Skip to main content

Location: Global

CRP Wheat Annual Report 2018

The newly released CGIAR Research Program on Wheat (WHEAT) Annual Report 2018 highlights joint achievements that are making an invaluable contribution to global food security, especially for the 2.5 billion people who depend on wheat for their livelihoods.

The report describes work with national and global partners using state of the art technology to measure traits and performance for faster development of high-yielding, heat- and drought-tolerant varieties; rapidly diagnosing diseases in farmers’ fields; supporting gender equality in agricultural innovations, and much more.

With its national partners, WHEAT released 48 new CGIAR-derived wheat varieties to farmers in 2018, and developed 11 innovations related to farm management practices or social sciences.

Read the full report online

Download a PDF Version of the report

Download a PDF of the 2019 Technical Annual Report 

Cobs & Spikes podcast: Interview with Juan Gonzalo Jaramillo Mejia on social inclusion

How can social protection programs be truly inclusive? Taking a social inclusion lens to agricultural development means looking beyond gender to other identity markers and changing the narratives in gender development approaches, which often place a disproportionate burden on women. Social protection programs do not always keep up with the changes of the traditional gender order.

In this episode, we talk to Juan Gonzalo Jaramillo Mejia, Project Manager and Researcher on Inclusion Innovation and Social Protection. He discusses why we must engage men in the fight for gender equality and how using a social inclusion lens to social protection programs is necessary to ensure that no one is left behind.

You can listen to our podcast here, or subscribe on iTunesSpotifyStitcherSoundCloud, or Google Play.

 

The new challenges of wheat improvement

CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)
CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)

In the Green Revolution era, the focus for wheat breeders was on boosting yields to feed more people, but today the challenge is not only to increase production on smaller plots of land, but also to improve nutritional quality, said CIMMYT wheat breeder Velu Govindan, during an interview on BBC Newsday.

Interview starts at 43:23:
https://www.bbc.co.uk/sounds/play/w172wpkb45wcm4t

Govindan was speaking from the International Wheat Congress in the city of Saskatoon in Canada’s breadbasket province on the prairies, Saskatchewan.

New manual provides quantitative approach to drought stress phenotyping

A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)
A researcher uses a vertical probe to measure moisture at different soil depths. (Photo: CIMMYT)

Since 1900, more than two billion people have been affected by drought worldwide, according to the Food and Agriculture Organization of the United Nations (FAO). Drought affects crops by limiting the amount of water available for optimal growth and development, thereby lowering productivity. It is one of the major abiotic stresses responsible for variability in crop yield, driving significant economic, environmental and social impacts.

A new technical manual, “Management of drought stress in field phenotyping,” provides a quantitative approach to drought stress phenotyping in crops. Phenotyping is a procedure vital to the success of crop breeding programs that involves physical assessment of plants for desired traits.

The manual provides guidance for crop breeders, crop physiologists, agronomists, students and field technicians who are working on improving crop tolerance to drought stress. It will help ensure drought screening trials yield accurate and precise data for use by breeding programs.

A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)
A sprinkler system irrigates a drought phenotyping trial field in Hyderabad, India. (Photo: CIMMYT)

Based on decades of CIMMYT’s research and experience, the manual covers aspects related to field site selection, effects of weather, crop management, maintaining uniform stress in trials, and duration of stress. It focuses on an approach that standardizes the required intensity, timing and uniformity of imposed drought stress during field trials.

Such a rigorous and accurate approach to drought screening allows for precision phenotyping. Careful management of imposed drought stress also allows the full variability in a population’s genotype to be expressed and identified during phenotyping, which means the full potential of the drought tolerance trait can be harnessed.

Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)
Variability among maize genotypes for agronomic and yield traits under managed drought stress. (Photo: CIMMYT)

“Crop breeding programs using conventional or molecular breeding approaches to develop crops with drought tolerance rely heavily on high-quality phenotypic data generated from drought screening trials,” said author and CIMMYT scientist P.H. Zaidi. “By following the guidance in this manual, users can maximize their quality standards.”

