Skip to main content

Location: India

For more information, contact CIMMYT’s India office.

BISA and CIMMYT-India join in Agricultural Science Fair

India staff members (L-R) Anuradha Dhar, Meenakshi Chandiramani, Anu Raswant and Kailash Kalvaniya at the exhibit stall in the Mela at IARI, Pusa Campus.Photo: BISA/CIMMYT
India staff members (L-R) Anuradha Dhar, Meenakshi Chandiramani, Anu Raswant and Kailash Kalvaniya at the exhibit stall in the Mela at IARI, Pusa Campus.
Photo: BISA/CIMMYT

 

The Indian Agricultural Research Institute (IARI) organized the Pusa Krishi Vigyan Mela (Agriculture Science Fair) during 10-12 March. Initiated in 1972, the Mela is an important annual event for IARI to raise awareness about agricultural technological developments and for receiving feedback from farming communities. The Borlaug Institute for South Asia (BISA) and CIMMYT India mounted an exhibit on their work and staff discussed farming practices and mechanization with several farmers and scientific community members, as well as handing out printed materials to visitors.

Climate-smart agriculture to combat global warming

Agriculture has the potential to be “part of the solution to reduce the impact of climate change,” according to Dr. R.S. Paroda, Chairman of the Trust for Advancement of Agricultural Sciences, who was one of nearly 100 participants at a launching and planning workshop for Flagship Projects on climate-smart agriculture of the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). Held on 24-25 February in New Delhi, the event was jointly organized by CIMMYT and the International Food Policy Research Institute (IFPRI), with participants from Bangladesh, India, Nepal and other partnering countries.

Dr. Ayyappan, Secy DARE & DG, ICAR, felicitating the launch. Photos: CIMMYT-India.
Dr. Ayyappan, Secy DARE & DG, ICAR, felicitating the launch. Photos: CIMMYT-India.

In the fight against climate change, agriculture is both a perpetrator and a victim. Modern agriculture, food production and distribution are major contributors of greenhouse gases, generating about one-quarter of global emissions. Climate-smart agriculture addresses the interlinked challenges of food security and climate change by sustainably increasing agricultural productivity, building resilience in food-production systems and reducing greenhouse gas emissions in agriculture.

The workshop began with a presentation of CCAFS Flagship Project Portfolios, followed by group discussions on associated farming practices, policy, frameworks and recommendations on partnering with governments and other organizations. Clare Stirling, Senior Scientist with the Global Conservation Agriculture Program at CIMMYT, cited the Center’s success in developing climate-smart villages in India and identified improved access to weather information, crop insurance and technology uptake by farmers as key focus areas.

Innovative business models and open innovation platforms for scaling project outputs across diverse agro-ecosystems were also defined. Md. Jalal Uddin of the Bangladesh Agricultural Research Institute proposed integrating mitigation and adaption measures like the promotion of renewable energy, environment management systems, climate change trusts and resilience funds with CCAFS initiatives.

Key stakeholders for CCAFS flagship projects pose for a photo.
Key stakeholders for CCAFS flagship projects pose for a photo.

A final session on synergies and convergence opportunities covered topics such as contingency crop plans, weather-based index insurance and resilient technologies, all of which can be implemented in climate-smart villages. CIMMYT scientists P.H. Zaidi, Senior Maize Physiologist and Mahesh Gathala, Scientist and Cropping Systems Agronomist, outlined CIMMYT initiatives that support climate-smart agriculture, such as long-standing research on stress-resilient maize and sustainable cropping systems. Kaushik Majumdar, Director of the South Asia Program at the International Plant Nutrition Institute, and M.L. Jat, Senior Scientist with CIMMYT’s Global Conservation Agriculture Program, discussed initiatives to develop and disseminate climate-smart nutrient management tools and techniques for smallholder farming.

“The CCAFS workshop set the stage for all CGIAR institutions to collaborate and make climate-smart agriculture a reality,” said Jat.

Maize and wheat Super Women campaign highlights diversity

IWDbuttonEL BATAN, Mexico (CIMMYT) – A social media crowd sourcing campaign initiated to celebrate the achievements of women has led to more than a dozen published blog story contributions about women in the maize and wheat sectors.

Each year, International Women’s Day gives the world a chance to inspire women and celebrate their achievements. This year, the International Maize and Wheat Improvement Center (CIMMYT) put out a call asking for blog contributions from the social media community.

CIMMYT asked readers to submit stories about women who have made a difference in the maize and wheat sectors, including women involved in conservation agriculture, genetic resources, research, technology and related socio-economics.

The “Who is Your Maize or Wheat Super Woman?” stories are featured on the CIMMYT website from Monday, March 2, 2015 in the lead up to International Women’s Day on Sunday, March 8, 2015.

Contributions include blog stories about women from Britain, Canada, Guatemala, India, Indonesia, Kenya, Mexico, and the United States. Their stories will also be made available in Spanish-language.

