Skip to main content

Location: Global

What can the last 30 years of research tell us?

A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)

Global climate change represents an existential threat to many of the world’s most vulnerable farmers, introducing new stresses and amplifying the unpredictability and risk inherent in farming. In low- and middle-income countries that are heavily reliant on domestic production, this increased risk and unpredictability threatens disastrous consequences for the food security and wellbeing of rural and urban populations alike.

Given the stakes, substantial investments have been made towards developing climate-resilient crops. But what happens when the innovations widely considered to be beneficial don’t gain traction on the ground, among those who stand to lose the most from inaction? What can researchers, policymakers and funders do to ensure that the most vulnerable rural populations don’t lose out on the benefits?

These are the questions posed by a new scoping review co-authored by Kevin Pixley, interim deputy director general for research and partnerships and director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

The paper relies on a descriptive analysis of 202 studies from the past 30 years which assess the determinants of climate-resilient crop adoption by small-scale producers in low- and middle-income countries. These were identified through an extensive search and screening process of multiple academic databases and grey literature sources, and selected from an initial pool of over 6,000 articles.

Taking stock

The authors identified interventions determining adoption across the literature surveyed. A key theme which emerged was the need for context-sensitive technical and financial support for climate-resilient crop adoption. Nearly 16% of the studies found that adoption depended on access to relevant extension programs. Around 12% identified access to credit and other financial instruments as key, while a further 12% identified the implementation of community programs supporting climate-resilient crops as a determining factor.

However, the study stresses that there are no one-size-fits-all solutions. Increased adoption of climate-resilient agricultural innovations will depend on interventions being highly context informed. For example, the review shows that while some studies identified older farmers as more reluctant to adopt new technologies, an equal number of studies found the opposite.

Moreover, the review identified important opportunities for further research. Gender-based approaches, for example, remain a blind spot in the literature. The majority of studies reviewed only included women if they were household heads, thus overlooking the role they may play in influencing the adoption of new agricultural technologies in male-headed households.

A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)
A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)

Driving evidence-based policymaking

The review was published as part of a collection of 10 research papers produced as part of Ceres2030: Sustainable Solutions to End Hunger. The project, a partnership between Cornell University, the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD), distills decades of scientific and development research into a clear menu of policy options for funders committed to achieving the UN’s Sustainable Development Goal 2: Ending world hunger by 2030.

The full collection of papers was published on October 12 across various Nature Research journals.

Speaking at a German government event on achieving Sustainable Development Goal 2, Bill Gates praised the Ceres2030 initiative, noting that “nothing on this scale has ever been done because we lacked the tools to analyze this complex information. But with the new research, solid evidence will drive better policymaking.”

He went on to highlight the CGIAR’s leadership role in these efforts, saying: “The CGIAR system is a key global institution that is investing in these approaches. It’s a critical example of how innovation can lead the way.”

Digital revolution can transform agri-food systems

A digital transformation is changing the face of international research for development and agri-food systems worldwide. This was the key takeaway from the 4th annual CGIAR Big Data in Agriculture Convention held virtually last month.

“In many countries, farmers are using data to learn about market trends and weather predictions,” said Martin Kropff, director general of the International Maize and Wheat Improvement Center (CIMMYT), in a video address to convention participants. “But many still do not have access to everything that big data offers, and that is where CIMMYT and partners come in.”

As a member of CGIAR, CIMMYT is committed to ensuring that farmers around the world get access to data-driven solutions and information, while at the same time ensuring that the data generated by farmers, researchers and others is used ethically.

According to CGIAR experts and partner organizations, there are four key areas with the potential to transform agriculture in the next 10 years: data, artificial intelligence (AI), digital services and sector intelligence.

Key interventions will involve enabling open data and responsible data use, developing responsible AI, enabling and validating bundled digital services for food systems, and building trust in technology and big data — many of which CIMMYT has been working on already.

Harnessing data and data analytics

Led by CIMMYT, the CGIAR Excellence in Breeding (EiB) team have been developing the Enterprise Breeding System (EBS) — a single data management software solution for global breeding programs. The software aims to provide a solution to manage data across the entire breeding data workflow — from experiment creation to analytics — all in a single user-friendly dashboard.

CIMMYT and partners have also made significant breakthroughs in crop modelling to better understand crop performance and yield gaps, optimize planting dates and irrigation systems, and improve predictions of pest outbreaks. The Community of Practice (CoP) on Crop Modeling, a CGIAR initiative led by CIMMYT Crop Physiologist Matthew Reynolds, aims to foster collaboration and improve the collection of open access, easy-to-use data available for crop modelling.

The CIMMYT-led Community of Practice (CoP) on Socio-Economic Data continues to work at the forefront of making messy socio-economic data interoperable to address urgent and pressing global development issues in agri-food systems. Data interoperability, one of the foundational components of the FAIR data standards supported by CGIAR, addresses the ability of systems and services that create, exchange and consume data to have clear, shared expectations for its content, context and meaning. In the wake of COVID-19, the world witnessed the need for better data interoperability to understand what is happening in global food systems, and the CoP actively supports that process.

