Skip to main content

Location: Global

Crossing boundaries

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Daily life as we know it has grinded to a halt and crop scientists are pondering next steps in face of the global COVID-19 crisis. Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, joins us for a virtual chat to discuss the need for increased investment in crop disease research as the world risks a food security crisis.

What have you learned from your work on contagious wheat diseases that we can take away during this time?

Wheat epidemics go back to biblical times. Wheat scientists now believe Egypt’s “seven bad years” of harvest referenced in the Bible were due to a stem rust outbreak.

So, we know what happens when we have a crop epidemic: diseases can completely wipe out a harvest. I have seen subsistence farmers stand in front of their swaying, golden wheat fields, but there is not a single grain inside the spikes. All because of wheat blast.

There are a lot of parallel issues that I see with COVID-19.

The epidemiology models for humans which we see now have a lot in common with plant epidemiology. For example, if you take a wheat field sown with a variety which is rust-resistant and then you get a spore which mutates and overcomes the resistance — like COVID-19 overcomes the human immune system — it then takes about two weeks for it to sporulate again and produce millions of these mutated spores. They sporulate once more and then you have billions and trillions of spores — then the wheat fields at the local, national and, in the worst case, regional level are severely damaged and in worst case are going to die.

The problem is that since we cannot quarantine wheat, if the weather is favorable these spores will fly everywhere and — just like with COVID-19 — they don’t need a passport to travel.

Could you elaborate on that? How can wheat diseases go global?

Usually it takes around 5 years, sometimes less, until a mutation in a rust spore can overcome the resistance of a wheat variety. Every so often, we see rust epidemics which cover an entire region. To monitor this movement, the Borlaug Global Rust Initiative of Cornell University and CIMMYT, funded by the Bill & Melinda Gates Foundation and DFID, established a global rust monitoring system that provides live data on spore movements.

For example, if you have a new race of stem rust in Yemen — and in Yemen wheat matures early — and then farmers burn the straw, their action “pushes” the spores up into the air, thus allowing them to enter the jet stream and cover 2,000 to 5,000 kilometers in a short period of time. Spores can also be carried on clothes or shoes by people who walked into an infected wheat field. Take Australia, for example, which has very strict quarantine laws. It is surrounded by sea and still eventually they get the new rust races which fly around or come with travelers. One just cannot prevent it.

Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)
Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)

Could climate change exacerbate the spreading of crop diseases?

Yes, the climate and its variability have a lot to do with it. For example, in the case of yellow rust, what’s extremely important is the time it takes from sporulation to sporulation. Take a rust spore. It germinates, then it grows, it multiplies and then once it is ready it will disperse and infect wheat plants. From one dispersal to the next it takes about two weeks.

In the last decades, in particular for yellow rust, new races are better adapted to high temperature and are multiplying faster. In a Nature paper, we showed that 30 years ago yellow rust was not present in the Great Plains in the US. Today, it is the most important wheat disease there. So there really is something going on and changing and that’s why we are so concerned about new wheat disease races when they come up.

What could an epidemiologist specialized in human viruses take from this?

Well, I think human epidemiologists know very well what happens in a case like COVID-19. Ordinary citizens now also start to understand what a pandemic is and what its related exponential growth means.

Maybe you should ask what policymakers can learn from COVID-19 in order to prevent plant epidemics. When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity. While in developed countries farmers can use chemicals to control plant diseases, resource-poor farmers do not have this option, due to lack to access or if the plant protective has not been registered in their country.

In addition to this, our lines of work share a sense of urgency. If “doomsday” happens, it will be too late to react. At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.

What other lessons can policymakers and other stakeholders take away from the current crisis?

The world needs to learn that we cannot use economics as the basis for disease research. We need to better foresee what could happen.

Let’s take the example of wheat blast, a devastating disease that can destroy the wheat spike and was initially confined to South America. The disease arrived in Bangladesh in 2016 and caused small economic damage, maybe 30,000 tons loss in a small geographic area — a small fraction of the national production but a disaster for the smallholder farmer, who thus would have lost her entire wheat harvest. The disease is now controlled with chemicals. But what if chemical resistance is developed and the disease spreads to the 10 million hectares in the Indo-Gangetic Plains of India and the south of Pakistan. Unlikely? But what if it happens?