SUPER WOMEN BLOG POSTS:

CIMMYT

Chief Minister of Bihar assures support to BISA

Of the 1 billion food insecure people in the world, more than 30 percent are in South Asia. By 2030 it will be one of the most vulnerable regions to climate change-related food shortages, with maize, rice and wheat prices predicted to double in the next 20 years. Photo: M. DeFreese/CIMMYT
Of the 1 billion food insecure people in the world, more than 30 percent are in South Asia. By 2030 it will be one of the most vulnerable regions to climate change-related food shortages, with maize, rice and wheat prices predicted to double in the next 20 years. Photo: M. DeFreese/CIMMYT

The Chief Minister of Bihar, India, Shri Jitan Ram Manjhi, affirmed his support for the Borlaug Institute for South Asia (BISA) and its efforts to ensure food security, in a meeting with Thomas A. Lumpkin, director general of CIMMYT, and with government, BISA and CIMMYT representatives on 3 February. As part of this, Manjhi agreed to support development of model villages in every district of Bihar, one of the fastest-growing and developing states in India.

“Ever-increasing energy prices, declining natural resources and variable climates have left farmers with diminishing returns,” Lumpkin said. “Bihar farmers need technologies that increase their profits under changing climates and economies.”

Launched in 2011 as a collaborative effort between CIMMYT and the Indian Council of Agricultural Research (ICAR), BISA is a non- profit international research institute dedicated to food, nutrition, livelihood security and environmental rehabilitation in South Asia, a region that is home to more than 300 million undernourished people.

During the meeting, Lumpkin emphasized the need for the quick transfer to Bihar farmers of technologies such as direct-seeded rice and zero-tilled wheat, to reduce production costs and labor and energy use.

Direct seeding of rice eliminates the need for transplanting seedlings from bund nurseries, and sowing wheat with zero tillage allows earlier planting so the crop can mature and fill grain before pre- monsoon high temperatures.

Lumpkin highlighted BISA’s critical capacity-building role, to support farmers and extension workers who test and promote innovative agriculture technologies.

Government representatives from Bihar included Shri Amrit Lal Meena, principal secretary to the chief minister; Shri Tripurari Sharan, principal secretary of agriculture; Shri Dharmendra Singh, director of agriculture; and Shri Gopal Singh, officer on special duty to the chief minister. CIMMYT and BISA attendees included John Snape, CIMMYT board chair; Hari Shanker Gupta, BISA Director General; Nicolle Birrell, CIMMYT board member; Etienne Duveiller, CIMMYT director of research- South Asia; M.L. Jat and Raj Kumar Jat, CIMMYT cropping systems agronomists; and Kumar Ashwani Yadav, senior advisor for India country relations.

From left to right: Raj Kumar Jat, Hari Shanker Gupta, Nicolle Birrell, Shri Amrit Lal Meena, Shri Jitan Ram Manjhi, Thomas A. Lumpkin, Etienne Duveiller and M.L. Jat. Photo: Fabiola Meza/CIMMYT
From left to right: Raj Kumar Jat, Hari Shanker Gupta, Nicolle Birrell, Shri Amrit Lal Meena, Shri Jitan Ram Manjhi, Thomas A. Lumpkin, Etienne Duveiller and M.L. Jat. Photo: Fabiola Meza/CIMMYT

The International Maize Improvement Consortium for Asia (IMIC-Asia): partnership for targeted impacts

A man reviews maize in a fieldThis is business unusual. IMIC-Asia is a partnership of over 40 institutions (seed companies, national programs and foundations) formed by CIMMYT to develop and share improved maize inbreds and hybrids for targeted impacts on the hybrid maize scenario in Asia. This is all done through a shared research investment. Modelled on ICRISAT’s successful consortium on pearl millet, IMIC-Asia, which was established in 2010, has so far developed and distributed over 1,500 improved inbred lines developed by CIMMYT to members for use in new inbred line development or in heterotic hybrid combinations of the partners. IMIC germplasm incorporates trait priorities jointly identified by members while still maintaining the typical vast genetic diversity of CIMMYT germplasm. Through the germplasm selected at field days, members have also sampled the diversity in terms of tolerance to major abiotic stresses (drought and heat) and biotic stresses, a key strength in CIMMYT’s tropical maize germplasm base.

Whether it is training on maize breeding, field based phenotyping for abiotic stresses, statistical and genomic data management imparted through this consortium or evaluation of pre-release hybrid combinations of partners, IMIC-Asia has added value to the research portfolio of member companies. The consortium members helped in establishing a strong collaborative testing network for identifying best-bet pre-release products, which now serves as a precursor for such products to be further evaluated at the national or state level as a part of the varietal release process. CIMMYT hybrid combinations are in the process of being allocated to interested members, especially small and medium enterprises for commercialization and deployment. In 2014 alone, 10 new members were inducted into IMIC-Asia.

Riding on this success, the consortium will be entering its second phase in mid-2015, all with renewed vigor, member strength and innovative research ideas/activities.

For membership in IMIC-Asia or for more details, please contact: BS Vivek (bvivek@cgiar.org) or AR Sadananda (a.r.sadananda@cgiar.org), CIMMYT-Hyderabad, India.

The perilous life of aphids fascinates South Asian crop scientists

The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT
The wheat plant protection group attend interactive group meeting at IIWBR, Karnal, India. Photo: CIMMYT

Among the world’s most destructive and hated crop pests, the sap-sucking insects known as aphids are engaged in dramatic evolutionary battles with predators that include wasps whose larvae hatch and pupate in aphid bodies, devouring them from inside.

Rather than a new science fiction/horror film, this scenario is actually the basis for innovative pest control, as described by topic experts at two presentations of their interactive program “Aphids and their biological control on wheat, barley and maize” for wheat scientists in India and Nepal on 24 and 26 November 2014.

