Skip to main content

Location: Global

Launch of a new Global Partnership for the Vision for Adapted Crops and Soils initiative

Traditional and nutrient-rich crops are vital for global food security. (Photo: CIMMYT)

Rome/Texcoco, Mexico – An initiative to build resilient agrifood systems grounded in diverse, nutritious, and climate-adapted crops grown in healthy soils, today marked another milestone through a new partnership between the Food and Agriculture Organization of the United Nations (FAO) and CIMMYT, a CGIAR Research Center.

FAO and CIMMYT signed a Memorandum of Understanding establishing a Partnership for the Vision for Adapted Crops and Soils (VACS) initiative. The joint Partnership will play a pivotal role leading efforts to coordinate, grow, and strengthen the VACS movement across a wide range of public and private stakeholders.

“By joining forces with CGIAR and CIMMYT, we bring together our collective capacities to build a strong momentum and platform to advance the VACS,” said FAO’s Director-General QU Dongyu. “VACS effectively brings together the Four Betters set out in the FAO Strategic Framework 2022-31: better production, better nutrition, a better environment and a better life – leaving no one behind.”

“Our 2030 Strategy focuses on strengthening agrifood systems to increase nutritional value and climate resilience,” said CIMMYT’s Director General, Bram Govaerts. “We are proud to stand united, through VACS, with FAO, whose excellent track record on policy work and networking with national governments will help equip farmers with resilient seed and climate-smart cropping systems that regenerate, rather than degrade, the soils on which their diets and livelihoods depend.”

Launched in 2023 by the U.S. Department of State in partnership with the African Union and FAO, the VACS movement aims to build sustainable and resilient agrifood systems by leveraging opportunity crops and building healthy soils to enhance agricultural resilience to climate change and improve diets. Nutrient-rich and traditional crops like sorghum, millet, cowpea, and mung bean are vital for food security and nutrition under climate change but have seen little attention so far. VACS recognizes the interdependence of crops and soils: Crops need good soil to be productive, and different crops can only be sustainably grown on some types of land.

FAO-CIMMYT partnership aims to boost farm productivity and nutrition

Since its launch the VACS initiative has supported many activities including the Quick Wins Seed Systems Project in Africa, which promotes the adoption of climate-resilient dryland grains and legumes and helps smallholders access seeds of local nutritious crops like pearl millet, finger millet, and mung bean, and connects them with markets and agri-services. Meanwhile, the VACS Fellows programme trains African breeding professionals, strengthening regional agrifood systems. In Central America, InnovaHubs partner with CGIAR, Mexico, and Norway to connect farmers with markets, technologies, and high-quality seeds. FAO, through its work, including as part of the International Network on Soil Fertility and Fertilizers (INSOILFER) and the Soil mapping for resilient agrifood systems (SoilFER) project, assists members with the implementation of sustainable and balanced soil fertility management for food security and to promote actions to enhance the link between nourished healthy soils and opportunity crops.

Leveraging on the expertise and mandates of both CIMMYT and FAO, the new joint VACS Partnership will support, coordinate and amplify the impact of all stakeholders of the VACS movement, public and private, through the following functions:

  • Strategy: The Partnership will develop and maintain a VACS strategy, including by defining its mission, objectives, and approach.
  • Resource Mobilization: The Partnership will work with public and private sector donors to increase investments in VACS-aligned work.
  • Donor and Implementer Coordination: The Partnership will coordinate work among major VACS donors and implementers, including by coordinating the VACS Implementers’ Group.
  • Stakeholder Engagement: The Partnership will strengthen ties across public and private stakeholders to catalyze action in support of VACS, including by coordinating the VACS Community of Practice and the VACS Champions program.
  • Shaping the Policy Environment: The Partnership will coordinate the development of a VACS policy agenda and work to advance it at the local, national, and multinational levels.
  • Communications: The Partnership will elevate the importance of diverse crops and healthy soils as a fundamental means of advancing a range of sustainable development goals.
  • Results Management: The Partnership will develop and maintain a results management framework to track progress in achieving VACS objectives.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

About FAO

The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations that leads international efforts to defeat hunger.

Our goal is to achieve food security and nutrition for all by enabling all people to have regular access to enough locally appropriate high-quality nutritious food to prevent all forms of malnutrition and to lead active, healthy lives. With 195 members – 194 countries and the European Union, FAO works in over 130 countries worldwide.