Agriculture accounts for 30% of the global GDP and the research money [going to agriculture] in comparison to other areas is small. Globally only 5% of R&D is invested in research for development related to agriculture. Such a discrepancy! A million U.S. dollars invested in wheat blast research goes a long way and if you don’t do it, you risk a disaster.

If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants.

A Lloyd’s report concluded that a global food crisis could be caused by governments taking isolating actions to protect their own countries in response to a breadbasket failure elsewhere. I’m concerned that as the COVID-19 crisis continues, governments will stop exports as some did during the 2008 food price crisis, and then, even if there is enough food around, the 2008 scenario might happen again and food prices will go through the roof, with disastrous impact on the lives of the poorest.

This article was originally published by the CGIAR Research Program on Wheat (WHEAT):
Crossing boundaries: looking at wheat diseases in times of the COVID-19 crisis.

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

One-minute science: Cesar Petroli and genomic profiles

Cesar Petroli, High-throughput Genotyping Specialist with the International Maize and Wheat Improvement Center (CIMMYT), develops genomic profiles of DNA samples, generating tens or even hundreds of thousands of molecular markers. This helps the team to set up genetic diversity analysis, improve genebank collections management and identify genomic regions associated with the expression of important agronomic traits.

Watch him explain how this molecular information can help the breeding process, to ultimately help farmers face climate change and food security challenges.

Luis Ángel Rodríguez del Bosque

Luis Ángel Rodríguez del Bosque joined the CIMMYT Board of Trustees in March 2020.

RodrĂ­guez is the General Director of Mexico’s National Forestry, Crops and Livestock Research Institute (INIFAP).

Wheat curl mites: What are they and how can we fight them?

The wheat curl mite, a pesky wheat pest which can cause up to 100% yield losses, is a significant threat to wheat crops worldwide. The pest has been confirmed in Asia, Australia, Europe, North America and parts of South America. Almost invisible to the naked eye, the microscopic pest is one of the most difficult pests to manage in wheat due to its ability to evade insecticides.

We caught up with Punya Nachappa, an assistant professor at Colorado State University, at this year’s International Plant Resistance to Insects (IPRI) Workshop to discuss wheat curl mites and how to fight them. She explains how the mite cleverly avoids insecticides, how climate change is leading to increasing populations and why breeding for host plant resistance is the main defense against outbreaks.

From popcorn to roti

When asked to picture a food made of whole grains, your first thought might be a loaf of brown, whole-wheat bread. But wholegrain dishes come in all forms.

Take a virtual journey around the world to see the popular or surprising ways in which whole grains are eaten from Mexico to Bangladesh.

Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)

ICARDA’s Mustapha El-Bouhssini explains how crop pests are moving in a warming world

Insect resistance in plants is needed now more than ever. The UN, which has named 2020 as the International Year of Plant Health, estimates that almost 40% of food crops are lost annually due to plant pests and diseases.

Earlier this month, a group of wheat breeders and entomologists came together for the 24th Biannual International Plant Resistance to Insects (IPRI) Workshop, held at the International Maize and Wheat Improvement Center (CIMMYT).

We caught up with Mustapha El-Bouhssini, principal scientist at the International Center for Agricultural Research in the Dry Areas (ICARDA) to discuss insect pests and climate change. He explains how pests such as the Hessian fly — a destructive wheat pest which resembles a mosquito — and the chickpea pod borer are extending their geographical ranges in response to rising temperatures.

Whole grains

The most recent dietary guidelines provided by the World Health Organization and other international food and nutrition authorities recommend that half our daily intake of grains should come from whole grains. But what are whole grains, what are their health benefits, and where can they be found?

What are whole grains?

The grain or kernel of any cereal is made up of three edible parts: the bran, the germ and the endosperm.

Each part of the grain contains different types of nutrients.

  • The bran is the multi-layered outer skin of the edible kernel. It is fiber-rich and also supplies antioxidants, B vitamins, minerals like zinc, iron, magnesium, and phytochemicals — natural chemical compounds found in plants that have been linked to disease prevention.
  • The germ is the core of the seed where growth occurs. It is rich in lipids and contains vitamin E, as well as B vitamins, phytochemicals and antioxidants.
  • The largest portion of the kernel is the endosperm, an interior layer that holds carbohydrates, protein and smaller amounts of vitamins and minerals.
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)
The grain or kernel of maize and wheat is made up of three edible parts: the bran, the germ and the endosperm. (Graphic: Nancy Valtierra/CIMMYT)

A whole grain is not necessarily an entire grain.