The MARPLE team carries out rapid analysis using the diagnostic kit in Ethiopia. (Photo: JIC)
The MARPLE team carries out rapid analysis using the diagnostic kit in Ethiopia. (Photo: JIC)

Improving data use and supporting digital transformation

In Ethiopia, the MARPLE (Mobile And Real-time PLant disEase) diagnostic kit — developed by CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and the John Innes Centre (JIC) — has helped researchers, local governments and farmers to rapidly detect diseases like wheat rust in the field. The suitcase-sized kit cuts down the time it takes to detect this disease from months to just 48 hours.

In collaboration with research and meteorological organizations including Wageningen University and the European Space Agency (ESA), CIMMYT researchers have also been developing practical applications for satellite-sourced weather data. Crop scientists have been using this data to analyze maize and wheat cropping systems on a larger scale and create more precise crop models to predict the tolerance of crop varieties to stresses like drought and heatwaves. The aim is to share the climate and weather data available on an open access, user-friendly database.

Through the AgriFoodTrust platform — a new testing and learning platform for digital trust and transparency technologies – CIMMYT researchers have been experimenting with technologies like blockchain to tackle issues such as food safety, traceability, sustainability, and adulterated and counterfeit fertilizers and seeds. Findings will be used to build capacity on all aspects of the technologies and their application to ensure this they are inclusive and usable.

In Mexico, CIMMYT and partners have developed an application which offers tailored recommendations to help individual farmers deal with crop production challenges sustainably. The AgroTutor app offers farmers free information on historic yield potential, local benchmarks,  recommended agricultural practices,  commodity price forecasting and more.

Stepping up to the challenge

As the world becomes increasingly digital, harnessing the full potential of digital technologies is a huge area of opportunity for the agricultural research for development community, but one that is currently lacking clear leadership. As a global organization already working on global problems, it’s time for the CGIAR network to step up to the challenge. Carrying a legacy of agronomic research, agricultural extension, and research into adoption of technologies and innovations, CGIAR has an opportunity to become a leader in the digital transformation of agriculture.

Currently, the CGIAR System is coming together as One CGIAR. This transformation process is a dynamic reformulation of CGIAR’s partnerships, knowledge, assets, and global presence, aiming for greater integration and impact in the face of the interdependent challenges facing today’s world.

“One CGIAR’s role in supporting digitalization is both to improve research driven by data and data analytics, but also to foster the digitalization of agriculture in low and lower-middle income countries,” said CIMMYT Economist Gideon Kruseman at a session on Exploring CGIAR Digital Strategy at last month’s Big Data convention.

“One CGIAR — with its neutral stance and its focus on global public goods — can act as an honest broker between different stakeholders in the digital ecosystem.”

Cover photo: A researcher demonstrates the use of the AgroTutor app on a mobile phone in Mexico. (Photo: Francisco Alarcón/CIMMYT)

Crop Modeling community of practice

The Community of Practice on Crop Modeling is part of the CGIAR Platform for Big Data in Agriculture and encompasses a wide range of quantitative applications, based around the broad concept of parametrizing interactions within and among the main drivers of cropping systems. These are namely: Genotype, Environment, Management and Socioeconomic factors (GEMS) to provide information and tools for decision support. The Community of Practice was formed in 2017 and is led by Wheat Physiologist Matthew Reynolds at the International Maize and Wheat Improvement Center (CIMMYT) in Texcoco, Mexico.

Crop modeling has already contributed to a better understanding of crop performance and yield gaps; predictions of potential pest and disease epidemics; more efficient irrigation and fertilization systems, and optimized planting dates. These outputs help decision makers look ahead and prepare their research and extension systems to fight climate change where it is most needed. However, there is a significant opportunity — and need — to improve the global coordination of crop modeling efforts in agricultural research. This will, in turn, greatly improve the world’s ability to develop more adaptive, resilient crops and cropping systems.

Our Community of Practice aims to promote a better-coordinated and more standardized approach to crop modeling in agricultural research. With over 900 members involving CGIAR centers and a wide range of international partners, the Crop Modeling Community of Practice is already facilitating and sharing knowledge, resources, “model-ready” data, FAIR (Findable, Accessible, Interoperable, Reusable) data principles, and other useful information; while promoting capacity building and collaboration within the CGIAR and its community.

Get more information about the Crop Modeling Community of Practice on the Big Data website.

Join the Crop Modeling mailing list to get information about publications, webinars, new tools, updates and collaboration opportunities.

Connect to our LinkedIn group: Crop Modeling CoP.

Esther Carrillo

Esther Carrillo joined CIMMYT in 2011. Since 2019 she serves as General Counsel and Director of Legal Department, a service area dedicated to supporting CIMMYT’s mission by providing legal advice to foster sound decision-making in all areas of its global operations. Striving to be a problem-solver committed to helping resolve issues in a cost-effective, practical, expeditious, reliable, professional, and efficient manner.

A Mexican national, Carrillo is an experienced and seasoned attorney with over twenty years of experience in international procurement, corporate, international and administrative law, government relations, labor relations, project and contract management, and compliance.

Carrillo holds a J.D. from the University of Guadalajara and a LL.M. in International Law from the University of Heidelberg.