The International Maize and Wheat Improvement Center (CIMMYT) has been a pioneer in developing and deploying protocols for drought stress phenotyping, selection strategy and breeding for drought tolerance. CIMMYT’s research on drought stress in maize began in the 1970s and has since remained a top priority for the organization. Drought-tolerant maize is now one of CIMMYT’s flagship products and is a key component of CIMMYT’s portfolio of products aimed to cope with the effects of climate change in the tropics.

Read the manual:
Pervez H. Zaidi, 2019. Management of drought stress in field phenotyping. CIMMYT, Mexico.

The information presented in the manual is based on the work on quantitative management of drought stress phenotyping under field conditions that received strong and consistent support from several donor agencies, especially Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), Germany’s GIZ and the CGIAR Research Program on Maize (MAIZE). The manual itself was funded by the CGIAR Excellence in Breeding (EiB) platform.

More with less: Research for intensified food production with scarcer resources and heating climates

Technical assistant Tigist Masresra examines breeding trials at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
Technical assistant Tigist Masresra examines breeding trials at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

After declining for nearly a decade to around 770 million, in the last three years the number of hungry people has shot up to more than 850 million. At the same time, erratic weather and crop pests and diseases are ruining harvests, intensifying farmers’ risks, and threatening local and global food security.

In an article for Rural 21, I describe how plant breeding has changed over the last four decades and which methods the international research community is developing to master present and future challenges.

Read the full article

Top scientists from CGIAR to present latest research at International Wheat Congress in Canada

FOR IMMEDIATE RELEASE

SASKATOON, Canada (CIMMYT) — Amid global efforts to intensify the nutritional value and scale of wheat production, scientists from all major wheat growing regions in the world will gather from July 21 to 26, 2019 at the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province, Saskatchewan. The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.

Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 (C$2.60) a day.

In spite of its key role in combating hunger and malnutrition, the major staple grain faces threats from climate change, variable weather, disease, predators and many other challenges. Wheat’s vital contribution to the human diet and farmer livelihoods makes it central to conversations about the rural environment, agricultural biodiversity and global food security.

More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations worldwide will discuss the latest research on wheat germplasm.

“We must solve a complex puzzle,” said Martin Kropff, CIMMYT’s director general. “Wheat must feed more people while growing sustainably on less land. Wheat demand is predicted to increase 60% in the next three decades, while climate change is putting an unprecedented strain on production.”

“The scientific community is tackling this challenge head-on, through global collaboration, germplasm exchange and innovative approaches. Researchers are looking at wheat’s temperature response mechanisms and using remote sensing, genomics, bio-informatics and other technologies to make wheat more tolerant to heat and drought,” Kropff said.

The congress is the first major gathering of the wheat community since the 2015 International Wheat Conference in Sydney, Australia.

CGIAR and CIMMYT scientists will share the latest findings on:

  • State-of-the-art approaches for measuring traits to speed breeding for heat and drought tolerance
  • Breeding durum (pasta) wheat for traits for use in bread products
  • New sources of diversity — including ancient wheat relatives — to create aphid-resistant wheat and other improved varieties
  • DNA fingerprinting to help national partners identify gaps in improved variety adoption

For more details on schedule and scientists’ presentations, click here.

Research shows that more than 60% of wheat varietal releases since 1994 were CGIAR-related.

Low- and middle-income countries are the primary focus and biggest beneficiaries of CGIAR wheat research, but high-income countries reap substantial rewards as well. In Canada, three-quarters of the wheat area is sown to CGIAR-related cultivars and in the United States almost 60% of the wheat area was sown to CGIAR-related varieties, according to the research.


WHEN

July 21-26, 2019

The opening ceremony and lectures will take place on
Monday, July 22, 2019 from 08:50 to 10:50 a.m.