The concept is mainly associated with food products — which are not often made using intact grains — but there is no single, accepted definition of what constitutes a whole grain once parts of it have been removed.

Generally speaking, however, a processed grain is considered “whole” when each of the three original parts — the bran, germ and endosperm — are still present in the same proportions as when the original one. This definition applies to all cereals in the Poaceae family such as maize, wheat, barley and rice, and some pseudocereals including amaranth, buckwheat and quinoa.

Wholegrain vs. refined and enriched grain products

Refined grain products differ from whole grains in that some or all of the outer bran layers are removed by milling, pearling, polishing, or degerming processes and are missing one or more of their three key parts.

For example, white wheat flour is prepared with refined grains that have had their bran and germ removed, leaving only the endosperm. Similarly, if a maize kernel is degermed or decorticated — where both the bran and germ are removed — it becomes a refined grain.

The main purpose of removing the bran and germ is technological, to ensure finer textures in final food products and to improve their shelf life. The refining process removes the variety of nutrients that are found in the bran and germ, so many refined flours end up being enriched — or fortified — with additional, mostly synthetic, nutrients. However, some components such as phytochemicals cannot be replaced.

A hand holds grains of wheat. (Photo: Thomas Lumpkin/CIMMYT)
A hand holds grains of wheat. (Photo: Thomas Lumpkin/CIMMYT)

Are wholegrain products healthier than refined ones?

There is a growing body of research indicating that whole grains offer a number of health benefits which refined grains do not.

Bran and fiber slow the breakdown of starch into glucose, allowing the body to maintain a steady blood sugar level instead of causing sharp spikes. Fibers positively affect bowel movement and also help to reduce the incidence of cardiovascular diseases, the incidence of type 2 diabetes, the risk of stroke, and to maintain an overall better colorectal and digestive health. There is also some evidence to suggest that phytochemicals and essential minerals — such as copper and magnesium — found in the bran and germ may also help protect against some cancers.

Despite the purported benefits, consumption of some wholegrain foods may be limited by consumer perception of tastes and textures. The bran in particular contains intensely flavored compounds that reduce the softness of the final product and may be perceived to negatively affect overall taste and texture. However, these preferences vary greatly between regions. For example, while wheat noodles in China are made from refined flour, in South Asia most wheat is consumed wholegrain in the form of chapatis.

Popcorn is another example of a highly popular wholegrain food. It is a high-quality carbohydrate source that, consumed naturally, is not only low in calories and cholesterol, but also a good source of fiber and essential vitamins including folate, niacin, riboflavin, thiamin, pantothenic acid and vitamins B6, A, E and K. One serving of popcorn contains about 8% of the daily iron requirement, with lesser amounts of calcium, copper, magnesium, manganese, phosphorus, potassium and zinc.

Boiled and roasted maize commonly consumed in Africa, Asia and Latin America are other sources of wholegrain maize, as is maize which has been soaked in lime solution, or “nixtamalized.” Depending on the steeping time and method of washing the nixtamalized kernels, a portion of the grains used for milling could still be classed as whole.

Identifying wholegrain products

Whole grains are relatively easy to identify when dealing with unprocessed foods such as brown rice or oats. It becomes more complicated, however, when a product is made up of both whole and refined or enriched grains, especially as color is not an indicator. Whole wheat bread made using whole grains can appear white in color, for example, while multi-grain brown bread can be made primarily using refined flour.

In a bid to address this issue, US-based nonprofit consumer advocacy group the Whole Grains Council created a stamp designed to help consumers identify and select wholegrain products more easily. As of 2019, this stamp is used on over 13,000 products in 61 diïŹ€erent countries.

However, whether a product is considered wholegrain or not varies widely between countries and individual agencies, with a lack of industry standardization meaning that products are labelled inconsistently. Words such as “fiber,” “multigrain” and even “wholegrain” are often used on packaging for products which are not 100% wholegrain. The easiest way to check a product’s wholegrain content is to look at the list of ingredients and see if the flours used are explicitly designated as wholegrain. These are ordered by weight, so the first items listed are those contained more heavily in the product.