For more information or interviews:

Jelle Boone
Interim Head of Communications, CIMMYT
j.boone@cgiar.org
Mobile/WhatsApp: +52 595 1247241

Peter Mayer
FAO News and Media
peter.mayer@fao.org

G7 summit highlights importance of sustainable food systems

In a world grappling with regional conflicts, climate change, and fragile food systems, the G7 emphasized sustainable agriculture and food security as essential for global stability in a recent communique. CIMMYT supports this vision through the Vision for Adapted Crops and Soils (VACS) initiative, which the G7 recognized as essential in transforming food systems. VACS aims to boost agricultural productivity with climate-resilient crops and healthy soils.

“With our partners, we will work on concrete and ambitious actions to achieve long-term sustainable development, strong environmental, social, and governance standards, and shared prosperity worldwide,” stated the G7 communique.

Fortifying indigenous crops

The G7 statement highlights the importance of dryland crops for sub-Saharan Africa, particularly ancestral grains and peas in securing nutrient-rich diets. CIMMYT, with over 75 partners such as WorldVeg and the Kenya Agricultural and Livestock Research Organization (KALRO), implements the VACS Quick Wins Seed Systems Project across west, east, and south Africa. The project promotes adoption of dryland grains and legumes, helps smallholders obtain climate-resilient seeds, and connects them with markets and agri-services. CIMMYT and its partners recently published a report which identifies the required training in crop breeding to support project implementation across the continent.

“VACS is working to improve the livelihoods of smallholders,” said Bram Govaerts, CIMMYT’s director general. “CIMMYT is implementing VACS focused on crop breeding, seed systems, partnerships, and capacity development. These areas protect our most important grains from further fragility.”

CIMMYT is also leading genetic research by predicting novel traits necessary for future crop varieties. A 2023 study published in Molecular Plant by CIMMYT scientists identified essential traits in six crops: sorghum, pearl millet, groundnut, cowpea, maize, and common bean. These characteristics could improve global food and nutrition security. High-yielding traits in legumes are being scaled up for delivery by CIMMYT and Afriseed through the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, targeting over 35,000 smallholders in Zambia during 2023-2024.

Monitoring Field Visit in Mali, West Africa. (Photo: CIMMYT)

Capacity development through sustained global partnerships

Several G7 members, including the United States, support CIMMYT’s efforts with VACS. A key component of the initiative is capacity building for local researchers and practitioners. A recent initiative aims to train African breeding programs and research professionals, creating a cohort of VACS Fellows to strengthen local and regional food systems. In Guatemala, InnovaHubs, through partnership with CGIAR, Mexico, and Norway, brings farmers closer to markets, technologies, and high-quality seeds.

Strategy for the future

With over 130 countries depending on food imports and over 1.3 billion people considered food insecure, CIMMYT’s 2030 Strategy provides a comprehensive plan forward for agrifood systems through innovative research and partnerships. “Our partners provide the local knowledge and expertise to ensure our research has an impact on smallholder communities. Only through close collaboration with local actors can we transform global food production to become more inclusive and sustainable,” said Govaerts. “We stand ready to support G7 goals for shared prosperity.”

Revised market segmentation for spring wheat—achieving alignment between ICARDA and CIMMYT

CIMMYT, in collaboration with ICARDA and the CGIAR Initiative on Market Intelligence, has revised the market segmentation for spring wheat to align breeding efforts using a unified “crop view” approach. This initiative resolves duplication challenges, provides objective crop prioritization, and aligns Target Product Profiles (TPPs) to meet the needs of farmers, consumers, and processors. By establishing a consistent application of eight market segmentation criteria, the effort standardizes the process and lays a foundation for future discussions on market segment prioritization and TPP alignment, ensuring all relevant market requirements are prioritized in breeding programs.

Read the full story.

Everyone is welcome! Building an inclusive and respectful workplace at CIMMYT: our 2030 vision and commitment

CIMMYT’s strategy integrates gender equity and social inclusion into all areas of its research and operations. Organizational values of excellence, integrity, and teamwork guide CIMMYT’s mission of innovation and agrifood systems transformation.