WHERE

TCU Place
35 22nd Street East,
Saskatoon, SK S7K 0C8, Canada
https://g.page/TCUPlace


CONTACTS

For further information, or to arrange interviews, please contact:

Marcia MacNeil: m.macneil@cgiar.org

Julie Mollins: j.mollins@cgiar.org


About CGIAR

CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

About the CGIAR Research Program on Wheat

Joining advanced science with field-level research and extension in lower- and middle-income countries, the Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food.  WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner.  Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

Ensuring food security for a growing planet

Experimental harvest of provitamin A-enriched orange maize, Zambia. (Photo: CIMMYT)

In just over a decade there will be around 8.5 billion people on earth, and almost 10 billion by 2050, according to the United Nations World Population Prospects 2019: Highlights.

The report said the newcomers will be concentrated in regions already facing grave food insecurity, rising temperatures, scarce water and erratic rainfall, such as sub-Saharan Africa and South Asia.

Even now, hungry persons worldwide exceed 850 million and an estimated 2 billion suffer micronutrient malnutrition, with costly health and social impacts.

By mid-century 7 of every 10 people will live in cities, according to United Nations data. With more mouths to feed and fewer farmers, food systems will be hard-pressed to grow and supply enough nutritious fare at affordable prices, while mitigating environmental damage.

Facing the challenges

As the examples below show, applied science and partnerships can help address these complex issues.

Decades of research and application by scientists, extension workers, machinery specialists, and farmers are refining and spreading practices that conserve soil and water resources, improve yields under hotter and drier conditions, and reduce the greenhouse gas emissions and pollution associated with maize and wheat farming in Africa, Asia, and Latin America.

A farmer tends a long-term on-farm conservation agriculture trial for a rice-wheat-mungbean cropping system in Rajshahi district, Bangladesh. (Photo: CIMMYT)

More and more African farmers are growing drought tolerant maize that gives bountiful harvests with good rainfall and provides grain in drier years when other maize varieties wilt.

An approach known as biofortification, involving the creation of micronutrient-dense staple crops using breeding, can improve nutrition as part of an integrated, food systems strategy. CIMMYT, various institutions of CGIAR, and numerous national research organizations and scaling partners have developed and released more than 60 improved varieties of maize and wheat in 19 countries of Africa, Asia, and Latin America. Their grain features enhanced levels of the essential micronutrients zinc or ­pro-Vitamin­ A.

The sustained support of funders and policymakers will help ensure that CIMMYT staff and partners are able to continue improving the livelihoods and food security of smallholder farmers and resource-poor consumers, as world population density increases.

Inequality, agriculture and climate change: From a vicious to a virtuous circle

Farmers in low- and middle-income countries are benefiting from CIMMYT's improved maize and wheat varieties, suitable for drought- and disease-affected areas. (Photo: Apollo Habtamu/ILRI)
Farmers in low- and middle-income countries are benefiting from CIMMYT’s improved maize and wheat varieties, suitable for drought- and disease-affected areas. (Photo: Apollo Habtamu/ILRI)

A new urgency is being felt on climate change. Schoolchildren are striking, there are protests in the streets, and politicians across the world, including the UK, are pushing to call climate change a national emergency.

A cruel irony is that climate change will not be felt equally by all—those who have contributed the least to rising temperatures are set to suffer the most.

Read the full op-ed authored by Elwyn Grainger-Jones, Executive Director of the CGIAR System Organization, in Diplomatic Courier’s special G20 Edition.

Amos Emitati Alakonya

Amos Alakonya is head of CIMMYT’s Seed Health Unit. Through rigorous laboratory seed testing and field inspections of seed nurseries, he works to ensure that seed received and distributed by CIMMYT scientists is free from pests and diseases. His team also provides quarantine support to CIMMYT stations during disease outbreaks to minimize losses from emerging diseases.

Biswanath Das

Biswanath leads Breeding Partnerships for the CGIAR Breeding for Tomorrow (B4T) Mega-program and Excellence in Breeding (EiB) platform. He works across all CGIAR centers, crops and regions supporting breeding networks to strengthen partnerships for greater impact.