“The 34 participants, including 26 in Nepal and 8 in India, heard short lectures on maize and wheat aphids and other insect pests, followed by videos on aphid biology and their biological control,” said Arun Joshi, CIMMYT wheat breeder based in Nepal who helped organize the programs, in conjunction with the Indian Institute of Wheat and Barely Research (IIWBR) of the Indian Council of Agricultural Research (ICAR) at Karnal and the Nepal Agricultural Research Council (NARC). “They learned about the special traits of the biological control agents that can be used in South Asia, as well as how to rear and spread them in crop fields, with the idea of training farmers in these skills.”

The participants in Nepal. Photo: CIMMY
The participants in Nepal. Photo: CIMMY

The main presenter, Prof. Urs Wyss, Institute of Phytopathology, University of Kiel, Germany, has produced over 70 films on insect pest biology and bio-control. Prof. Chandra Prakash Srivastava, Head, Department of Entomology, Banaras Hindu University, India, spoke to both groups about maize and wheat insect pests and their management.

“This is the first program on wheat insect pest management and biological control at IIWBR (former DWR, Karnal) in two decades,” said Dr. Indu Sharma, IIWBR project director. Joshi said that NARC colleagues made similar comments in praise of the program.

The training program was organized in response to mounting evidence of crop damage from aphids in Peninsular and northwestern India and the Terai and Midhills of Nepal. It was conducted at IIWBR, Karnal, through Dr. Indu Sharma and Dr. M.S. Saharan and in Nepal through Dr. Yagya Prasad Giri, Head, Entomology, NARC.

Other institutions represented in India included:

  • Chandra Shekhar Azad University of Agriculture and
    Technology, Kanpu.
  • Agriculture Research Station, Niphad, Maharashtra.
  • Agriculture Research Station, Durgapura, Rajasthan.
  • Centre of Excellence for Research on Wheat, S.D.
  • Agriculture University, Vijapur, Gujrat.
  • Punjab Agriculture University, Ludhiana.
  • G.B. Pant Univ. of Agriculture and Technology,
    Pantnagar.
  • Assam Agricultural University, Shillongani, Nagoan.
    Uttar Banga Agriculture University, West Bengal.

In Nepal participants came from:

  • The Department of Entomology, National Agriculture
    Research Institute, Khumaltar.
  • National Wheat Research Program (NWRP),
    Bhairahwa.
  • National Maize Research Program (NMRP), Rampur.

Dr. Sanjaya Rajaram presented with the Pravasi Bharatiya Samman 2015 Award, the highest honor conferred on overseas Indians

Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.
Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.

On 9 January 2015, Dr. Sanjaya Rajaram, the India-born plant scientist who led wheat breeding research at the International Maize and Wheat Improvement Center (CIMMYT) based in Mexico for more than three decades, received the Pravasi Bharatiya Samman award in Gandhinagar, India. The award, presented by Honorable H.E. Hamid Ansari, Vice President of India, is the highest honor conferred on overseas Indians.

India’s Prime Minister, Mr. Narendra Modi, praised the diaspora for putting India on the global map. “The whole world admires the Indian community not due to the money but the values they live with,” he said.

The event marks the 100th anniversary of Mahatma Gandhi’s return to India from South Africa. Only one other Mexican citizen of Indian ancestry received the award in the past decade: Dr. Rasik Vihari Joshi, who received the award for his contributions to literature in 2013.

The Union Home Minister Mr. Rajnath Singh attended the event. He praised the contributions of the Indian diaspora at the award celebration, saying India is proud of them and they are an example of India’s indomitable spirit.

Last year, Dr. Rajaram received the World Food Prize for his contribution in increasing global wheat production by more than 200 million tons in the years following the Green Revolution. His improved varieties increased the yield potential of wheat by 20 to 25 percent. Today, Rajaram’s wheats are grown on some 58 million hectares worldwide.

Dr. Rajaram is renowned for his generosity in sharing his expertise to support research and the development of technologies that have improved food security in India and globally. His accomplishments include training or mentoring more than 700 scientists from dozens of developing countries. This enabled Indian farmers to grow improved wheat varieties on some 8 million hectares, including India’s most popular wheat variety, PBW 343. He also led CIMMYT efforts to apply the concept of durable resistance to rust–the most damaging wheat disease worldwide

Q+A: Young scientist wins award for “Taking it to the Farmer”

Taking-it-to-the-Farmer EL BATAN, Mexico (CIMMYT) — Conservation agriculture, which improves the livelihoods of farmers by sustainably boosting productivity, is becoming a vital part of the rural landscape throughout Mexico and Latin America, leading to a major World Food Prize award for Bram Govaerts.

As associate director of the Global Conservation Agriculture Program at the International Maize and Wheat Improvement Center (CIMMYT), Govaerts works with farmers to help them understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields, increase profits and protect the environment.

Govaerts, winner of the 2014 Borlaug Field Award , played a major role in developing a Mexican initiative known as the Sustainable Modernization of Traditional Agriculture (MasAgro), and in June 2014 the 35-year-old assumed leadership of the project, spearheading the coordination of related initiatives throughout Latin America.

According to Govaerts, there are two choices – “Either agricultural production is going to grow in unsustainable ways, depleting our resources, or we take action now, investing in sustainable agriculture so that it can be a motor for growth as well as a motor for sustainable development.”

MasAgro is a partnership led by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food and CIMMYT involving more than 100 agricultural research organizations. It offers training and technical support for farmers in conservation agriculture and gives them access to high-yielding, conventionally bred seeds.