“We believe that access to food is a human right that must be provided to everyone regardless of identity markers,” said CIMMYT’s Director General, Bram Govaerts. “CIMMYT was founded in a time of great need to prevent hunger. Today, we remain tasked with ensuring that nutritious food is available to everyone. Our mission explains our commitment to social inclusion.”

Aligned with CGIAR and CIMMYT’s Framework for Gender, Diversity, and Inclusion (GDI) and the United Nations (UN) Sustainable Development Goals, CIMMYT established a Gender Equity and Social Inclusion (GESI) Steering Committee. This committee tracks progress and champions the implementation of the GESI Action Plan, aiming to close gender and diversity gaps and foster inclusivity in all our activities.

“CIMMYT is a diverse, multicultural space that benefits from varied talents and perspectives. Our collective workforce is dedicated to creating an inclusive environment. It’s rewarding to see the results of our efforts, and I am proud to be part of this journey,” said Director of the Genetic Resources Program, Sarah Hearne.

CIMMYT joins the international community in recognizing June as a month to celebrate diversity and raise awareness on issues impacting communities based on identity. CIMMYT reiterates its commitment to implementing its GESI Action Plan under one main principle:

  • CIMMYT is a non-discriminatory place for all. Our code of conduct does not tolerate treating individuals less favorably because of their sex, racial or ethnic origin, religion or belief, disability, age, or sexual orientation.

Aide Molina, GESI champion and research associate, added, “The GESI initiative is a crucial starting point. While change takes time, starting is key. As an international institution, CIMMYT leads in both technological and social aspects. Declaring itself a ‘non-discrimination zone’ sets a powerful example for other institutions to follow.”

Achieving greater inclusion requires consistency and effort, and 2024 is not different. Our collective commitment includes ensuring that our current policies and initiatives are inclusive and supportive in accordance with local regulations.

“Our leadership team has to be proactive in integrating an inclusion lens into our research and operations and also address the needs of inclusion and equality for all, considering local contexts,” said Govaerts.

CIMMYT has made notable strides in gender parity and inclusion, for example, female hiring rates have increased from 21% in 2020 to 43% in 2023.

“We’ve made significant progress in better serving smallholders and creating a non-discriminatory working culture that promotes innovation,” said Govaerts. “Our transformation must be intersectional. While this is continuous work, we must accept that some populations are still left behind. It’s our job to bring them in. Everyone is welcome; CIMMYT is a non-discriminatory place for all!”

CIMMYT scientist recognized with research leader award

Distinguished Scientist and Head of Wheat Physiology at CIMMYT, Matthew Reynolds, received the Research.com Plant Science and Agronomy in Mexico Leader Award 2024 for placing 53rd in the world and 1st in Mexico in the Research.com ranking of Best Plant Science and Agronomy Scientists 2023.

“Being recognized with this award highlights the far-reaching influence of the wheat science taking place in Mexico and its impact on the development of agronomy around the world,” said Reynolds. “Sharing outputs as international public goods with scientists globally has positive benefits for smallholder farmers and their communities. Widening genetic diversity for key traits helps to improve yield and climate resilience -including resistance to biotic and abiotic stresses, providing reliable harvests and food security.”

Matthew Reynolds

This marks the third consecutive year that Reynolds has received the award, having held the top position in plant science and agronomy in Mexico since 2022. His most cited papers include ‘Physiological breeding’ (2016), ‘Raising Yield Potential in Wheat’ (2009)’, and ‘Drought-adaptive traits derived from wheat wild relatives and landraces’ (2007).

Specializing in technologies to increase the productivity of wheat cropping systems around the world, Reynolds has helped to create a new generation of advanced lines at CIMMYT through physiological breeding approaches that widen the genepool, increasing understanding of yield potential and adapting wheat to drought and heat, developing high throughput phenotyping methodologies, and training other researchers.

Reynolds developed and led the Heat and Drought Wheat Improvement Consortium (https://hedwic.org/) and initiated a global academic network that led to the International Wheat Yield Partnership (https://iwyp.org/), where he champions collaboration that brings together plant science expertise from around the globe to boost yield and climate resilience.

Other CIMMYT scientists in the top 100 world rankings include Distinguished Scientist and former Head of Global Bread Wheat Improvement Ravi P. Singh in 57th place globally and 2nd in Mexico, and Distinguished Scientist in the Biometrics and Statistics Unit, José Crossa, who ranked 59th globally and 3rd in Mexico.