He has over 15 years of applied plant breeding experience in Latin America and Africa leading maize breeding pipelines in both the private (Syngenta) and public sector (CIMMYT). Biswanath and his team currently cover 25 countries in Sub Saharan Africa and South Asia, supporting the CGIAR and its partners to align priorities, co-create and deliver improved crop varieties.

Sylvanus Odjo

Sylvanus Odjo is a postharvest specialist working on the development and implementation of postharvest practices for cereals and other grains to achieve food security in rural communities in the developing world. He coordinates a network of research platforms for postharvest research with collaborators in Mexico, Central America and Africa to address research gaps and inform recommendations to farmers, private sector, governments, national agricultural research institutions and non-governmental organization.

Odjo holds a master’s degree in Food Science and Nutrition and a PhD in Agronomic Sciences and Biological Engineering. His PhD project focused on the effect of the drying process on maize grain quality.

New publications: Shifting the mindset from “reaching many” to sustainable change

Over the last few years, the research and development communities have deemed “scaling” a priority in order to help contribute to and achieve the Sustainable Development Goals (SDGs). On smaller scales, there has been great success in reducing hunger and poverty, but it has rarely expanded to regional or national levels.

The International Maize and Wheat Improvement Center (CIMMYT) scaling head Lennart Woltering, in collaboration with colleagues Kate Fehlenberg and Bruno Gerard, as well as with international development experts Jan Ubels of SNV and Larry Cooley of Management Systems International, have been studying the process of scaling to understand why successful pilot projects are no guarantee for success at scale.

In a new paper published in Agricultural Systems, they argue that pilot projects are usually set up and managed in heavily controlled environments that do not reflect the reality at scale. Furthermore, confusion of what scaling is and how it can be executed often results in a narrow focus on solely reaching numbers.

“Counting household adoption of a practice at the end of a project is a poor metric of whether these people can and will sustain adoption after the project ends, let alone if adoption will reach others and actually contributes to improved livelihoods,” Woltering states.

According to Woltering, “This paper is a call for a new scaling narrative, from one that is short-term and piecemeal, to one that recognizes the systemic nature of problems and solutions to achieve sustainable change at scale.”

This requires a change in mindset, skills and ways of collaborating than what we currently consider normal. “Meaningful impact at scale hardly occurs within a project context, but when new ways of working are becoming ‘the new normal’ by a critical mass of actors ‘in the real world’,” Woltering explained.

The authors present a number of frameworks that help to assess the scalability of innovations and the design of scaling strategies from the onset of projects and how to systematically think through key elements needed for scaling success. This includes CIMMYT’s very own Scaling Scan. Reaching the SDGs requires scaling interventions to be seen as building blocks within a system of other initiatives with the same goals.

Read the full study:
Scaling – from “reaching many” to sustainable systems change at scale: A critical shift in mindset

Lennart Woltering discusses scaling strategies. (Photo: Maria Boa Alvarado /CIMMYT)

Read more recent publications by CIMMYT researchers:

  1. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. 2019. Hassan, M.A., Mengjiao Yang, Rasheed, A., Guijun Yang, Reynolds, M.P., Xianchun Xia, Yonggui Xiao, He Zhonghu. In: Plant Science v. 282, p. 95-103.
  2. Characterization of TaCOMT genes associated with stem lignin content in common wheat and development of a gene-specific marker. 2019. Luping Fu, Yonggui Xiao, Yan Jun, Jindong Liu, Weie Wen, Yong Zhang, Xia Xian-Chun, He Zhonghu. In: Journal of Intregative Agriculture v. 18, no. 5, p. 939-947.
  3. Dissecting conserved cis-regulatory modules of Glu-1 promoters which confer the highly active endosperm-specific expression via stable wheat transformation. 2019. Jihu Li, Ke Wang, Genying Li, Yulian Li, Yong Zhang, Zhiyong Liu, Xingguo Ye, Xianchun Xia, He Zhonghu, Shuanghe Cao. In: The Crop Journal v. 2, no.1, p. 8-18.
  4. Effects of bran hydration and autoclaving on processing quality of Chinese steamed bread and noodles produced from whole grain wheat flour. 2019. Zhang Yan, Fengmei Gao, He Zhonghu. In: Cereal Chemistry v. 96, no. 1, p. 104-114.
  5. Occurrence and seasonal variation of the root lesion nematode Pratylenchus neglectus on cereals in Bolu, Turkey. 2019. Dababat, A.A., Senol Yildiz, Duman, N., Ciftci, V., Imren, M. In: Turkish Journal of Agriculture and Forestry v. 43, p. 21-27.

