Skip to main content

Location: Global

Carolina Saint Pierre

Carolina Saint Pierre is the Partner Network Coordinator for CIMMYT’s Global Wheat Program (GWP).

She has oversight of wheat international nurseries seed preparation and shipments, database representation, and resource allocation for the International Wheat Improvement Network. She is responsible for research agenda, sub-grant agreements, activity progress and reporting, training, and interactions with NARS and other institutions to generate high-quality phenotypic data on particular traits on field-based phenotyping platforms.

She fosters strong interactions with NARS and other institutions to maximize the use of high-quality phenotypic data and actively participates in ensuring and implementing an efficient data workflow and availability of data within CIMMYT and to partners. She represents GWP as Enterprise Breeding System Business Change Manager.

Sridhar Bhavani

Sridhar Bhavani is a Senior Scientist, Head of Rust Pathology and Molecular Genetics working at CIMMYT HQ.

He is a passionate researcher leader with over 15 years of experience working on wheat traits especially rust diseases. He has demonstrated leadership in executing multiple international projects and established strong networks and linkages in East Africa, Asia and various global wheat partners.

As the Head of Rust Pathology, he oversees pathology, molecular genetics, and breeding strategy components in major projects such as: Accelerating Genetic Gains in Maize and Wheat (AGGMW) funded by BMGF; DFID, FCDO, BMGF & DFID funded Zn mainstreaming project; GRDC and ACRCP funded projects on delivering genetic tools and knowledge required to breed wheat and barley with resistance to leaf rust, stripe rust and stem rust; USAID funded project on wheat rust breeding; NMBU-Norway funded project on sustainable management of rust diseases in wheat; and a project led by Kansas State on New Sources of Genetic Disease Resistance.

Xuecai Zhang

Xuecai Zhang is a Senior Scientist and Maize Molecular Breeder with CIMMYT’s Global Maize Program. In 2011, he joined CIMMYT as an assistant breeder at the lowland tropical maize breeding program in Mexico. In 2015, he started to lead the maize molecular breeding lab in Mexico to implement modern molecular breeding tools and technologies for accelerating the genetic gain of the Latin American maize breeding pipelines. From 2024, he coordinates the maize collaborations between CIMMYT and China.

Wei Xiong

Wei Xiong is an interdisciplinary researcher focusing on the interactions between agricultural production and environment, with specific experiences in climate change and agriculture, development of agricultural system modeling tools, evaluation of climate-smart agriculture, and Genotype by Environment Interaction analysis.

Xiong is good at using cutting-edge technologies (such as cloud computing, machine learning, big data, HPC, and bioinformatics) in G×E×M interaction analysis, with a track record of improving short- and long-term agricultural forecast models at the local, national, and global scales. He is also interested in smart agriculture, agricultural AI, and innovative predictive approaches from genomics to phenomics.

Tek Sapkota

Tek Sapkota currently leads the Climate Change Science Group within CIMMYT’s Sustainable Agrifood Systems (SAS) program and is based in CIMMYT headquarters in Mexico. He carries out research in the area of agricultural systems, soil science and environmental sciences. He is particularly involved in studying agro-ecosystems management consequences on nutrient dynamics and their effect on food security, climate change adaptation and mitigation. He is a member of the Climate Investment Committee in OneCGIAR.

Sapkota has served in IPCC as Lead author as well as Review editor. He is an associate Editor of Nature Scientific Report and Frontiers in Sustainable Food Systems journals. He is an agricultural expert in the India GHG platform.

Ravi Singh

Ravi Singh is a Distinguished Scientist and Head of Global Wheat Improvement.

Wheat Yield Consortium

The Wheat Yield Consortium conducts research on wheat genetics and physiology to improve plant structure, increase the resilience and disease resistance of wheat, and its yield potential in Mexico and abroad. In 2015,  main achievements included:

  • More than 100 agronomic and physiological traits of 60 elite lines of high-yielding potential from CIMMYT Core Germplasm II set (CIMCOG II) were evaluated with high throughput phenotyping technologies.
  • Five elite lines were selected after analyzing three years of data collected from consecutive trials of the CIMCOG I set. Some lines were chosen for their resistance to lodging.
  • Aerial phenotyping platforms with remote sensors where used to identify five high-yielding and drought tolerant lines and seven outstanding heat tolerant lines from more than 600 elite lines tested in the field.
  • Nine Mexican students undertook doctoral studies in prestigious international universities with the benefit of acknowledged experts as advisers and using data from the MasAgro Wheat field trials. Three students concluded their doctoral studies and two more are in line to achieve their degree in the first semester of 2016.