Webinar explores continuous improvement approach to plant breeding

CIMMYT field workers working on wheat crossing as part of the breeding process.
CIMMYT field workers working on wheat crossing as part of the breeding process. (Photo: CIMMYT)

A recent webinar organized by the CGIAR Excellence in Breeding Platform (EiB) and Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, invited national agricultural research systems, seed companies, other interested breeders to explore tools, techniques and transitions toward a continuous improvement culture in breeding.

Continuous improvement (CI) is an approach that is being used to modernize breeding programs, to ensure they consistently get significantly improved varieties in farmers’ fields. It helps teams create a new way of thinking and working. The goal is to ensure striving for excellence becomes part of an organizational culture. To get there, CI provides a set of clear principles and tools to help diagnose problems and then solve them.

The webinar featured a leading international CI expert —Theresa Heitman, an EiB consultant — who introduced the Lean Improvement Methodology, an approach to help breeders grow their programs and improve results without adding more resources. It examines the way breeders create value for the customer, using specific methods and tools to reduce or eliminate non-value added activities.

Other presenters included B.M. Prasanna from the CGIAR Research Program on Maize, Gustavo Teixeira and Theresa Heitman from EiB and Dan Makumbi from EiB and the International Maize and Wheat Improvement Center (CIMMYT), Marcelo Almeida from Syngenta, and Sharifah Shahrul from the International Rice Research Center (IRRI).

The CI webinar is part of a series of webinars co-organized by EiB and AGG. Forthcoming sessions will cover assessing genetic gains and other topics.

This story was originally posted on the CGIAR Excellence in Breeding Platform website.

CIMMYT releases its first ever maize genetic resource lines

Maize and wheat fields at CIMMYT's El BatĂĄn experimental station.
Maize and wheat fields at CIMMYT’s El BatĂĄn experimental station. (Photo: Alfonso CortĂ©s/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) is pleased to announce the release of a new category of maize inbred lines called CIMMYT Maize Genetic Resource Lines (CMGRL). The CMGRLs are derived from crosses between elite CIMMYT lines and landrace accessions, populations or synthetics from the CIMMYT Germplasm Bank.

Although high standards of yield and agronomic performance are applied in their selection, CMGRLs are not intended to be used directly in commercial hybrids but rather by breeders as sources of novel alleles for traits of economic importance. These lines should also be of interest to maize researchers who are not breeders but are studying the underlying genetic mechanisms of abiotic and biotic traits.

A tar spot disease resistant line next to a non-resistant line.
A tar spot disease resistant line next to a non-resistant line. (Photo: Terry Molnar/CIMMYT)

Currently the maize genetic resources breeding team has projects in drought tolerance, heat tolerance, tar spot complex (TSC) disease resistance and in the development of lines and hybrids with blue kernel color. For all of these projects, the best lines identified for a given trait objective will be recombined to produce open-pollinated varieties that will be made available to the public.

The inaugural class of CMGRLs includes five subtropical adapted lines for tolerance to drought during flowering and grain-fill and four tropical adapted lines for TSC resistance. Both phenotypic and genotypic data will be published online for all CMGRL releases. CIMMYT will periodically release CMGRLs as superior lines are identified for economically important abiotic and biotic stresses as well as end-use traits.

Release Summary:

CMGRL Name Trait Target Type Level Landrace Donor Parent Landrace Country of Origin Recurrent Parent Heterotic Group Adaptation
CMGRLB001 TSC resistance BC1 S5 OAXA280 Mexico CML576 B Tropical
CMGRLB002 TSC resistance BC1 S5 OAXA280 Mexico  CML576 B Tropical
CMGRLB003 TSC resistance BC1 S5 GUAT153 Guatemala  CML576 B Tropical
CMGRLB004 TSC resistance BC1 S5 GUAT153 Guatemala  CML576 B Tropical
CMGRLB005 Drought tolerance BC1 S5 ARZM12193 Argentina  CML376 B Subtropical
CMGRLB006 Drought tolerance BC1 S5 ARZM12237 Argentina CML376 B Subtropical
CMGRLB007 Drought tolerance BC1 S5 SNLP169 Mexico CML376 B Subtropical
CMGRLB008 Drought tolerance BC1 S5 SNLP17 Mexico CML376 B Subtropical
CMGRLB009 Drought tolerance BC1 S5 SNLP17 Mexico CML376 B Subtropical

 

Full details including phenotypic and genotypic data on the nine lines are available here. To order a 50-kernel seed sample of the CMGRLs, please contact Terry Molnar.

AgriFoodTrust platform gains momentum in quest for more inclusive, transparent agriculture

The AgriFoodTrust platform is gaining traction in its quest to bring inclusive and usable trust and transparency technologies to the agri-food sector according to platform co-founder and International Maize and Wheat Improvement Center (CIMMYT) Economist Gideon Kruseman.

Since its launch in late February, researchers from the platform have been experimenting with technologies like blockchain to tackle issues such as food safety, traceability, sustainability, and adulterated and counterfeit fertilizers and seeds.