The overall aims of MasAgro include raising the yield potential of wheat by 50 percent and increasing Mexico’s annual production by 350,000 tons (318,000 metric tons) in 10 years. Goals also include raising the production of maize in rainfed areas.

MasAgro’s “Take It to the Farmer” component was inspired by a statement made by the late CIMMYT scientist Norman Borlaug who won the Nobel Peace Prize in 1970. He believed that scientists should work closely with farmers, an idea central to CIMMYT’s overall approach to agricultural research and practice. Borlaug led the development of semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world. He also founded the World Food Prize .

“Take it to the Farmer” integrates technological innovation with small-scale farming systems for maize and wheat crops, while minimizing harmful impacts on the environment. Farmers on more than 94,000 hectares (232,280 acres) have switched to sustainable systems using MasAgro technologies, while farmers on another 600,000 hectares are receiving training and information to improve their agricultural techniques and practices. Techniques include crop diversification, reducing tilling of the soil and leaving crop residue on the fields.

Govaerts, who has also worked on conservation agriculture projects in Ethiopia and India, discussed his work after winning the award.

Q: What inspired the “Take it to the Farmer” component of the MasAgro project?

A: The strategy stemmed from the fact that there’s a great deal of information out there today for farmers, starting with seed varieties. Farmers have many choices to make about technology to increase productivity, but they need to understand how to integrate it and make it sustainable. We work closely with farmers to develop conservation-based agricultural systems so that they can generate high, stable crop yields over time. Doing this offers farmers the best opportunity for higher incomes, but also lowers environmental impact.

MasAgro helps the farmers develop an agronomic system – including the technology. In that way it’s not so much taken to the farmers, but it’s developing a system together with the farmer. We innovate with the farmers and connect them to a working value chain and we then combine what we call our hub approach. We’re connecting research platforms with farm innovation modules and from there we develop systems influenced by farmer knowledge.

Q: Is it possible for this to work on any farm in any location?

A: The key is to adapt to the specific locations of each of the farmers. We have to make the strategies work for specific farming and then on top of that we need to include other technologies to make it work. Technology might simply be hand-planting, not necessarily high-tech huge machinery. It is really about establishing basic conservation agriculture principles and working together to make those basic principles work.

Q: Are you trying to help farmers achieve their agricultural goals by helping them save money by not spending on fertilizers?

A: It depends; if you’re in an area where farmers are over-fertilizing it helps to reduce costs if they don’t use fertilizers as much. On the other hand, some farmers are not using fertilizers at all so there we recommend using them in an integrated manner. There might be areas where production costs go up slightly because farmers were not investing in any inputs or technologies, but because productivity is increased in the end they have a higher return on investment.

Q: Can you give an example of a farmer who has changed practices?

A: Some smallholder farmers in Oaxaca, Mexico, are improving their production practices as they raise the local [indigenous] maize landraces. We connected them with a niche maize market in New York City. They are now exporting and selling their specialty maize to chefs in New York who use them in high-end restaurants. So they are not only increasing productivity, they are also connected to markets to sell their extra produce. The challenge now is to take this effort to scale. What we realized is that by only increasing productivity, we’re actually bringing the farmers into a risky situation unless they can find bigger markets.

We helped a novice wheat farmer who is renting land. He’s been adjusting his farming system and is now using conservation agriculture technology. As a result, because he has a slower turnaround time, when he planted his summer crop, instead of planting only 100 hectares, he jumped to 350 hectares. In a strict sense, he was not a smallholder farmer, but we work with big and small farmers.

Another example is the use of mobile phones – farmers can subscribe to a short message service, or SMS text-messaging system. Once subscribed, the farmer receives information on different topics, including technical recommendations or warnings. For example, one of the warnings we sent out during the wheat-growing season was that there was going to be an imminent frost. That led to some of the farmers irrigating their crops because that helped mitigate the damage and saved part of their crops.

Q: What challenges do you face?

We’re working with more than 150 institutions and organizations and we’re connected to more than 200,000 farmers. When Dr. Borlaug was working the world was simpler, we not only have to increase yields but we also have to work in an environmentally friendly manner. We also have to provide environmental services via agriculture and we have to make sure that farmers have sufficient income and this in a complex, institutional.
We can no longer accept that we’re just doing the science and then leave it up to others to apply the science. That’s not how it works – we scientists need to ensure that the technology is actually implemented and that it is expanded by new ideas from farmers, technicians and others along the value chain. We need to take responsibility that our knowledge and science is used and is responding to a real need. Public and private investment in agriculture should increase, especially in Latin America because it’s going to be a motor of transformation.

Q: How do you encourage farmers to change their practices?

A: We do a lot of training. In some areas our first step is bringing new seeds – connecting seed companies with a new variety CIMMYT has developed, making sure the seed system is working. There are some interventions that are rather linear – one-shot interventions. There are methods that from the beginning are going to be complicated and the farmer has to wait five years before changes are seen. That’s quite difficult, but if you can show an intervention where the farmer can store maize better and instead of losing 40 percent he’s only losing 10 percent during storage, that’s an intervention that can then start the dialogue to a more complicated system change. Much of our focus is on knowledge exchange, as well as in training and innovation.

Q: What is the significance of your award for Mexico?