Objectives

  • To raise wheat yield potential by 2 percent globally, with a view to increasing yield potential by 50 percent over 20 years.
  • To raise wheat production by 350,000 tons (10 percent) in 10 years, 750,000 tons (22 percent) in 15 years and 1.7 million tons (50 percent) in 20 years, in the same area currently devoted to wheat production in Mexico.

MasAgro Wheat

MasAgro Wheat, a component of CIMMYT’s MasAgro project, conducts research on wheat genetics and physiology to improve plant structure, increase the resilience and disease resistance of wheat, and its yield potential in Mexico and abroad. In 2015, main achievements of MasAgro Wheat included:

  • More than 100 agronomic and physiological traits of 60 elite lines of high-yielding potential from CIMMYT Core Germplasm II set (CIMCOG II) were evaluated with high throughput phenotyping technologies.
  • Five elite lines were selected after analyzing three years of data collected from consecutive trials of the CIMCOG I set. Some lines were chosen for their resistance to lodging.
  • Aerial phenotyping platforms with remote sensors where used to identify five high-yielding and drought tolerant lines and seven outstanding heat tolerant lines from more than 600 elite lines tested in the field.
  • Nine Mexican students continued their doctoral studies in prestigious international universities with the benefit of acknowledged experts as advisers and using data from the MasAgro Wheat field trials. Three students concluded their doctoral studies and two more are in line to achieve their degree in the first semester of 2016.

Objectives

  • To raise wheat yield potential by 2 percent globally, with a view to increasing yield potential by 50 percent over 20 years.
  • In the case of Mexico, to raise wheat production by 350,000 tons (10 percent) in 10 years, 750,000 tons (22 percent) in 15 years and 1.7 million tons (50 percent) in 20 years, in the same acreage currently devoted to wheat production.

International Winter Wheat Improvement Program (IWWIP)

The International Wheat Improvement Program was established as a cooperative international research effort by the Turkish national wheat research program and the International Maize and Wheat Improvement Center (CIMMYT) in 1986. The International Center for Agricultural Research in the Rural Areas (ICARDA) joined the program in 1990, integrating its highland wheat breeding program.

The main objective of IWWIP is to develop winter/facultative wheat germplasm for the region of Central and West Asia. IWWIP is fully integrated into the national Turkish wheat program, with a strong connection to partners within and outside the region, such as eastern Europe and the United States.

The program is governed by a steering committee. Three coordinators — Beyhan Akin from CIMMYT, Mesut Keser from ICARDA and Fatih Ozdemir from the Turkish national wheat research program — provide technical leadership.

IWWIP focuses on the development of elite wheat lines for rainfed and irrigated areas in Central and West Asia.

Since the inception of the program, more than 105 winter wheat varieties originating from IWWIP germplasm have been released. Germplasm from IWWIP is sent each year to approximately 100 cooperators in 50 countries, making it an important vehicle for the global exchange of winter wheat germplasm.

Core traits for rainfed areas are yield and yield stability, drought and heat tolerance, resistance to three cereal rusts and soil-borne diseases — nematodes, crown and root rots —, and end-use quality. Other traits considered for specific areas are resistance to Septoria leaf blight and insects. For irrigated and high-rainfall areas, breeding focuses on yield potential, cereal rusts, Septoria and quality.

Germplasm with special traits, such as resistance to stem rust and Russian wheat aphid, and Sun pest vegetative stage resistance, is developed in nurseries and shared with IWWIP cooperators. IWWIP distributes four International Winter Wheat Nurseries each year, targeted for semiarid and irrigated conditions: Facultative and Winter Wheat Observation Nurseries (FAWWONs) FAWWON-SA and FAWWON-IRR, and the replicated International Winter Wheat Yield Trials (IWWYTs) IWWYT-SA and IWWYT-IRR.