Experts from one of the platform’s leading partners, The New Fork, recently teamed up with HarvestPlus and El-Kanis and Partners to investigate solutions to the problem of counterfeit biofortified seeds in Nigeria. They will work together on a public open blockchain to verify biofortified seeds, so that farmers know that the seeds they are buying are authentic. Building on the concept published in one of the Community of Practice on Socio-economic Data reports, the team formulated a project to pilot the idea.

The project is a finalist in the INSPIRE challenge, a CGIAR initiative to leverage the global food security expertise of CGIAR with expert industry partners to link digital technologies to impact in developing economies.

Finalists in the challenge will come together to pitch their projects during a session at the CGIAR Big Data in Agriculture Convention, a free virtual event taking place Oct 21 – 23. Registration for the convention is still open.

The convention will also bring together experts from the AgriFoodTrust platform to discuss transparency, accountability and sustainability in food systems using digital technologies like blockchain in a pre-recorded session on October 21 at 12:15 UTC. The session will provide an introduction to the platform and its philosophy, as well as contributions from platform stakeholders and partners such as The New Fork, GIZ, the organizing committee of Strike Two, AgUnity, the Carbon Drawn Initiative, Bluenumber, Scantrust and blockchain-for-good enthusiasts like Chris Addison and Eloise Stancioff.

Key stakeholders, interested researchers and organizations will meet virtually in a pre-convention event to discuss how to accelerate the use of digital trust and transparency technologies through the sharing of knowledge and capacity development. Participation in this event requires registration.

Biofortified orange maize.
Experimental harvest of orange maize biofortified with provitamin A in Zambia. (Photo: CIMMYT)

Building a more transparent food sector though blockchain

Blockchain is a decentralized, digital ledger for keeping records. Digital information, or blocks, is stored in a public database, or chain, and shared with users. These blocks can be accessed by users in real time, and any alterations made to this information can be seen by users. The aim is to reduce risk, eliminate fraud and bring transparency to digital assets.

The AgriFoodTrust platform teams up researchers from CGIAR centers with academia, private sector agri-food companies, tech start-ups and development practitioners to experiment with blockchain and related trust technologies in the agri-food sector. The group is also testing different business models and partnerships with a mission to create a reliable knowledge base and share their findings.

Findings on the new platform will be used to build capacity on all aspects of the technologies and their application to ensure they are inclusive and usable.

Researchers hope that solutions like QR codes — a type of matrix barcode that can be scanned by smartphones — can be used to tackle challenges like preventing the sale of counterfeit seeds and adulterated fertilizer to farmers. Other uses include ensuring food traceability and sustainability, and monitoring and improving the implementation of performance of international agreements related to agriculture.

The technology could even be applied to prevent farmers from burning crop residues — a major cause of air pollution and greenhouse gas emissions in India — by offering credits or tokens to farmers who do not engage in such practices, said Kruseman.

Much like in high-end coffee products, where customers willingly pay more for a guarantee of high quality, tokenization and digital trust technologies could allow customers of wheat flour products in India to donate extra for a certification that no crop residues were burned by the farmer.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas of India. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

By 2050, farmers will need to grow enough food to feed 10 billion people, using less land and fewer resources. Their job will be made even more difficult thanks to the challenges of climate change. Achieving a more inclusive, resilient and sustainable food system is needed now more than ever. It is hoped that digital trust technologies can help us respond, manage or avert crises in the future.

For more information on the INSPIRE challenge and the CGIAR Big Data in Agriculture Convention and how to attend this free virtual event, visit the event website.

Building a better future

The ongoing COVID-19 pandemic has wreaked havoc on institutions, systems, communities and individuals while, at the same time, laying bare structural inequalities — including gender disparities.  

Common gender norms mean that women are on the frontline collecting water, fuel, fodder and provide care work, both in the home and through formal employment, where 70% of global healthcare workers are women. Additionally, the sectors that women often rely on for income and food security are stressed by border closures, restricted transportation and social distancing guidelines. 

Women are also instrumental in the fight against shocks, including the facilitation of better COVID-19 adaptation strategies. In India women’s self-help groups are helping to feed people, provide health information and create face masks. Initiatives in Senegal and the Democratic Republic of Congo place women at the center of efforts to combat the virus. At the national level, initial research suggests that women leaders have managed the pandemic better, recording fewer infections and a lower death rate. 

This dichotomy, one where women are essential for combatting system shocks while simultaneously underrepresented in decision-making spaces, illustrates why gender research, especially research that aims to understand women’s roles as active agents of change, is essential. Gender research supports more equitable outcomes during and post-crisis, while helping to build more resilient systems.  

The International Day of Rural Women is an opportunity to celebrate the importance of women for the future of rural communities, while also examining how gender research, like that undertaken by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), plays an instrumental role in supporting them.  

Gender and the climate crisis

Gender research is also important in combatting another crisis we are facing — the climate crisis. For example, climate-smart agriculture (CSA) has the potential to reduce agriculture’s gender gap. To close the gap, women must be included in the design of CSA interventions, with special attention on how CSA technologies can reduce or add to the agriculture workloads that women face. Research on dairy intensification from Kenya points to the complicated role gender plays in household decisions about feeding livestock concentrate or whether milk is sold in formal or informal markets. 