This is the third edition of Research.com positioning scholars based on their research output in plant science and agronomy. Rankings are allocated based on a detailed study of 166,880 scientists in bibliometric data sources, with up to 10,700 people analyzed for this field of work.

Expression of interest: VACS Capacity Project

USAID is partnering with CIMMYT to implement Feed the Future VACS Capacity Activity, which aims to capacitate African breeding programs and research professionals and to build a cohort of VACS Fellows in partnership with both private and public sectors. The cohort will be mentored by CGIAR, advanced research institutes and universities, and other partners around the globe. There are three areas where we are looking for partners.

  1. Hubs for training
  2. Scholars (MSc and PhD)
  3. Professionals (1–6-month placements)

The awarding process is two steps for the Hubs, which is based on the review of the submissions to this EOI solicitation, shortlisted applicants will be invited to submit a more detailed application and engage further in the award process.

How to apply

Only online submissions via the provided links below will be accepted: https://sra.cimmyt.org/vacs.

Due dates to complete your submission:

  • Hubs and Scholars by June 30, 2024, 11:59 p.m. GMT
  • Professionals by July 31, 2024, 11:59 p.m. GMT

Virtual briefing session

An information session will be conducted on June 7, 2024, at 5:00 p.m. East African Time, to explain further and clarify the application and award process. This will also constitute the official launch of the VACS Capacity Activity. Email CIMMYT-VACS-capacity@cgiar.org to register!

New innovative crops could significantly reduce agriculture’s climate change impact and environmental footprint

As the global population approaches the 10 billion mark, the reliance on fertilisers to boost agricultural production has become an essential, yet environmentally challenging, practice. A Century-long dependence on these additives has allowed food production to keep pace with the growth in human population. However, the use of fertilisers across various farming systems is now causing severe ecological stress. The leaching of nitrogen into natural ecosystems, coupled with the release of greenhouse gases, is pushing the Earth’s environmental limits to a critical threshold.

To address this, an ambitious new research initiative aims to shrink the nitrogen footprint of agriculture by developing a breakthrough technology based on nature’s own solutions: a natural process called biological nitrification inhibition (BNI). The Novo Nordisk Foundation has awarded CIMMYT a grant of up to USD 21.1 million to lead an innovation research initiative called CropSustaiN that is designed to reduce the nitrogen footprint of wheat cultivation.

“Success in this initiative could lead to a major shift in agricultural practices globally, benefiting both the planet and farmers’ livelihoods. In addition to using less fertiliser, cost for the farmer will be minimal because all the components are already in the seed. This initiative could, potentially, be extended from wheat cultivation to include other staple crops like maize and rice,” says Claus Felby, Senior Vice President, Biotech, Novo Nordisk Foundation.

“BNI could be a part of how we revolutionise nitrogen management in agriculture. It represents a genetic mitigation strategy that not only complement existing methods but also has the potential to decrease the need for synthetic fertilisers substantially. The mitigation potential of better nitrogen fertiliser management could be as impactful for the Global South as the Green Revolution,” explains Bram Govaerts, Director General, CIMMYT.

Revolutionary mitigation approach

Rooted in a seed-based genetic strategy, BNI leverages a plant’s innate ability to suppress soil nitrification through the release of natural compounds. This approach potentially promises to curb the use and leaching of synthetic nitrogen fertilisers—a significant contributor to greenhouse gas emissions and water pollution—without compromising wheat yield or soil vitality. The BNI-method contrasts with synthetic nitrification inhibitors and could offer a more scalable and cost-effective solution, potentially reducing nitrogen fertiliser usage by 20%, depending on regional farming conditions.

By harnessing the power of genetics in plant seeds, CropSustaiN leverages the natural process of BNI to develop new wheat varieties that require significantly less nitrogen fertiliser. Using conventional breeding, genes from wild crop relatives like wild rye, which have inherently better nitrogen use efficiency, are incorporated. CIMMYT makes such breeding products available to its global network of partners for the international public good.

