs and goals to improve seeds and crops. They also were introduced to CIMMYT’s work enhancing nutrition, food safety and processing quality in the seed health labs and about sustainable intensification to improve rural livelihoods.
To conclude, attachés discussed the current priorities of their embassies and potential collaborations between their embassies in Mexico and CIMMYT.
MEXICO CITY (CIMMYT) – Traditional farming systems in Africa must be updated for today’s climate and market challenges, according to a new report by the University of Queensland.
For example, the project has greatly improved food production in Mozambique since 2010. It is also promoting rotational cropping systems with legumes in Tanzania to improve soil fertility as well as dietary diversity, and in Malawi, rainfall erosion has been reduced by 80 percent as farmers leave plant residues on fields to improve stability.
“The exact details of best practice change everywhere you go in Africa,” said Caspar Roxburgh, a research officer at the University of Queensland who works with SIMLESA. “A lot of this research just hasn’t been done yet in Africa.”
SIMLESA seeks to have an open dialogue between farmers and scientists to identify what works best in individual areas and define best practices for the region.
“We find out who’s doing the best, learn from them, and then we do the science to back it all up,” explained Roxburgh.
Over the past seven years, SIMLESA has helped more than 200,000 farmers adopt sustainable technologies and practices, improving yields and income.
SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by the International Maize and Wheat Improvement Center (CIMMYT), the University of Queensland along with the governments of Ethiopia, Kenya, Tanzania, Malawi and Mozambique.
Read more about how SIMLESA is changing how food is grown in Africa here.