The Scaling-Out Climate-Smart Village Program in the Vulnerable Areas of Indo-Gangetic Plains of India includes a gender integration for inclusive adaptation to climate risks component. Implemented in the Indian states of Bihar, Madhya Pradesh and Uttar Pradesh, it promotes technologies that reduce women’s agriculture-related labor while helping women develop their leadership and entrepreneurial skills. 

Farmers can also benefit from climate information services, which allows them to plan and prepare for changing weather. Once again, access to technology and gender norms play a role in how climate information is accessed, what type of information is needed, and how it is used. For example, when COVID-19 prevented farmers in Somotillo, Nicaragua from holding in-person meetings, they  turned to online tools. By connecting with women’s groups and considering women’s climate information needs, researchers can help create services that benefit both men and women.  

At the policy level, gender mainstreaming allows governments to effectively — and inclusively — combat climate change. However, developing and implementing these policies requires gender analysis, the creation of gender tools, data collection, analysis, the development of gender indicators, and gender budgeting as research from Uganda and Tanzania illustrates. 

These examples are just a few avenues through which gender research influences the uptake of technology, policy and information access. System shocks are inevitable and their frequency and severity are likely to increase due to climate change. Given this reality, men’s and women’s needs and perspectives must be considered in research activities so that climate solutions are inclusive, equitable and effective.  

FURTHER READING: 

This article was originally published on the CCAFS website.

Cover photo: Gender research contributes to equitable and inclusive outcomes during times of crisis. (Photo: F. Fiondella /IRI/CCAFS).

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

World Food Day 2020: Nourishing food systems

As the calendar turns to October 16, the International Maize and Wheat Improvement Center (CIMMYT) celebrates World Food Day. This year’s theme is “Grow, Nourish, Sustain. Together.”

The COVID-19 global health crisis has been a time to reflect on things we truly cherish and our most basic needs. These uncertain times have made many of us rekindle our appreciation for a thing that some take for granted and many go without: food.

Food is the essence of life and the bedrock of our cultures and communities. Preserving access to safe and nutritious food is and will continue to be an essential part of the response to the COVID-19 pandemic, particularly for poor and vulnerable communities, who are hit hardest by the pandemic and resulting economic shocks.

In a moment like this, it is more important than ever to recognize the need to support farmers and workers throughout the food system, who make sure that food makes its way from farm to fork.

Sustainable food systems

According to the Food and Agriculture Organization of the United Nations (FAO), over 2 billion people do not have regular access to safe, nutritious and sufficient food. The global population is expected to reach almost 10 billion by 2050.

Our future food systems need to provide affordable and healthy diets for all, and decent livelihoods for food system workers, while preserving natural resources and biodiversity and tackling challenges such as climate change.

Countries, the private sector and civil society need to make sure that our food systems grow a variety of food to nourish a growing population and sustain the planet, together. 

This year, for World Food Day, we bring you three stories about CIMMYT’s work to produce nutritious food in a sustainable way.

Explainer: What is sustainable intensification?

Farming method can boost yields, increase farmers’ profits and reduce greenhouse gas emissions. Read more.

Irrigated fields in Cuidad Obregon.Against the grain: New paper reveals the overlooked health benefits of maize and wheat

Cereals offer greater health and nutrition benefits than commonly acknowledged, despite often being considered ‘nutrient-poor’, say scientists. Read more.

Hands hold wheat grain from harvest near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Breaking Ground: Isaiah Nyagumbo advances climate-smart technologies to improve smallholder farming systems

Systems agronomist transforms farmers’ livelihoods through improved crop performance and soil health, promoting sustainable techniques that mitigate climate change effects. Read more.

Subscribe to our email updates to stay in the loop about the latest research and news related to maize and wheat agriculture.

What is sustainable intensification?

By 2050, the world’s population could grow to 9.7 billion, food demand is expected to increase by 50% and global demand for grains such as maize, rice and wheat could increase by 70%. How can we meet the food and nutrition demands of a rising population, without negative environmental and social consequences?

Sustainable intensification is an approach using innovations to increase productivity on existing agricultural land with positive environmental and social impacts. Both words, “sustainable” and “intensification,” carry equal weight.

CIMMYT conducts research on sustainable intensification to identify ways farmers can increase production of crops per unit of land, conserve or enhance important ecosystem services and improve resilience to shocks and stresses, especially those due to climate change and climate variability.

For example, CIMMYT’s research on sustainable intensification in India has helped shape policies that increase farmer income while reducing pollution and land degradation.

What is the scope of sustainable intensification? 

Sustainable intensification takes into consideration impact on overall farm productivity, profitability, stability, production and market risks, resilience, as well as the interests and capacity of individual farmers to adopt innovations. It is not limited to environmental concerns, but also includes social and economic criteria such as improving livelihoods, equity and social capital.

Certain methods and principles are needed to achieve the goals of sustainable intensification. In collaboration with farmers and other change actors, CIMMYT carries out research-for-development projects to test and scale a range of technologies and approaches that contribute to these results. The research focuses on combined resource use efficiencies of crop production inputs: land, plant nutrients, labor and water.