As a next step, an ad-hoc committee led by the Whole Grain Initiative is due to propose specific whole grain quantity thresholds to help establish a set of common criteria for food labelling. These are likely to be applied worldwide in the event that national definitions and regulations are not standardized.

Breaking Ground: Aparna Das leads efficient and demand-driven maize research

Getting a good maize harvest, or just enough to feed the family, has always been a challenge for maize small farmers in developing countries. Faced with variable rainfall, heat waves, insect attacks or diseases, they rarely yield more than two tons of maize per hectare, and sometimes lose their crops altogether. Climate change, invasive pests like fall armyworm or new diseases like maize lethal necrosis could jeopardize even further the livelihoods of maize farmers and trigger severe food crises.

In this scenario, the lives and income of maize farmers rely on good seeds: seeds that are climate-resilient, pest- and disease-resistant, and that grow and yield well under local conditions, often with minimum inputs.

“That is where the maize improvement research at the International Maize and Wheat Improvement Center (CIMMYT) plays a crucial role in this challenge of food security. You need to develop the right location-specific varieties that farmers want, that partner seed companies are willing to produce, in a cost- and time-efficient way,” says Aparna Das. She joined CIMMYT’s Global Maize research program in August 2018 as Technical Program Manager.

“My role is to work  with and guide the Breeding and Seed Systems team, so that our research is more client- and product-oriented, efficient, and so that there is a better coordination and monitoring, aligned with the available resources and skills within CIMMYT, and with our numerous public and private partners,” she explains.

Value-for-money farmer impact

An important activity Das coordinated recently is a series of collaborative product profiling workshops with CIMMYT’s partners. Integrating the priorities of the national agricultural research systems and partner seed companies, this exercise reviewed and redefined what maize traits and attributes research should focus on in years to come. After this consultation, partners not only pick up CIMMYT germplasm based on trial data, but they can also verify if it fits with their own profile, to make sure that the traits they want are there. It makes breeding much more targeted and efficient.

“Product profiling has already influenced our research. For instance, all partners mentioned husk cover as a ‘must-have’ trait, because you have less insect attacks and grain spoilage,” Das explains. “Although it was considered a base trait, the breeders did not consider it systematically during their maize line selection and product advancement. Now it is integrated,” she notes.

“Our impact should not be limited to the number of varieties released or the number of papers published, but also how many varieties are picked up by partners, adopted by farmers and scaled up,” Das points out.

Breeders and seed systems specialists have worked together to estimate and track the costs of delivering products. Teams responsible for product profiles can now, through simulation, test different solutions and see what costs could be reduced or adjusted to develop the hybrid.

Das enjoys this type of collaboration. “Managing behavioral change is a key part of my role, being able to work with different teams and cultures, which makes my job so interesting,” she says.

Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)
Plates of boiled and roasted maize are displayed for tasting during a farmer participatory varietal selection exercise in Embu, Kenya, in August 2019. Flavors of varieties are very distinct and could explain why some old varieties are still preferably grown by farmers. (Photo: S. Palmas/CIMMYT)

An out-of-the-book thinker in a men’s world

Plant breeding is a male-dominated world but Das is used to fitting in as a minority. Originally from West Bengal, she grew up in Ludhiana, another Indian state and a different culture. She learned genetics and plant breeding at Punjab Agricultural University (PAU) in Ludhiana. Discovering the new field of molecular breeding, at its infancy twenty-five years ago, was an exciting challenge.

At PAU, Das pursued crop improvement research, first in wheat and potato, and later in rice genetics. She received an award from India’s Department of Science and Technology under the Young Scientist Program for her work on jumping genes in basmati rice, aimed at creating shorter and more productive basmati varieties while maintaining the basmati aroma.

Later she joined the International Rice Research Institute (IRRI) to work on the development of Golden Rice, a provitamin A-rich variety, through genetic engineering.

“Being a woman in plant breeding, especially as a breeder, is not that common. Women are not expected to do plant breeding fieldwork, away from the lab and offices. But I did not back off. I did my rice fieldwork in the paddy fields, at 40 degrees, all on my own. I believe that women bring a level of precision that is very important in breeding.”

Bridging public and private sectors

After ten years of public research, she moved to the private seed sector, to learn how seed companies integrate farmers’ needs to their research pipeline, and then channel this research to deliver to millions of farmers. “A big lesson from corporations is the value for money at each stage of their research, and that market research is instrumental to really understand farmers’ needs and guide breeding,” she notes.