Modern wheat breeding benefits high- and low-input farmers, study shows

Farmer Gashu Lema’s son harvests improved variety “Kubsa” wheat, Gadulla village, Mojo, Ethiopia. (Photo: P. Lowe/CIMMYT/P. Lowe

A recent article in the journal Nature Plants validates the work of wheat breeders who produce yield-boosting varieties for farmers across a range of incomes and environments.

Based on a rigorous large-scale study spanning five decades of wheat breeding progress under cropping systems with low, medium and high fertilizer and chemical plant protection usage, the authors conclude that modern wheat breeding practices aimed at high-input farming systems have promoted genetic gains and yield stability across a wide range of environments and management conditions.

In other words, wheat breeding benefits not only large-scale and high-input farmers but also resource-poor, smallholder farmers who do not use large amounts of fertilizer, fungicide, and other inputs.

This finding underscores the efficiency of a centralized breeding effort to improve livelihoods across the globe – the philosophy behind the breeding programs of the International Maize and Wheat Improvement Center (CIMMYT) over the past 50 years.

It also contradicts a commonly held belief that breeding for intensive systems is detrimental to performance under more marginal growing environments, and refutes an argument by Green Revolution critics that breeding should be targeted to resource-poor farmers.

In a commentary published in the same Nature Plants issue, two CIMMYT scientists — Hans Braun, director of CIMMYT’s global wheat program and the CGIAR Research Program on Wheat, and Matthew Reynolds, CIMMYT wheat physiologist — note the significance of the study.

“Given that wheat is the most widely grown crop in the world, sown annually on around 220 million ha and providing approximately 20% of human calories and protein, the social and economic implications are large,“ they state.

Among other implications:

  • The study found that modern breeding has reduced groups of genes (haplotypes) with negative or neutral effects – a finding which will help breeders combine positive haplotypes in the future, including for hybrid breeding.
  • The study demonstrates the benefits of breeding for overall yield potential, which — given that wheat is grown over a wider range of environments, altitudes and latitudes than any other crop, with widely ranging agronomic inputs – has significant cost-saving implications.

Braun and Reynolds acknowledge that the longstanding beliefs challenged by this study have a range of influences, from concern about rural livelihoods, to the role of corporate agribusiness and the capacity of Earth’s natural resources to sustain 10 billion people.

While they welcome the conclusions as a validation of their work, they warn against seeing the study as “a rubber stamp for all things ‘high-input’” and encourage openness to new ideas as the need arises.

“If the climate worsens, as it seems destined to, we must certainly be open to new ways of doing business in crop improvement, while having the common sense to embrace proven technologies,” they conclude.

Xinyao He

Xinyao He joined CIMMYT in 2011 and since then his main research area has been Fusarium head blight (FHB) and its associated mycotoxins, including phenotypic screening for FHB resistance, breeding for FHB resistance, genetic dissection of resistance mechanisms, and integrated FHB management.

He has also been heavily involved in wheat blast research since 2016, including field disease screening, genetic studies and marker validation, as well as participating in research and breeding activities for other wheat diseases such as Septoria tritici blotch, Septoria nodorum blotch, spot blotch, tan spot and Karnal bunt.