One example is conservation agriculture, the combination of crop diversification, minimal soil movement and permanent soil cover. International scientific analysis has found that conservation agriculture can, in many places with different characteristics, play a crucial role towards achieving the United Nations Sustainable Development Goals.

Crop and system modeling, geographic information systems, remote sensing, scale-appropriate mechanization and socioeconomic modeling are some of the approaches that contribute to the design and evaluation of sustainable intensification alternatives in current farming systems.

Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.
Figure: Multi-criteria sustainability assessment of alternative (sustainable intensification) and reference systems in the Western Highlands of Guatemala.

What are some more examples?

Several interventions by CIMMYT aim at safeguarding biodiversity and protecting — in some cases increasing — ecosystem services crucial for small-scale farmers’ livelihoods and the health of all. Others have studied the impact of landscapes on dietary diversity and nutrition. Yet others have developed appropriate small-scale machines, allowing farmers to save time, costs and labor associated with agriculture to increase yields, halt the expansion of the agricultural frontier and invest in new opportunities.

How is sustainable intensification different from ecological intensification, agroecological intensification or climate-smart agriculture? 

Sustainable intensification, ecological intensification and agroecological intensification strive for the same general goal to feed an increasing population without negative environmental and social consequences, but they place emphasis on different aspects.

Ecological intensification focuses on ecological processes in the agroecosystem. Agroecological intensification emphasizes a systems approach and strongly considers social and cultural perspectives.

Climate-smart agriculture and sustainable intensification are complementary, but climate-smart agriculture focuses on climate stress, adaptation and mitigation.

Sustainable intensification can be achieved with a range of methods, including these concepts. It is one strategy among many for global food system transformation.

What is the history of CIMMYT’s research on sustainable intensification?

In the 1960s, the Green Revolution brought high-yielding crops to some regions of Latin America and South Asia, allegedly saving millions from starvation. Yet the Green Revolution had unintended environmental and social consequences. Critics of the Green Revolution argued these cropping techniques were highly dependent on external inputs, fossil fuels and agrochemicals, causing environmental damage through overuse of fertilizers and water, and contributing to soil degradation.

In the 1980s, CIMMYT scientists began placing stronger emphasis on environmental and social aspects — such as conserving soil and water, and ensuring social inclusion of marginalized groups — recognizing their importance to sustain the intensification of crops in South Asia. It was understood that sustainability includes improving the livelihoods of rural people who depend on these natural resources, in addition to better resource management. CIMMYT began to take these considerations to the core of its work.

Farmers harvest maize cobs.
Farmers Maliamu Joni and Ruth Andrea harvest cobs of drought-tolerant maize in Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

Are these practices successful?

Sustainable intensification can boost yields, increase farmers’ profits and reduce greenhouse gas emissions. The reduction of greenhouse gas emissions can be achieved by increasing nitrogen use efficiency, which also reduces groundwater pollution.

Research from CIMMYT’s SIMLESA project has shown that conservation agriculture-based sustainable intensification practices led to a 60-90% increase in water infiltration and a 10-50% increase in maize yields in Malawi. In Ethiopia, crop incomes nearly doubled with crop diversification, reduced tillage and improved varieties, compared to using only one of these practices.

According to research from Stanford University, agricultural intensification has avoided emissions of up to 161 gigatons of carbon from 1961 to 2005. CIMMYT research shows that India could cut nearly 18% of agricultural greenhouse gas emissions through sustainable intensification practices that reduce fertilizer consumption, improve water management and eliminate residue burning. Zero-tillage wheat can cut farm-related greenhouse gas emissions by more than 75% in India and is 10-20% more profitable on average than burning rice straw and sowing wheat using conventional tillage.

A CIMMYT study in Science shows that thousands of wheat farmers in northern India could increase their profits if they stop burning their rice straw residue and adopt no-till practices, which could also cut farm-related greenhouse gas emissions by as much as 78% and lower air pollution. This research and related work to promote no-till Happy Seeders led to a 2018 policy from the government of India to stop farmers from burning residue, including a $166 million subsidy to promote mechanization to manage crop residues within fields.

In light of this evidence, CIMMYT continues to work with stakeholders all along the value chain — from farmers to national agricultural research organizations and companies — to promote and scale the adoption of practices leading to sustainable intensification.

Cover photo: Irrigated fields under conservation agriculture at CIMMYT’s CENEB experiment station near Ciudad ObregĂłn, Sonora, northern Mexico. (Photo: CIMMYT)

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

2020 World Food Prize recognizes career devoted to fight hunger and climate change through soil conservation

The World Food Prize Foundation is honoring the work of Rattan Lal, who dedicated his life to study the effect of soil health in food production and climate change mitigation. On October 15 he will receive the 2020 World Food Prize, considered the “Nobel Prize” of agriculture.

Lal, who serves as distinguished professor of Soil Science and founding director of the Carbon Management and Sequestration Center at Ohio State University, is a visionary who understood the intricate relationship between soil conservation, yield potential, nutrition and carbon sequestration.

“Dr. Lal’s innovative research demonstrated how healthy soils are a crucial component of sustainable agricultural intensification — enabling higher crop yields, while requiring less land, agrochemicals, tillage, water and energy”, announced the World Food Prize Foundation in a press release.