The agenda for CropSustaiN includes validating BNI efficacy across diverse climates and integrating the technology into mainstream agricultural protocols. While the venture carries success risks, the potential rewards—ranging from widespread BNI adoption to valuable insights into nitrogen management—position it as a pioneering initiative. By ensuring that the seeds developed through this program are accessible to all farmers without exclusive patent rights, the Novo Nordisk Foundation is leading an inclusive approach to agricultural innovation.

CropSustaiN builds on the joint research by the Japan International Research Center for Agricultural Sciences (JIRCAS) and CIMMYT that started in 2015. The initiative has already yielded BNI wheat lines tested over three farming seasons. These innovative crops are now poised for further development and for scaling worldwide, indicating a potential paradigm shift in agricultural practices.

The Novo Nordisk Foundation has already laid the groundwork for CropSustaiN by funding related BNI research at CIMMYT, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Aarhus University, the University of Aberdeen, and the University of Copenhagen -thus fostering an ecosystem for research innovation.

About the Novo Nordisk Foundation

Established in Denmark in 1924, the Novo Nordisk Foundation is an enterprise foundation with philanthropic objectives. The vision of the Foundation is to improve people’s health and the sustainability of society and the planet. The Foundation’s mission is to progress research and innovation in the prevention and treatment of cardiometabolic and infectious diseases as well as to advance knowledge and solutions to support a green transformation of society.

www.novonordiskfonden.dk/en

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources. For more information, visit staging.cimmyt.org.

Further information 

Jakob Stein, Communications Specialist, jse@novo.dk

Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial

CIMMYT’s Bread Wheat Breeding Program analyzed top wheat genotypes over 14 years, aiming to boost grain yield (GY) and stability. Results at the Norman E. Borlaug Research Station in Mexico showed an annual GY gain of 0.96%, driven by enhancements in biomass, grain filling rate, and radiation use efficiency. This underscores CIMMYT’s success in delivering high-yielding wheat varieties globally and suggests potential future gains through diverse genotype intercrossing.

Read the full story.

CIMMYT Academy invites applications for Adjunct Scientist Program: Dryland Crops Improvement

This is a competitive program in which early- and mid-career NARS scientists from focus countries* are invited to express their motivation to join a CIMMYT research team, e.g. sorghum, pearl millet, finger millet, groundnut, chickpea, or pigeon pea improvement in West or Eastern Africa, on an adjunct basis. This program aims to strengthen partnerships between CIMMYT and NARS scientists while empowering the emerging generation of scientists through world-class networking and research opportunities contributing to a regional vision of crop improvement.

Adjunct Scientists will focus on their main discipline, e.g. crop breeding, seed systems, socioeconomics, or data management, by partnering with an appropriate CIMMYT scientist. The Adjunct Scientist will work closely with the hosting CIMMYT scientist to jointly strengthen each other’s research programs. The Adjunct and his/her CIMMYT host scientist will jointly participate and learn together from exchange visits, proposal writing, strategic meetings, and travel to research fields or conferences.

Learn more and apply 

Candidates must be active employees of a National Agricultural Research Institution in an AVISA-Transition project target country* with a Ph.D. in an appropriate field, awarded not more than 10 years before applying, or an MSc with a proven record of leading breeding programs for 5-10 years. The deadline for applications is June 22, 2024.

Re-imagining heat tolerance traits in wheat

Researchers, funded by the GRDC, are collaborating with experts from ANU, the University of Adelaide, and CIMMYT to enhance heat tolerance in wheat. Led by Professor Owen Atkin and Dr. Scott Boden, the projects aim to identify genetic markers for breeding heat-resistant varieties. Using advanced phenotyping technology, scientists are exploring biochemical pathways and heat shock proteins to develop solutions for climate change-induced challenges in agriculture.

Read the full story.

With agricultural diversification, more is better

Over the last seventy years, intensively managed monocultures, focused on maximizing calorie production, have become a dominant approach to global food production. This trend toward simplification in agricultural systems has supported productivity gains but has very troubling consequences for the environment including nutrient pollution and biodiversity loss at a massive scale. Restoring diversity is essential to regaining ecological balance.

Monocultures are generally all the same, turning biologically-rich systems into chemical-intensive engineered ones nearly devoid of life forms other than those yielding a genetically identical commodity crop. Their guiding principle is producing food ingredients as cheaply as possible. Biologically diversified agricultural systems can take many forms. Their guiding principle is recapturing resilience and resource use efficiency while supplying balanced diets and viable livelihoods.