In 2018, IWWIP established a speed-breeding facility at the Aegean Agricultural Research Institute in Menemen, Izmir, with the capacity to grow 20,000 plants in one cycle. This facility allows for greater genetic gain by increasing the number of generations per year and reducing the time it takes to incorporate new traits into elite germplasm.

IWWIP uses multi-location testing in Turkey as well as shuttle breeding globally, serving as a successful model for a jointly operated breeding program between national and international institutes. Shuttle breeding to improve drought and heat tolerance and cold tolerance has been working well and produces novel germplasm with abiotic stresses tolerance.

Major IWWIP contributions:

  • Close cooperation with CIMMYT’s Soil Borne Pathogens Group to identify genotypes with resistance to nematodes and root rots, used in breeding programs in the region and beyond.
  • A national inventory of wheat landraces in Turkey (2009-2014), with collections from over 1,500 farmers from 68 provinces. The collected material was characterized and deposited in the Turkish Gene Bank in Ankara. The best accessions are currently used as parents, undergoing further study by the Turkish National Program and IWWIP, and being used in the development of primary synthetic winter wheat for breeding diverse and resilient wheat varieties.
  • High-quality data that has increased selection efficiency to develop yellow-rust-resistant cultivars.
  • Substantial improvement in stem rust resistance through shuttle methodology between Turkey and Kenya.
  • Publication of NDVI and digital photos for germplasm evaluation under irrigated and drought conditions.

IWWIP has played a major role in building the capacity of young researchers through long-term practical training at CIMMYT, ICARDA, and Turkish national wheat breeding programs; participation in traveling seminars; support for participation in regional conferences and IWWIP annual meetings; and on-site visits of IWWIP breeders.

Durable Rust Resistance in Wheat

The Durable Rust Resistance in Wheat project, a collaborative effort begun in April 2008, which now includes 22 research institutions around the world and is led by Cornell University, seeks to mitigate the threat of rust diseases to wheat. It aims to do so through coordinated activities that will replace susceptible varieties with durably resistant varieties, created by accelerated multilateral plant breeding and delivered through optimized developing country seed sectors. The project also aims to harness recent advances in genomics to introduce non-host resistance (immunity) into wheat.

Improved international collaboration in wheat research to meet growing world demand for food — an estimated 50 percent production increase in wheat alone is needed by 2020 — is another major goal of this project.

Objectives

  • Reduce systematically the world’s vulnerability to stem rust diseases of wheat through an international collaboration unprecedented in scale and scope.
  • Mitigate that threat through coordinated pathogen surveillance activities, and breeding initiatives.
  • Make efforts that will replace susceptible varieties in farmer’s fields with seed of durably resistant varieties, created by accelerated multilateral plant breeding, and delivered through optimized developing country seed sectors.

Delivering Genetic Gain in Wheat (DGGW)

Climate-change-induced heat stress and disease pathogens migrating across borders threaten the world’s wheat supply and food security in Africa and the Middle East. Building on the Durable Rust Resistance in Wheat (DRRW) global partnership, Delivering Genetic Gain in Wheat (DGGW) will mitigate serious threats to wheat brought about by climate change and develop and deploy new strains of wheat that are heat tolerant as well as resistant to wheat rusts and other diseases.

Cornell University has been awarded a $24 million grant by the Bill & Melinda Gates Foundation to continue to fund and expand the work of the Borlaug Global Rust Initiative (BGRI).

DGGW uses modern tools of comparative genomics and big data to develop and deploy varieties of wheat that incorporate climate resiliency as well as improved disease resistance for smallholder farmers in these politically vulnerable regions.”

The four-year grant builds on the successes of the BGRI, led by the DRRW project, funded by the UK Department for International Development and the Bill & Melinda Gates Foundation from 2008 to 2016.