Lal becomes the 50th person to receive the World Food Prize since the late Norman Borlaug — 1970 Nobel Peace Prize laureate — established the award in 1987. The award acknowledges outstanding contributions to human development by individuals who significantly improve the quality, quantity and availability of food on a global scale.

“CIMMYT actively researches and promotes the sustainable farming practices that Dr. Lal studied and advocated for since the late 1980s, such as no tillage, residue retention and crop rotation, which combined with new precision farming technologies help farmers increase yields, reduce food production costs and protect the environment”, said Bram Govaerts, Integrated Development director and representative for the Americas at the International Maize and Wheat Improvement Center (CIMMYT).

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

Hans Braun receives prestigious Norman Borlaug Award for Lifetime Achievement in Wheat Research

Hans-Joachim Braun, director of CIMMYT's Global Wheat Program, speaks at the 8th International Wheat Conference in 2010. Braun has dedicated nearly four decades to wheat research. (Photo: Petr Kosina/CIMMYT)
Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program, speaks at the 8th International Wheat Conference in 2010. Braun has dedicated nearly four decades to wheat research. (Photo: Petr Kosina/CIMMYT)

Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), has received the Norman Borlaug Lifetime Achievement Award for nearly four decades of wheat research. He received the award on October 9, 2020, during the virtual Borlaug Global Rust Initiative (BGRI) Technical Workshop.

“We rest on the shoulders of a lot of mighty people who have come before us,” said Ronnie Coffman, vice chair of BGRI, speaking to a global audience of wheat scientists and farmers as he presented four individuals with the award. “Each of these individuals has contributed to the improvement of wheat and smallholder livelihoods in major and enduring ways.”

Responsible for technical direction and implementation of the Global Wheat Program at CIMMYT and the CGIAR Research Program on Wheat (WHEAT), Braun leads and manages a team of 40 international scientists who develop wheat germplasm. This germplasm is distributed to around 200 cooperators in wheat-producing countries worldwide, and is responsible for the derived varieties being grown on more than 50% of the spring wheat area in developing countries.

Lifetime achievement

With the Norman Borlaug Lifetime Achievement Award, the BGRI community honors four individuals who have been integral to the initiative. (Photo: BGRI)
With the Norman Borlaug Lifetime Achievement Award, the BGRI community honors four individuals who have been integral to the initiative. (Photo: BGRI)

“In his 35 years with CIMMYT, Hans has become familiar with all major wheat-based cropping systems in the developing and developed world,” said Coffman, who called Braun an important collaborator and close personal friend.

“Hans was integral to the BGRI’s efforts in preventing Ug99 and related races of rust from taking out much of the 80% of the world’s wheat that was susceptible when Ug99 was first identified in 1999,” Coffman explained. He “has been an integral partner in the development and implementation of the Durable Rust Research in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) projects.”

Braun delivered a keynote speech accepting the award and discussing the bright future of wheat, despite the many challenges that lie ahead.

“The future of wheat improvement in developing countries remains on the shoulders of public organizations and institutions. It is paramount that we share germplasm, information and knowledge openly,” he said.

He emphasized the need to “keep the herd together” and maintain strong, global partnerships.

Braun also noted the importance of continuing to improve nutritional content, growing within planetary boundaries, and taking farmers’ preferences seriously. He highlighted CIMMYT’s exceptional capacity as one of the world’s largest and most impactful wheat breeding programs, and encouraged national partners to continue their close collaboration.

He recalled what Norman Borlaug told him in 2004, when he became head of the Global Wheat Program: “Hans, I have confidence you can lead the program and I will always help you” — and how he did.

“I would like to thank all with whom I cooperated over four decades and who contributed to make CIMMYT’s program strong,” concluded Hans. “I am very optimistic that the global wheat community will continue to develop the varieties farmers need to feed 10 billion.”

This story was first posted on the BGRI blog and on the WHEAT website.

Learn more about the other distinguished scientists receiving this award, and the Technical Workshop outcomes, on the BGRI website.

Against the grain: New paper reveals the overlooked health benefits of maize and wheat

Hands hold wheat grain from harvest near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)
Hands hold wheat grain from harvest near Belbur, Nakuru, Kenya. (Photo: Peter Lowe/CIMMYT)

Cereal crops like maize and wheat deserve greater consideration as part of a healthy, nutritious diet, according to the authors of a new paper.

A review of agri-nutrition research and dietary guidance found that the potential health benefits provided by cereals were often overlooked or undervalued as part of nutritious diets, including their role in reducing non-communicable diseases such as heart disease and diabetes.

The study identified two key explanations for the oversight. The first is that many cereal crops with varying nutritional qualities are indiscriminately grouped under the broad category of “staples.”

A second problem lies in the fact that cereals are usually considered to be a major source of dietary energy alone. However, reducing nutritional attributes to macro- and micro-nutrients misses other beneficial elements of cereals known as “bioactive food components.” These include carotenoids, flavonoids, and polyphenols, and compounds that comprise dietary fiber.