A: The award has a special significance for Mexico. It recognizes Mexico’s bold decision to invest in agricultural innovation and to take responsibility not only for the country but for the region. We are proud of CIMMYT’s achievements within its host country.
Before CIMMYT’s collaboration with the Mexican government there was a real disconnect between agricultural science and the reality of farmers on the ground. As a result, this award is not only a recognition of scientific excellence, but the importance of getting the results out to the farmers. Mexico is a complex country.

Here we have all types of farmers – from large commercial farmers who exploit market opportunities for export to smallholder farmers who do not have access to markets. Mexico also hosts a wide range of unique agro-ecological environments. These circumstances offer CIMMYT scientists a unique laboratory to conduct their research and gives us an opportunity to explore new ways of doing science and connecting with farmers to ensure that science has impact.

Q: This year the World Food Prize Borlaug Dialogue was titled “Can we sustainably feed the 9 billion people on our planet by the year 2050?” What are your thoughts on the topic?

A: This is not just a numbers game. We will need to feed more than 9 billion people while working in a more complicated institutional and political environment and at the same time safeguarding natural resources. These global challenges are moving at a fast pace, so CIMMYT needs to move fast and expand its scientific excellence. We are at a turning point where we have to take advantage of these rapid changes in science and technology, which are becoming increasingly interlinked.

Working to help provide nutritional food for 9.5 billion people will be a collective effort. There won’t be one Norman Borlaug but a consortium of people working together with different expertise to achieve this goal. This will require new collaborations, especially public-private partnerships. CIMMYT is one of the best institutions to create these partnerships but we need to be better equipped for what is needed at this time. Complacency and living in the past is not an option.

Enhancing the nutritional quality of maize

Malnutrition and micronutrient deficiency, which can cause blindness and stunting, increased infant and maternal mortality and lower IQs, are at epidemic levels in some parts of Asia. People across Asia depend on maize, rice and wheat but they do not fulfil daily dietary requirements and are deficient in vitamin A and essential micronutrients such as iron and zinc.

Biofortified maize varieties have been bred to include considerably high concentrations of essential micronutrients. Maize in Asia is largely used for feed, but direct human consumption is increasing. Scientists at the 12th Asian Maize Conference highlighted several collaborative interventions to utilize the genetic variability in maize for the development of biofortified maize. Promoting biofortified maize in rural areas and developing new food products has been part of this research. The nutritional benefits of biofortified maize can come directly from eating the crop itself or indirectly by consuming eggs from hens that are fed with provitamin A ProVA-enriched maize. Biofortified maize use for feed may also represent economic benefits for farmers.

Breeding efforts in Asia are currently focused on quality protein maize (QPM) and ProVA-enriched varieties. QPM was first developed by former CIMMYT scientists and World Food Prize Laureates Dr. Evangelina Villegas and Dr. Surinder Vasal. CIMMYT QPM inbred lines have been used in several breeding programs in China, India, Vietnam and elsewhere.

Joint efforts between CIMMYT and numerous partner scientists under HarvestPlus have shown that breeding for increased concentrations of ProVA is especially promising because of the genetic variation available in maize germplasm. New hybrids released in 2012 in Zambia showed ProVA levels 400 percent higher than common yellow maize, with the potential to bring widespread health benefits.

Food security successes earn ‘sultan of wheat’ World Food Prize

sultan of wheat
Undated file picture shows the late Nobel Peace Prize laureate Norman Borlaug (L) with 2014 World Food Prize laureate Sanjaya Rajaram.

EL BATAN, Mexico (CIMMYT) — Scientist Sanjaya Rajaram, originally from a small farm in India’s state of Uttar Pradesh, is now widely recognized by the international agriculture sector for his prolific contributions to food security and poverty alleviation.

He is credited with producing a remarkable 480 wheat varieties, which have boosted worldwide yields by more than 180 million metric tons (200 million tons). These increased yields provide food to more than 1 billion people each year.

The varieties Rajaram developed during his 40-year career have been released in 51 countries on six continents.

They are used by farmers with both large and small land holdings who rely on disease-resistant wheat adaptable to a range of climate conditions.

For those feats and more Rajaram is the 2014 World Food Prize laureate, an honor awarded each year to the person who does the most to advance human development by improving the quality, quantity or availability of food in the world. Rajaram received the award at the World Food Prize ceremony on October 16 in Des Moines, Iowa.

“Rajaram has made a massive contribution to food security – I doubt that one person will ever again be involved in the development of as many widely grown wheat varieties,” said Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), where Rajaram worked for 33 years.

“As a former colleague once said: ‘It’s amazing what happens, when the ‘Sultan of Wheat’ puts his magic hands on a wheat line’,” he added.

INTERESTS FLOURISH

Rajaram was born in 1943 on the 5-hectare (12 acre) farm in Raipur where his family eked out a living by producing wheat, rice, maize, sugarcane and millet.

His parents recognized Rajaram’s intellectual potential and sent him to school 5 kilometers (3 miles) from home, which at the time was unusual in an area where 96 percent of people had no formal education.

Rajaram excelled scholastically and became the top-ranked student in his district. A state scholarship gave him the opportunity to attend high school, which led to his acceptance at the College of Jaunpur in the University of Gorakhpur, where he earned a Bachelor of Science in agriculture in 1962.

Afterwards Rajaram attended the Indian Agricultural Research Institute in New Delhi, graduating with a Master of Science in 1964.

Subsequently, he earned a doctorate in plant breeding at Australia’s University of Sydney where he first made contact with the superstars of what became known as the “Green Revolution” – Norman Borlaug and Glenn Anderson, who were leading scientists at CIMMYT.