In recent years, there have been many efforts to biologically diversify farming systems. Increasing the number of species and the genetic diversity is associated with improved resilience and resource use efficiency.

A new paper published in Science consolidates evidence from across a wide range of diversification strategies, applied on five continents, to understand how they affect environmental and social outcomes. These strategies encompass many different interventions ranging from crop rotations and cover crops to livestock inclusion to use of compost, hedgerows, and contour farming.

Farmers hold groundnuts as a preferred crop. (Photo: Sieglinde Snapp/CIMMYT)

The study shows that the likelihood of environmental and social benefits goes up when a greater number of diversification strategies are combined. Importantly, the environmental benefits of diversification were found to be greatest in very simplified landscapes with less than 20% in non-crop area.

It also found that applying multiple diversification strategies in tandem reduces tradeoffs. In other words, the path to agricultural win-wins leads to diversified working landscapes, not just diversification strategies on individual farms.

The push toward commodity monocultures has been baked into many agricultural policies, such as subsidies and trade deals, and into land tenure systems. The monoculture bias is also reinforced through pricing, payment, and other supply chain arrangements. Even research agendas have encouraged monoculture with the long-term emphasis on yield-focused breeding.

It’s time to dismantle the structural barriers that leave so many farmers just getting by “against the odds” and at the expense of functioning ecosystems.

Crop technology from CGIAR, including CIMMYT seed varieties, contributes US $47 billion each year to the global economy according to fresh analysis of six decades’ worth of data

A recent study in World Development reveals CGIAR’s crop technologies generate $47 billion annually in global economic benefits. From 1961 to 2020, CGIAR, with significant contributions from CIMMYT, enhanced agricultural productivity across 221 million hectares. These innovations, particularly in sub-Saharan Africa, have boosted yields, reduced food prices, and spurred economic growth, highlighting the critical role of agricultural research in ensuring global food security and combating poverty.

Read the full story.

Agricultural research adds billions of dollars to economy

As the world searches for effective solutions to mitigate and adapt to climate change while navigating the cost-of-living crisis, delivering food security goals alongside robust economic value is more imperative than ever in agricultural research.

CGIAR plays a vital role in this mission, aiming to transform food, land, and water systems in collaboration with its 15 Research Centers, such as CIMMYT. Now, a new study published in World Development comprehensively analyzes CGIAR’s fiscal impact on global agricultural over nearly 60 years.

The economic impact of CGIAR-related crop technologies on agricultural productivity in developing countries, 1961–2020 suggests that adoption of these technologies equates to US $47 billion annually in economic benefits, with an overall economic benefit of US $1,334 billion for the years covered by the study.

Additionally, investment in productivity gains for staple crops in developing countries has aided entire populations by securing lower food prices and generating large local growth multipliers, thus achieving a greater impact on poverty reduction when compared to productivity growth in other sectors.

CIMMYT contributes 40% of total CGIAR varietal impact

At least 221 million hectares in at least 92 countries were occupied by CGIAR crop technologies in 2020. Between 2016 and 2020, CIMMYT maize varieties accounted for 24.5 million hectares (11%) of this figure, while CIMMYT wheat varieties made up almost 74 million hectares (33%).

An example of how these CIMMYT varieties impact farmers can be seen in sub-Saharan Africa, where using improved maize seed led to an overall average increase of 38.9% in yields to 1,104 kilograms per hectare (kg/ha), equal to an increase of 429 kg/ha. With increased yields come increased profits and employment security for farmers and their families.

The frequency with which technologies are upgraded also signifies the impact of agricultural research and development (R&D) on crop productivity and the economy. On the 221 million ha planting area, many farmers utilize second or third generation technologies. For example, average varietal generation in maize is estimated to be 1.1, meaning that 10% of farmers use a second-generation variety, and most wheat farmers were also using second or third generation modern varieties. This highlights that ongoing crop research continued to impact productivity, even when the size of the adoption area remained constant.