“Most whole grain cereals provide differing amounts of proteins, fats, minerals and vitamins, in addition to being important sources of dietary energy,” said Jason Donovan, a senior economist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the paper published in Food Policy.

“Only relative to other ‘nutrient-rich’ foodstuffs can cereals be described as ‘nutrient-poor’.”

In the paper, entitled Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health, the authors called on researchers and policymakers to embrace the multiple dietary components of cereals in addressing under- and over-nutrition, micronutrient deficiencies and the growing global problem of non-communicable diseases.

“Through increasing the availability of, and access to, healthy foods derived from cereals, we can better address the growing triple burden of malnutrition that many countries are facing,” said Olaf Erenstein, co-author and director of CIMMYT’s Socioeconomics program.

“To feed the world within planetary boundaries, current intakes of whole grain foods should more than double and address tricky issues like the current over-processing, to make the most of the nutrition potential of maize and wheat.”

While some carbohydrates can create a glycemic response that has negative effects on diabetes and obesity, dietary fiber in cereals comprises carbohydrates that are fermented in the large intestine with largely positive metabolic and health effects.

In addition, the naturally-occurring compounds found in maize and wheat can be enhanced through conventional breeding, genomic selection and bio- and industrial-fortification to offer enriched levels of beneficial components.

For example, scientists at CIMMYT have worked on new maize and wheat varieties with additional levels of vitamin A and zinc to help address some of the nutritional deficiencies found worldwide. Researchers are also improving how cereals are produced, processed, and stored to increase productivity and improve food safety while maintaining their nutritional benefits.

One of challenges in maximizing the nutritional benefit of cereal-based foods in diets is that the processing of grains often causes substantial losses of essential vitamins and minerals. Meanwhile, manufacturing industries create ultra-processed foods that often contain noxious qualities and components, which contribute directly to the significant and increasing global health and economic costs of non-communicable diseases.

“If we are to end hunger by delivering healthy, diverse and nutritional diets in the next decade, we need a broader and more nuanced understanding of the nutritional and health-promoting value of diverse foods, including cereals,” added Nigel Poole, co-author and Professor of International Development at SOAS University, London.

“Cereals and so-called ‘nutrient-rich’ foods are complementary in agri-nutrition, both of which require additional research, resources and attention so that one does not replace the other.”

RELATED PUBLICATIONS:

Agri-nutrition research: Revisiting the contribution of maize and wheat to human nutrition and health

FOR FURTHER INFORMATION OR INTERVIEW REQUESTS:

Donna Bowater, Marchmont Communications, donna@marchmontcomms.com, +44 7929 212 534

ABOUT CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org

See our coverage of World Food Day 2020.
See our coverage of World Food Day 2020.

Honoring the life and legacy of Donald Winkelmann

Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)

With sorrow we report the passing of Donald Winkelmann, who served as Director General of the International Maize and Wheat Improvement Center (CIMMYT) from 1985 to 1994.

During his tenure, CIMMYT expanded notably and gained recognition as a research center committed to sustainable agricultural development. Winkelmann successfully negotiated CIMMYT’s final status as a public international organization.

The Center’s first economist, Winkelmann arrived in 1972 to conduct and coordinate what became a landmark series of adoption studies on emerging maize and wheat technologies from CIMMYT. He established CIMMYT’s Economics program and served as its first director.

In his first address as Director General, he emphasized that, when competing against “new forces” and technological changes “the old personality of CIMMYT must endure — the commitment to excellence and action, and to the ideal of making things better.”

Winkelmann was appointed for a second term as Director General by the Board of Trustees in 1990.

On November 23, 1994, he received the Order of the Aztec Eagle — the highest distinction given to a foreigner by the Mexican government. During the award ceremony, the Under-Secretary of Foreign Relations of Mexico, Ambassador Andres Rozenthal, highlighted three stages of Winkelmann’s contributions to Mexico. First, as visiting professor of economics at the Post Graduate College (1966-1971), where he helped train Mexican agricultural economists with new tools and methodologies. Second, as founder and director of the Economics program at CIMMYT (1971-1985), where he addressed themes such as on-farm research and comparative advantage studies, generated research methodologies, and carried out training workshops in agricultural economics. Lastly, as Director General of CIMMYT (1985-1994), where he helped strengthen collaboration between CIMMYT and Mexican research institutions, while working on allocation of resources to research, strategic planning and research impacts.”

After retiring from CIMMYT in November 1994, Winkelmann accepted the appointment of Chair of the CGIAR’s Technical Advisory Committee (TAC).

The CIMMYT community sends its warmest condolences to the Winkelmann family.

Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Donald L. Winkelmann, Director General of CIMMYT from 1985 to 1994. (Photo: CIMMYT)
Director General Martin Kropff (left) and former Deputy Director General Marianne BĂ€nziger (third from left) greet Donald Winkelmann and his wife Breege during a visit to the CIMMYT headquarters in October 2019. (Photo: CIMMYT)
Director General Martin Kropff (left) and former Deputy Director General Marianne BĂ€nziger (third from left) greet Donald Winkelmann and his wife Breege during a visit to the CIMMYT headquarters in October 2019. (Photo: CIMMYT)