After a decade in the private sector, Das was keen to move on and use her experience in the nonprofit sector. Then she joined CIMMYT. “This opportunity of technical program manager was timely. I knew the strengths of CGIAR, having highly educated scientists and the great potential outreach of the research. I knew where crop research could be improved, in converting basic research into demand-driven research.”

“Since my time at IRRI a decade ago, I realized things had moved on in the CGIAR system. Seed systems, product profiling and value chain research are now fully integrated in the Global Maize program. It is a crucial time to be here at CIMMYT. With the CGIAR reform, with the climate emergency, and emerging pests and diseases, we have to be even more inventive and reactive to continue to deliver greater impact,” she concludes.

New publications: Breeders can benefit much more from phenotyping tools

In crop research fields, it is now a common sight to see drones or other high-tech sensing tools collecting high-resolution data on a wide range of traits — from simple measurement of canopy temperature to complex 3D reconstruction of photosynthetic canopies.

This technological approach to collecting precise plant trait information, known as phenotyping, is becoming ubiquitous, but according to experts at the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions, breeders can profit much more from these tools, when used judiciously.

In a new article in the journal Plant Science, CIMMYT researchers outline the different ways in which phenotyping can assist breeding — from large-scale screening to detailed physiological characterization of key traits — and why this methodology is crucial for crop improvement.

“While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models,” explain the authors.

Their review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translations research to deliver other new breeding resources, and how these different categories of phenotyping apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.

The authors make the case for breeders to invest in phenotyping, particularly in light of the imperative to breed crops for warmer and harsher climates. However, wide scale adoption of sophisticated phenotyping methods will only occur if new techniques add efficiency and effectiveness.

In this sense, “breeder-friendly” phenotyping should complement existing breeding approaches by cost-effectively increasing throughput during segregant selection and adding new sources of validated complex traits to crossing blocks. With this in mind, stringent criteria need to be applied before new traits or phenotyping protocols are incorporated into mainstream breeding pipelines.

Read the full article in Plant Science:
Breeder friendly phenotyping.

