Timothy Reeves. (Photo: Courtesy of Tim Reeves/University of Melbourne)
Timothy Reeves, who served as director general of the International Maize and Wheat Improvement Center (CIMMYT) from 1995 to 2002, has been included in Queen Elizabeth IIâs Birthday Honours List. He has been appointed a Member (AM) of the Order of Australia, for his significant service to sustainable agriculture research and production.
âIâm overwhelmed. I feel so honored and wish to also recognize the wonderful people that I have worked with â both farmers and scientists â here in Australia, and around the world. I also acknowledge my beautiful family without whom it would have not been possible,â he said.
Reeves was a pioneer of direct drilling and conservation agriculture in Australia in the 1960s and 70s. This method of planting crops which requires no cultivation of the land, is now the direct-drilling method used by 90% of farmers across Australian cropping regions. He and colleagues in the Victorian Department of Agriculture also worked at that time on the introduction of new crops into farming systems, including lupins, canola and faba beans.
Timothy Reeves (center) with C. Renard (left) and Norman Borlaug. (Photo: CIMMYT)
He was appointed to the role of director general of CIMMYT in 1995, based in Mexico for seven years, helping developing countries with food and nutritional security. He is the only Australian to have held this position.
Reeves is currently an Honorary Professorial Fellow at the Faculty of Veterinary and Agricultural Sciences, University of Melbourne. He is heavily involved with passing on his knowledge to his academic colleagues and to both undergraduate and postgraduate students. Reeves’s academic writings include publishing more than 180 papers, book chapters and articles. He is also a Chair of the Agriculture Forum of the Australian Academy of Technological Sciences and Engineering.
In just a decade, CRISPR has become one of the most celebrated inventions in modern biology. It is swiftly changing how medical researchers study diseases: Cancer biologists are using the method to discover hidden vulnerabilities of tumor cells. Doctors are using CRISPR to edit genes that cause hereditary diseases.
But CRISPRâs influence extends far beyond medicine. Evolutionary biologists are using the technology to study Neanderthal brains and to investigate how our ape ancestors lost their tails. Plant biologists have edited seeds to produce crops with new vitamins or with the ability to withstand diseases. Some of them may reach supermarket shelves in the next few years.
We began 2020 with grim news of the COVID-19 pandemic spreading from country to country, wreaking havoc on national economies, causing countless personal tragedies, and putting additional pressure on the livelihoods of the poor and hungry.
The global crisis exposed the enormous vulnerability of our food system.
If we have learned anything from the past year, it is that we need to urgently invest in science for renewed food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.
During this time, the dedication and resilience of the CIMMYT community allowed us to continue making important advances toward that vision.
We hope you enjoy reading our stories and will join us in actively working towards resilience, renewal and transition in our agri-food systems, to ensure that they are strong in the face of current and future crises.
National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)
CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiativeâs inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.
The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.
Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.
âThe CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. âThis calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.â
Demand-driven multistakeholder approach
CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.
The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenyaâs Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIARâs contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.
âAs government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],â said Magenya.
Implications of Plant Health in Africa and globally
Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.
Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.
CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrowâs problems today, through collective and decisive action at all levels.
Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)
The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing womenâs major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. âWe welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,â she added.
Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.
Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.
Reflecting on gender, social inclusion, and plant health
Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.
Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).
B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)
Charting the course for the Initiative
The Plant Health Initiative Work Package Leads presented the Initiativeâs five specific work packages and reiterated their priorities for the next three years.
âWe are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,â said Prasanna.
The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.
âPlant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forwardâ moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).
 âScaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovationsâ moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)
Work Package Title and Leads
Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization
Lead:Monica Carvajal, Alliance of Bioversity-CIAT
Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response
Lead: Lava Kumar, IITA
Work Package 3: Integrated pest and disease management
Lead: Prasanna Boddupalli, CIMMYT
Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination
Lead:Alejandro Ortega-Beltran, IITA
Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)
This open-access textbook provides a comprehensive, up-to-date guide for students and practitioners wishing to access the key disciplines and principles of wheat breeding. Edited by Matthew Paul Reynolds, head of Wheat Physiology at CIMMYT, and Hans-Joachim Braun, former Director of CIMMYTâs Global Wheat Program, it covers all aspects of wheat improvement, from utilizing genetic resources to breeding and selection methods, data analysis, biotic and abiotic stress tolerance, yield potential, genomics, quality nutrition and processing, physiological pre-breeding, and seed production.
It will give readers a balanced perspective on proven breeding methods and emerging technologies. The content is rich in didactic material that considers the background to wheat improvement, current mainstream breeding approaches, translational research, and avant-garde technologies that enable breakthroughs in science to impact productivity, facilitating learning.
While the volume provides an overview for professionals interested in wheat, many of the ideas and methods presented are equally relevant to small grain cereals and crop improvement in general.
All chapter authors are world-class researchers and breeders whose expertise spans cutting-edge academic science to impacts in farmersâ fields.
Given the challenges currently faced by academia, industry, and national wheat programs to produce higher crop yields, often with fewer inputs and under increasingly harsher climates, this volume is a timely addition to their toolkit.