CIMMYT VARIETIES

Borlaug, who was from the United States, died in 2009 at age 95. He is known as the “Father of the Green Revolution” and he was awarded the Nobel Peace Prize in 1970. Borlaug is credited with saving 1 billion lives in the developing world — particularly in South Asia — as a result of the disease-resistant, high-yield semi-dwarf wheat varieties he developed.

Borlaug had also introduced similar innovations throughout Mexico – where CIMMYT is headquartered – leading to the country’s self-sufficiency in wheat.

Anderson, a Canadian who died in 1981 at 57, was recruited by Borlaug to lead the major “Green Revolution” wheat improvement project in India. In 1971, Anderson became deputy director of the CIMMYT Wheat Program and then its director after Borlaug retired in 1979.

The two recruited Rajaram, who joined CIMMYT in 1969. He was appointed head of the wheat breeding team by Borlaug three years later. He set to work cross breeding select plant varieties, and the yield potential of his cultivars increased 20 to 25 percent.

“His technique was to cross winter and spring wheat varieties, which were distinct gene pools, leading to the development of higher yield plants that can be grown in a wide range of environments around the world,” Braun said, adding that Rajaram’s varieties were disease- and stress-resistant.

“The varieties he developed were eventually grown on a larger area than those developed by Borlaug.”

His varieties could be planted in areas previously uninhabitable for wheat in China, India and in Brazil’s acidic soils, for which he developed aluminum-tolerant wheat. Rajaram also developed wheat cultivars now grown on millions of hectares worldwide with durable resistance to rust diseases, which can devastate crops.

Rajaram spent eight years working for the International Center for Agricultural Research in the Dry Areas (ICARDA). At ICARDA, first as director of the Integrated Gene Management Program, then as special scientific advisor, he oversaw the promotion of new technologies to help farmers in the Central and West Asia and North Africa (CWANA) region.

He developed wheat improvement strategies to tackle some of the challenges facing wheat in dry areas, including stripe rust disease, which can spread quickly and have a devastating effect on wheat.

MENTOR TO MANY

“Rajaram’s research not only led to enhanced productivity, but farmers also saw big increases in profits due to higher yields and disease resistance – they no longer had to buy expensive fungicides to protect their plots,” said Ravi Singh, current head of wheat breeding at CIMMYT, one among many breeders Rajaram mentored.

Now a Mexican citizen and still a firm believer in the value of education, Rajaram continues his affiliation with CIMMYT, recently attending a “trainee wheat boot camp” for students from major wheat-growing nations.

“We know we need to double food production to feed the more than 9 billion people we’re expecting by 2050,” Rajaram said.

“Global objectives for food security can most definitely be met. However, we must be able to rely on guaranteed research funding from both the public and private sectors to address the many challenges we face, including decreasing land availability and erratic environmental changes related to climate change.”

Wheat currently provides 20 percent of overall daily protein and calories consumed throughout the world. Production must grow 70 percent over the current amount by 2050, according to the international Wheat Initiative – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent.

Researchers at CIMMYT are aiming to develop resilient wheat varieties tolerant to the drought, heat, extreme wet and cold conditions anticipated by scientists to grow more extreme as mean annual temperatures continue to increase and weather patterns become more volatile.

Rajaram’s great legacy was to give opportunities to newly graduated doctoral students, Singh said.

“He put us in charge of different parts of the breeding program each season, so we had to learn all aspects of the process for ourselves – we worked many long hours with him in the field developing confidence, which was very important for our professional careers.”

Rajaram intends to put a portion of his World Food Prize winnings, valued at $250,000, into training and education programs.

Young researchers trained to develop resilient farming systems

From 27 September to 4 October, scientists from India’s national agricultural research systems attended the “Conservation Agriculture: Developing Resilient Systems” training program at the Central Soil Salinity Research Institute (CSSRI) in Karnal, India. Participants learned about crop management technologies based on conservation agriculture (CA) and acquired skills to plan strategic CA research trials.

The training program was organized by CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project in collaboration with the Indian Council of Agricultural Research (ICAR) and CSSRI. Eighteen researchers from the Division of Natural Resource Management, International Rice Research Institute and CIMMYT attended the course.

Opening the course, ICAR Assistant Director General (Seeds) Dr. J.S. Chauhan, highlighted the importanc eof CA training for improving the productivity of crops and cropping systems in different agro-ecological regions of India. Conservation agriculture can sustain the livelihood of smallholders while maintaining and improving the quality of the environment and natural resources. CSSRI Director Dr. D.K. Sharma explained that CA has the ability to slow the depletion of underground water, declining soil fertility associated with multiple nutrient deficiencies, pest outbreaks and increased concentration of greenhouse gases in the atmosphere. He also focused on how to design diversified and resilient cropping systems that use resources more efficiently, as an alternative to intensive rice-wheat systems.

Globally, the positive impact of CA-based techniques on natural resources, adaptation and mitigation of climate change effects has been widely acknowledged. In India, strategic research on CA such as precise nutrient application, water, cultivars and weed management has been initiated. However, CA still remains a relatively new concept in the country. Andrew McDonald, CSISA project leader, talked about how continuous cultivation of rice-wheat cropping systems for almost five decades in the Indo-Gangetic Plains has caused the degradation of natural resources such as water and soil, thus affecting climate and biodiversity. He said, “This training program offers a unique opportunity for members of the country’s scientific community who are working in the area of natural resource management to help address the issues of water, labor and energy through the use of advanced crop production technologies.”