A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad ObregĂłn, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)
A researcher flies a UAV to collect field data at CIMMYT’s experiment station in Ciudad ObregĂłn, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Genome-wide association study to identify genomic regions influencing spontaneous fertility in maize haploids. 2019. Chaikam, V., Gowda, M., Nair, S.K., Melchinger, A.E., Prasanna, B.M. In: Euphytica v. 215, no. 8, art. 138.
  2. Adapting irrigated and rainfed wheat to climate change in semi-arid environments: management, breeding options and land use change. 2019. Hernandez-Ochoa, I.M., Pequeno, D.N.L., Reynolds, M.P., Md Ali Babar, Sonder, K., Molero, A., Hoogenboom, G., Robertson, R., Gerber, S., Rowland, D.L., Fraisse, C.W., Asseng, S. In: European Journal of Agronomy.
  3. Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. 2019. Gardiner, L.J., Brabbs, T., Akhunova, A., Jordan, K., Budak, H., Richmond, T., Sukhwinder-Singh, Catchpole, L., Akhunov, E., Hall, A.J.W. In: GigaScience v. 8, no. 4, art. giz018.
  4. Rethinking technological change in smallholder agriculture. 2019. Glover, D., Sumberg, J., Ton, G., Andersson, J.A., Badstue, L.B. In: Outlook on Agriculture v. 48, no. 3, p. 169-180.
  5. Food security and agriculture in the Western Highlands of Guatemala. 2019. Lopez-Ridaura, S., Barba‐Escoto, L., Reyna, C., Hellin, J. J., Gerard, B., Wijk, M.T. van. In: Food Security v. 11, no. 4, p. 817-833.
  6. Agronomic, economic, and environmental performance of nitrogen rates and source in Bangladesh’s coastal rice agroecosystems. 2019. Shah-Al Emran, Krupnik, T.J., Kumar, V., Ali, M.Y., Pittelkow, C. M. In: Field Crops Research v. 241, art. 107567.
  7. Highlights of special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Zhendong Zhao, Cheng Shun-He In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 207-209.
  8. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. 2019. Bhavani, S., Hodson, D.P., Huerta-Espino, J., Randhawa, M.S., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 210-224.
  9. China-CIMMYT collaboration enhances wheat improvement in China. 2019. He Zhonghu, Xianchun Xia, Yong Zhang, Zhang Yan, Yonggui Xiao, Xinmin Chen, Li Simin, Yuanfeng Hao, Rasheed, A, Zhiyong Xin, Zhuang Qiaosheng, Ennian Yang, Zheru Fan, Yan Jun, Singh, R.P., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6. No. 3, p. 233-239.
  10. International Winter Wheat Improvement Program: history, activities, impact and future. 2019. Morgounov, A.I., Ozdemir, F., Keser, M., Akin, B., Payne, T.S., Braun, H.J. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 240-250.
  11. Genetic improvement of wheat grain quality at CIMMYT. 2019. Guzman, C., Ammar, K., Velu, G., Singh, R.P. In: Frontiers of Agricultural Science and Engineering v. 6, no. 3, p. 265-272.
  12. Comments on special issue on “Wheat Genetics and Breeding”. 2019. He Zhonghu, Liu Xu In: Frontiers of Agricultural Science and Engineering, v. 6. No. 3, p. 309.
  13. Spectral reflectance indices as proxies for yield potential and heat stress tolerance in spring wheat: heritability estimates and marker-trait associations. 2019. Caiyun Liu, Pinto Espinosa, F., Cossani, C.M., Sukumaran, S., Reynolds, M.P. In: Frontiers of Agricultural Science and Engineering, v. 6, no. 3, p. 296-308.
  14. Beetle and maize yield response to plant residue application and manual weeding under two tillage systems in northern Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Applied Soil Ecology v. 144, p. 139-146.
  15. Optimizing dry-matter partitioning for increased spike growth, grain number and harvest index in spring wheat. 2019. Rivera Amado, A.C., Trujillo, E., Molero, G., Reynolds, M.P., Sylvester Bradley, R., Foulkes, M.J. In: Field Crops Research v. 240, p. 154-167.
  16. Small businesses, potentially large impacts: the role of fertilizer traders as agricultural extension agents in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Journal of Agribusiness in Developing and Emerging Economies v. 9, no. 2, p. 109-124.
  17. Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda. 2019. Simtowe, F.P., Marenya, P. P., Amondo, E., Regasa, M.W., Rahut, D.B., Erenstein, O. In: Agricultural and Food Economics v. 7. No. 1, art. 15.
  18. Hyperspectral reflectance-derived relationship matrices for genomic prediction of grain yield in wheat. 2019. Krause, M., Gonzalez-Perez, L., Crossa, J., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Singh, R.P., Dreisigacker, S., Poland, J.A., Rutkoski, J., Sorrells, M.E., Gore, M.A., Mondal, S. In: G3: Genes, Genomes, Genetics v.9, no. 4, p. 1231-1247.
  19. Unravelling the complex genetics of karnal bunt (Tilletia indica) resistance in common wheat (Triticum aestivum) by genetic linkage and genome-wide association analyses. 2019. Emebiri, L.C., Sukhwinder-Singh, Tan, M.K., Singh, P.K., Fuentes DĂĄvila, G., Ogbonnaya, F.C. In: G3: Genes, Genomes, Genetics v. 9, no. 5, p. 1437-1447.
  20. Healthy foods as proxy for functional foods: consumers’ awareness, perception, and demand for natural functional foods in Pakistan. 2019. Ali, A., Rahut, D.B. In: International Journal of Food Science v. 2019, art. 6390650.
  21. Northern Himalayan region of Pakistan with cold and wet climate favors a high prevalence of wheat powdery mildew. 2019. Khan, M.R., Imtiaz, M., Farhatullah, Ahmad, S., Sajid Ali.In: Sarhad Journal of Agriculture v. 35, no. 1, p. 187-193.
  22. Resistance to insect pests in wheat—rye and Aegilops speltoides Tausch translocation and substitution lines. 2019. Crespo-Herrera, L.A., Singh, R.P., Sabraoui, A., Moustapha El Bouhssini In: Euphytica v. 215, no. 7, art.123.
  23. Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia. 2019. Amondo, E., Simtowe, F.P., Rahut, D.B., Erenstein, O. In: International Journal of Climate Change Strategies and Management v. 11, no. 4, p. 570-591.
  24. Review: new sensors and data-driven approaches—A path to next generation phenomics. 2019. Roitsch, T., Cabrera-Bosquet, L., Fournier, A., Ghamkhar, K., JimĂ©nez-Berni, J., Pinto Espinosa, F., Ober, E.S. In: Plant Science v. 282 p. 2-10.
  25. Accountability mechanisms in international climate change financing. 2019. Basak, R., van der Werf, E. In: International Environmental Agreements: Politics, Law and Economics v. 19, no. 3, p. 297-313.
  26. Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. 2019. Cobb, J.N., Juma, R.U., Biswas, P.S., Arbelaez, J.D., Rutkoski, J., Atlin, G.N., Hagen, T., Quinn, M., Eng Hwa Ng. In: Theoretical and Applied Genetics v. 132, no. 3, p. 627-645.