Expanding the impact

As CGIAR’s reach and capacity have grown, economic benefits are now apparent in an increased number of global regions compared to when its work began. Initially, most economic benefits came from wheat and rice farming in Asia; however, 30% of CGIAR crop technologies now occupy sub-Saharan Africa, generating a significant share of its impact. This region remains heavily reliant upon CGIAR-related varieties, so continued investment is encouraged to maintain and build on the positive outcomes achieved to date.

“Considering the urgent need to attain nutrition security, CIMMYT always seeks ways to assure global food systems,” said Bram Govaerts, director general of CIMMYT. “This thorough analysis is a strong validation of CIMMYT’s work and its significance not just for farmers and their immediate families, but for communities and generations into the future. Our collaborative partnerships with CGIAR Research Centers and National Agricultural Research Systems (NARS) are integral in delivering successful projects that enable smallholder farmers to maximize the potential of their land.”

While similar studies have been undertaken in the past, this work takes a unique approach by drawing on a wider range of evidence built on country- and crop-specific data, such as the adoption of crop improvement technologies and productivity impacts per hectare, thereby providing a more granular assessment of CGIAR’s economic inputs.

Read the full study: The economic impact of CGIAR-related crop technologies on agricultural productivity in developing countries, 1961–2020.

Noemi Valencia Torres

Noemi Valencia Torres is the Seed Health Laboratory Manager, whose responsibilities include coordinating the activities of the Seed Health Laboratory to ensure that seed is suitable for export or import, that tests are performed properly and on time, and that supplies are well managed. Perform seed analysis to detect pathogens, obtain permits to import samples, reports
Resolve unusual problems with seed imports and communicate with staff and phytosanitary authorities for seed imports.

Digging in the Dirt: Detailed soil maps guide decision-making, from the field to the policy room

When a non-farmer looks upon a field, they might just see it as an expanse of dirt and give no more thought to it. But to a farmer, that dirt is soil, the lifeblood of agriculture. Among other things, soil delivers necessary nutrients to crops, allowing them to grow and flourish.

About 95% of the food consumed around the world grows from soil, which is rapidly deteriorating because of unsustainable human activity. Around 33% of all soils around the world are degraded, meaning they can no longer sustain the same level of agricultural activity. This leads to lower crop yields, which potentially leads farmers to increase their use of fertilizer to overcome the damaged soil. But increased nitrogen fertilizer use has profound climate change effects, as poor fertilizer management, including overuse, can lead to nitrous oxide (a greenhouse gas) leaking into the air and nitrates into groundwater, rivers, and other water systems.

Sampling points in the state of Celaya, Guanajuato Mexico. (Photo: CIMMYT)

An important implement in the effort to preserve soil fertility is the practice of soil mapping, a process which produces detailed physical and chemical soil properties within a region. Things like the amount of nutrients, acidity, water conductivity, and bulk density, help guide decision making from individual farmers all the way to regional and national stakeholders.

The Sustainable Productivity Growth Coalition, a United Nations initiative which aims to accelerate the transition to more sustainable food systems through a holistic approach to productivity growth to optimize agricultural sustainability, featured soil mapping as an innovative, evidence-based approach for accelerating sustainable productivity growth in its 2023 report.

A global soil mapping initiative is underway led by the Food and Agriculture Organization of the United Nations (FAO) and the Global Soil Partnership with important contributions from CIMMYT scientist working in Mexico.

“Soil mapping of an agricultural region for chemical and physical soil properties offers a range of benefits that can significantly improve agricultural practices, land management, and overall productivity,” said Ivan Ortiz Monasterio, CIMMYT principal scientist.

Map for Phosphorus Bray 1. (Photo: CIMMYT)

Soil maps = blueprints

Using up-to-date soil information at the national scale can help to plan agricultural and land planning interventions and policies, by excluding areas with higher carbon content or fertility from urbanization plans, or by planning the implementation of irrigation schemes with high-quality water in salt-affected areas.

For farmers, there are many benefits, including the creation of nutrient management plans, which are perhaps the most important. These plans guide decisions about application rates and timing of inputs like fertilizers, help avoid over-application, and reduce the risk of runoff and pollution. This supports sustainable agriculture while reducing costs and minimizing nutrient pollution.

Map for zinc. (Photo: CIMMYT)

“There are many other benefits,” said Ortiz Monasterio. “From improved irrigation management, to informed crop decisions, to things like climate resilience because more fertile soils are better able to cope with the challenges of climate variation.”