The training covered basic principles of CA, included field exercises and modern CA techniques for efficient climate change mitigation and adaptation strategies, impact assessment of CA technologies and sustainable management of natural resources to ensure food security, profitability and productivity. Participants were given hands-on training on the use of different technologies including the laser land leveler, turbo seeder, multi-crop planter, limit plot planter, bed planter and mechanical transplanter. They also learned how to measure greenhouse gas emissions.

Attendees also participated in strategic research trials at Kulvehri and Taraori in Karnal. H.S. Sidhu, farm development engineer of the Borlaug Institute for South Asia (BISA) and M.L. Jat, CIMMYT Senior cropping system agronomist, talked about the longterm strategic research trial on CA for intensive cereal systems, shared their experiences and outcomes related to BISA research and commented on the development work at Ladhowal, Ludhiana. Jat also spoke about using conservation agriculture and climate-smart agriculture, to achieve food sufficiency by 2050 through input-based management systems in diverse production systems and environments.

Scale-appropriate mechanization: the intercontinental connection

CIMMYT aims to improve the livelihoods of poor farmers in the developing world by providing practical solutions for more efficient and sustainable farming. Among the options to improve efficiency, scale-appropriate and precise planting machinery is a crucial yet rarely satisfied need.

Mechanization efforts are ongoing across CIMMYT’s projects, with a strong focus on capacity building of functional small- and medium-scale engineering and manufacturing enterprises. Projects involved include ‘Farm Power and Conservation Agriculture for Sustainable Intensification’ in eastern and southern Africa, funded by the Australian Center for International AgriculturalResearch (ACIAR) and the Cereal Systems Initiative in South Asia (CSISA), funded by the Bill & Melinda Gates Foundation and USAID. CSISA collaborates closely with the machinery research and development work done on the farms of the Borlaug Institute for South Asia in India, CIMMYT conservation agriculture (CA) projects funded by the Australian Centre for International Agricultural Research, the Agri-Machinery Program based in Yinchuan, Ningxia, China, and the MasAgro Take It to the Farmer machinery and intelligent mechanization unit based in Mexico.

Applied research scientists and technicians assisting these projects work specifically to tackle problems in diverse farming conditions and for varying production systems. Despite their geographically diverse target areas, this team strives to reach a common focal point from which they can learn and compare technical advancements. These advancements are achieved through mutual machine technology testing programs, exchanging machines and expertise and evaluations of best solutions for scale-appropriate mechanization to boost sustainable intensification for resource poor farmers.

Recently, this collaboration model led to the export of several units of a toolbar-based, two-wheel tractor implement for bed shaping, direct seeding of different crops and precise fertilizer application. They will be tested by CIMMYT projects in Bangladesh, Ethiopia and Nepal. This multi-purpose, multi-crop equipment was developed to be CA-compatible and has been fine-tuned in Mexico, with design priorities that kept in mind the implement’s usefulness for smallholder farmers in other parts of the world. The machinery will be tested next in Zimbabwe and possibly India and Pakistan.

The team’s goal is to help developing countries and viable business models of local enterprises in specific regions to have access to good quality implements and tools at reasonable prices. This open-source prototyping strategy is based on the free sharing of technical designs and machinery construction plans. The strategy combines patent-free, lowcost replication blueprints of promising technologies with strong agronomical testing as the ultimate ‘make or break’ criterion. This crucial interaction sets CIMMYT’s engineering platforms apart from commercial options that determine research and development priorities based mainly on sales projections and marketing objectives.

The mechanization team strongly believes in the power of cross regional collaboration – a multidisciplinary work environment, connected intercontinentally with social stewardship and the potential to bring transformative changes to farmers’ fields across the developing world.

CCAFS climate smart village program progress makes news in India

The CCAFS Climate Smart Village (CSV) program recently earned significant media attention for its successes in the Indian states of Bihar, Haryana and Punjab where the program is being implemented. The CSVs were featured in BBC News as well as several newspapers in the region. The CSV program is helping farmers in developing countries adapt their agricultural practices to secure dependable food supplies and livelihoods, while also decreasing greenhouse gas emissions and increasing carbon sequestration, thereby decreasing future climate change. The project began in 2011 and works with villages in East and West Africa and South Asia. “The Climate Smart Villages program is a community-based approach to sustainable agricultural development,” said M.L. Jat, CIMMYT senior cropping system agronomist and South Asia coordinator of the CCAFS- CIMMYT project.

6th CSISA wheat breeding meeting reviews gains in South Asia

On 11-12 September, 61 scientists from Bangladesh, Bhutan, India and Nepal convened in Kathmandu, Nepal, for the 6th Wheat Breeding Review Meeting of the Cereal Systems Initiative for South Asia (CSISA) objective 4 program.

Participants pose for a photo at the 6th CSISA Wheat Breeding review meeting, Kathmandu, Nepal, held 11-12 September.
Photo: Prakash Shrestha.