Deadly wheat pathogens have been moving from the wheat fields of northern and East Africa into the Middle East. In their rush to identify genes that can resist evolving and virulent new strains of the disease known as stem rust, BGRI scientists have developed collaborative arrangements and facilities, with the crucial support of national governments and agencies, to screen thousands of samples of wheat each year from every continent under rust infection, to identify resistant lines.

DGGW is based at Cornell University and acts as the secretariat for the BGRI. Collaborations continue with national partners in Kenya and Ethiopia, as well as scientists at international agricultural research centers that focus on wheat, including CIMMYT and the International Center for Agricultural Research in the Dry Areas.

Advanced research laboratories in the U.S., Canada, China, Turkey, Denmark, Australia and South Africa collaborate on the project. So far, more than 2,000 scientists from 35 international institutions spread across 23 countries are involved in the consortium, and 37 countries contribute data to the surveillance network.

Objectives

  • Mitigate serious threats to wheat brought about by climate change
  • Develop new strains of heat-tolerant wheat
  • Develop rust and disease resistant wheat
  • Monitor spread of stem rust and other windborne wheat diseases

Seeds of Discovery (SeeD)

Seeds of Discovery (SeeD) studies and characterizes maize and wheat genetic diversity for use in breeding programs, which develop wheat varieties and maize hybrids improved through conventional technologies. These hybrids are better adapted to climate change, more resistant to pests and diseases and have higher yield potential.

In 2015, SeeD’s main results were:

  • SeeD began a comprehensive study of maize genetic diversity by obtaining, processing and analyzing the world’s largest genotypic data set to help scientists identify new genes of interest for maize breeding programs.
  • More than 2 billion genotypic data and more than 870,000 phenotypic data of maize field trails have been processed and uploaded to SeeD’s database and repository making them available to the scientific community via the project website.
  • A high level of Tar Spot resistance was confirmed in maize landraces native to the state of Oaxaca in Mexico and Guatemala, which will be used to breed new resistant maize lines.

To order seeds from CIMMYT, please click here.

OBJECTIVES

  • To explore in depth the original genetic composition of maize and wheat through the analysis of hundreds of thousands of seeds stored in gene banks in Mexico.
  • To make available to the national and international scientific community information on key agronomic characteristics such as tolerance to heat and drought, or resistance to important pests.
  • To offer a genetic analysis service that taps on the best features of maize and wheat through conventional improvement programs for both grains.
  • To contribute to long term food security in Mexico and the rest of the world, despite the impact of climate change and the scarcity of natural resources such as water, nutrients and oil.

International Wheat Yield Partnership (IWYP)

In 2011, agriculture ministers from the Group of 20 nations committed to developing an international initiative to coordinate worldwide research efforts in wheat genetics, genomics, physiology, breeding and agronomy.

The result, the Wheat Initiative, aims to encourage and support the development of a vibrant global public-private research community by sharing resources, capabilities, data and ideas to improve wheat productivity, quality and sustainable production around the world.

One of the Wheat Initiative’s key aims – increasing wheat yield and developing new wheat varieties adapted to different geographical regions – will be delivered by the International Wheat Yield Partnership (IWYP) – an international partnership of research funders and research organizations.

The partnership was initiated by CIMMYT, the Britain’s Biotechnology and Biological Sciences Research Council, Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food and the U.S. Agency for International Development in 2012. IWYP represents a long-term, global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries.

The partnership supports both core infrastructure and facilitates transnational open calls for research, all targeted at raising the yield potential of wheat.

All partners are committed to transparency, collaboration, open communication of results, data sharing as well as improved coordination to maximize global impact and eliminate duplication of effort.

IWYP is an independent research activity but, as with all public wheat research activities, IWYP will help the Wheat Initiative to fulfill its mission to “co-ordinate wheat research and contribute to global food security.”

This partnership builds on previous work of the Wheat Yield Consortium.

Objectives

  • Increasing wheat yield and developing new wheat varieties adapted to different geographical regions
  • Support core infrastructure and facilitate transnational open calls for research, all targeted at raising the yield potential of wheat

Aparna Das

Aparna Das is a Technical Program Manager for the Global Maize Program, working with breeding teams to implement new strategies to improve the product delivery pipeline.