One-minute science: Suchismita Mondal on breeding resilient wheat

Reduced water availability for irrigation and increasing temperatures are of great concern. These two factors can considerably affect wheat production and reduce grain yields.

Watch CIMMYT Wheat Breeder Suchismita Mondal explain — in just one minute — how breeders are developing wheat varieties that have stable grain yield under low water availability and high temperatures.

In new hostile climate, drought-tolerant crops, systems needed on unprecedented scale

Last year, droughts devastated staple food crops across the developing world, cutting production by about half in some countries. A stream of reports from Central America, Eastern and Southern Africa as well as the Asia-Pacific region painted a grim picture of suffering and upheaval.

Extreme weather, with its appalling consequences, demands an extraordinary response. Redoubled efforts must focus on building resilience into the developing worldÂŽs major food systems.

Read more here: https://www.scidev.net/global/agriculture/opinion/in-new-hostile-climate-drought-tolerant-crops-systems-needed-on-unprecedented-scale.html

For a food system at risk, women are key yet often overlooked

On March 8, the world celebrates International Women’s Day, and the 25th anniversary of the Beijing Declaration and Platform for Action, the most progressive roadmap for the empowerment of women and girls, everywhere. In an op-ed in The Independent, Claudia Sadoff, CGIAR Gender Champion and Director General of the International Water Management Institute (IWMI), declares that our climate change-ravaged food systems cannot wait for the gradual progress of gender quality.

From locust swarms, hurricanes, wildfires and emerging famines, climate-related disasters are taking place around the world and our fragile food systems are on the front line.

Our food systems are in need of urgent support, and rural women play a critical role in reversing the problem. Research has found that rural women are disproportionately impacted by the effects of climate change, yet their significant contributions to food systems receive only a fraction of the focus they deserve.

Rural women are hamstrung by gender bias in food systems, home life, economics and culture. Barriers to accessing finance, insurance, high-quality seed, fertilizer, additional labor and markets result in women producing 20-30% less per hectare than men.

Women’s unpaid daily household tasks are often backbreaking and time-consuming. Women are responsible for collecting water and fuel for cooking and tending kitchen gardens and family-owned livestock. With African women producing up to 80% of food for their household, these women have less opportunity to grow and sell foods at market to improve their financial position.

Breaking free of this gender bias requires a rethink on how rural women are reflected in, and participate in, society at large, says Sadoff in her op-ed, published in The Independent on March 7, 2020.

So, what does this rethink look like? How can we enable women and, in the process, strengthen our food systems?

Sadoff has summarized this huge undertaking into three key steps: (1) Ensure rural women can invest in productivity in their farms, (2) ease the burden of daily household tasks, and (3) build research systems and cultures to be more gender equitable in the long run.

Through One CGIAR and the Generating Evidence and New Directors for Equitable Results (GENDER) Platform, we are proud to say that we are working together to achieve these three objectives. Closing the gender gap completely will not happen in a generation but taking steps towards achieving greater gender equality will help to build the resilience of our food systems, bolster rural economies and improve rural livelihoods.

With UN Women, One CGIAR supports #GenerationEquality, for the benefit of all.

Read Claudia Sadoff’s article on The Independent:
Unless we empower women farmers, we may not have enough to feed the planet.

This summary was originally published on the CGIAR website:
For a food system at risk, women are key yet often overlooked.

Cover photo: C. de Bode/CGIAR.

Explore our coverage of International Women’s Day 2020.
Explore our coverage of International Women’s Day 2020.