The meeting was organized by CIMMYT’s Kathmandu office and led by Dr. Arun Joshi. Other CIMMYT participants were Andrew McDonald and Cynthia Mathys. Participants included representatives of the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Central Soil Salinity Research Institute, Karnal; Punjab Agricultural University, Ludhiana and Gurdaspur; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Agharkar Research Institute, Pune; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Chandra Shekhar Azad University of Agriculture and Technology, Kanpur; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Nepal Agricultural Research Council (NARC); Renewable Natural Resources (RNR); Research and Development Centre (RDC), Bajo; the Bhutanese Ministry of Agriculture and Forest; and SAARC Agriculture Centre (SAC), Dhaka, Bangladesh.

The CSISA meeting began with remarks by the chief guest, Dr. Dil Bahadur Gurung, executive director of NARC, along with Dr. Md. Rafiqul Islam Mondal, Director General of BARI and McDonald and Joshi of CIMMYT. Within a wider framework of discussions concerning wheat improvement issues, the CSISA meeting reviewed the progress of the 2013-14 cycle and established work plans for the 2014-15 crop cycle. McDonald presented a summary of all CSISA objectives and highlighted the substantial results obtained in wheat breeding. Mondal expressed his satisfaction that CSISA wheat breeding has regional recognition in South Asia and is trying its best to create linkages among regionally important research issues. Gurung highlighted the significance of collaborative research with a regional perspective and reported the successes being achieved by CSISA in wheat research and cropping systems in Nepal. He expressed his appreciation for new research efforts under CSISA and said that, “the South Asia-CIMMYT collaboration is paramount to the food security in the region.”

Four review sessions were conducted, chaired by Mondal, Dr. Ravi Pratap Singh, Dr. Girish Chandra Mishra and Joshi. Three sessions were platforms to present review reports and work plans from the 10 research centers; two other sessions discussed physiology, spot blotch, extension of wheat breeding activities and how to link wheat breeding with seed dissemination and capacity building in South Asia. Another session discussed conducting trials, weather data, advanced and segregating material in Kenya and submission of data booklets and reports. A major discussion was held to encourage the strengthening of existing links with CSISA objective 4 (wheat breeding) and other objectives of CSISA, which include linkages with hubs and other stakeholders,  and explored the possibilities of providing quality seeds from newly released improved varieties to farmers as quickly as possible. The inclusion of conservation agriculture and participatory variety selection were also encouraged.

Joshi also highlighted major achievements by the CGIAR Centers during the last six years of CSISA: breeding for biotic and abiotic stress tolerance gained momentum with around a dozen new varieties released and popularized in South Asia; germplasm exchange with CIMMYT increased significantly; the majority of advanced lines in CIMMYT trials carried resistance to Ug99 and other rusts; shuttling of segregating generations between South Asia and Kenya increased; use of physiological tools for heat and drought tolerance increased in the region; stronger links were formed among breeders, seed producers and farmers; and capacity building was promoted in the region. Many new topics were discussed, including the current status of wheat rusts in SAARC countries by Dr. Subhash Bhardwaj, DWR Shimla; the current status and future options for wheat breeding for salt-affected soils by Neeraj Kulshrestha, CSSRI, Karnal; capacity building options for crop protection at DWR for SAARC scientists by M.S. Saharan, DWR, Karnal; and how DWR can fast-track CSISA wheat varieties to farmers in the eastern Gangetic plains by Dr. Randhir Singh Poswal, DWR, Karnal. Dr. Shree Prakash Pandey of IISER Kolkata presented the outcome of new research on a WHEAT CRP project, “Deciphering phytohormone signaling in modulation of resistance to spot blotch disease for identification of novel resistance components for wheat improvement.” “SAARC Agriculture Centre – Its Introduction and Programs,” was presented by Dr. Tayan Raj Gurung, senior program specialist from SAARC Agriculture Centre (SAC), Dhaka. He stressed that regional collaboration on wheat breeding for salt-affected soils is urgently required in South Asia and recommended that CIMMYT play a leading role.

The review meeting enabled CSISA wheat researchers to highlight research achievements and increase their understanding of the newer challenges and provided opportunities for further improvements in the coming years.

CIMMYT scientist examines socio-economic determinants of yield variability in maize

M.L. Jat, senior cropping system agronomist in the Global Conservation Agriculture Program at CIMMYT, in collaboration with Hirak Banerjee, Rupak Goswami, Somsubhra Chakraborty, Sudarshan Duttac, Kaushik Majumdar , T. Satyanarayana and Shamie Zingore, recently published a study examining the socio-economic determinants of yield gap in maize. The study, “Understanding biophysical and socio-economic determinants of maize (Zea mays L.) yield variability in eastern India” was published in the NJAS – Wageningen Journal of Life Sciences and was made possible by a grant from the Maize CRP. The term “yield gap” refers to “the difference between actual yields and potential yield,” potential yield being “the maximum yield that can be achieved in a given agro-ecological zone.” The purpose of the study was to investigate the key factors limiting maize productivity in two districts in each of the Indian states of West Bengal, Malda and Bankura, in order to develop effective crop and nutrient management strategies to reduce yield gap in the region.

The study compared the maize yield and socio-economic situation of farmers in the region and found that factors such as the caste or ethnic origin of farmers, availability of family labor, land ownership, use of legumes in cropping sequence, irrigation constraints, type of seed used, optimal plant population, labor and capital investment and use of organic manure had strong correlations to the maize yields farmers were able to achieve. The authors of the study hope that this information can facilitate the development and introduction of appropriate typology-specific crop management practices, in accordance with the needs of farmers and the socio-economic factors affecting their productivity, which could help to increase maize yields and reduce the yield gap for the region’s farmers.

Click here to read the full article.