For the first time ever, a biotechnology team has identified vegetative storage proteins (VSP) in maize and activated them in the leaves to stockpile nitrogen reserves for release when plants are hit by drought, which also causes nutrient stress, according to a recent report in Plant Biotechnology Journal. In two years of field testing, the maize hybrids overexpressing the VSP in leaf cells significantly out-yielded the control siblings under managed drought stress applied at the flowering time, according to Kanwarpal Dhugga, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT).
âOne of the two most widely grown crops, maize increasingly suffers from erratic rainfall and scarcer groundwater for irrigation,â Dhugga said. âUnder water stress, nitrogen availability to the plant is also attenuated. If excess nitrogen could be stored in the leaves during normal plant growth, it could help expedite the plantâs recovery from unpredictable drought episodes. In our experimental maize hybrids, this particular VSP accumulated to more than 4% in mesophyll cells, which is five times its normal levels, and offered an additional, dispensable source of nitrogen that buffered plants against water deficit stress.â
Dhugga noted as well that the study, whose authors include scientists from Corteva Agriscience, the Bill & Melinda Gates Foundation, and the US Department of Agriculture (USDA), provides experimental evidence for the link between drought tolerance and adequate nitrogen fertilization of crop plants. âThis mechanism could also help farmers and consumers in sub-Saharan Africa, where maize is grown on nearly 40 million hectares, accounts for almost one-third of the regionâs caloric intake, and frequently faces moderate to severe drought.â
Scientists multiply and power up vegetative storage proteins in maize leaves as nutrient stockpiles for drought-stressed maize crops. Graphic adapted from: Pooja Gupta, Society for Experimental Biology (SEB).
Leon Jamann works for the CIMMYT Ethiopia office and promotes the scaling up of agricultural innovations in Mechanization in 13 countries in Sub-Saharan Africa, as well as in India and Vietnam. As a facilitator, Jamann is involved in building capacities on how to do scalability assessments and overcome bottlenecks in the scaling of agricultural innovations. He is passionate about bringing stakeholders together in order to form a common vision for their projects and interventions.
Besides his work in scaling, Jamann works in project management, including the facilitation of procurement, contract management and operational planning.
Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earthâs history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanityâs moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.
Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby âsparingâ a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.
In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield âfor example, income, labor productivity, or resilience â the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.
Beyond the zero-sum game
At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.
On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.
Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.
This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of âcontrolled environment agricultureâ such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.
Imagining landscapes where biodiversity and people win
The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.
âIt is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,â Baudron said.
Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)
Senior leadership from CGIAR had the opportunity to strengthen ties with senior leaders and researchers from the International Maize and Wheat Improvement Center (CIMMYT) during a visit on April 25â26, 2022. Claudia Sadoff, Executive Management Team Convener and Managing Director for Research Delivery and Impact, visited CIMMYTâs global headquarters in Texcoco, Mexico, and the experimental station in Toluca, west of Mexico City. Joining her was JoaquĂn Lozano, CGIARâs Regional Director for Latin America and the Caribbean.
On April 25, 2022, scientists provided an overview of CIMMYTâs research in Africa and Asia and discussed with Sadoff how CIMMYTâs science and operations contribute to the One CGIAR 2030 Strategy. Examples included sustainable agri-food systems research in South Asia and maize research in Africa, with emphasis on work that aligns with CGIARâs Action Areas and impact. These sessions underlined CIMMYTâs involvement in multiple CGIAR Initiatives, its influence on policy, and evidence of translating science into impact on the ground.
Lozano and Sadoff toured the facilities, including the CIMMYT Museum, the Wellhausen-Anderson Plant Genetic Resources Center, and the Applied Biotechnology laboratory. Along the way, scientists explained their latest research and answered questions about conservation agriculture, innovation hubs, climate-smart technologies, and scale-appropriate mechanization.
In the afternoon, CIMMYT and CGIAR representatives had targeted discussions on poverty reduction, gender equity and social inclusion, climate adaptation, environmental health and biodiversity,
The remainder of the first day was spent at the Bioscience complex, with visits to the wheat molecular breeding lab, the greenhouse, the wheat quality laboratory, and the maize quality laboratory, which hosted a discussion on nutrition and health.
On April 26, 2022, Lozano and Sadoff joined representatives from the Mexican and Indian governments, CIMMYT colleagues, and other partners at CIMMYTâs experimental station in Toluca for a dedication event for the late Sanjaya Rajaram.
In Sadoffâs speech, she praised CIMMYTâs highly committed staff and shared her honor at being invited to such an event. âDr. Norman Borlaug, Dr. Sanjaya Rajaram, Dr. Ravi Singh, and many more talented researchers who have worked and continue to work at CIMMYT have built an outstanding international research organization that has been a role model for other CGIAR centers,â she said. âIn view of this impressive history, it is very important that we all contribute to continue CIMMYTâs legacy and to multiply its impact worldwide, but also to honor those great colleagues who have truly inspired us with their impressive achievements.â
After the event, Lozano and Sadoff toured the station and praised the engaging program produced by CIMMYT.
For Lozano, it was his second visit to CIMMYT. âIt was an honor to be back at CIMMYT HQ in Mexico this week with Claudia,â he said. âItâs evident that CIMMYTâs science, staff and partners support and proactively contribute to our global research strategy for a food-secure future. A big thanks to Bram Govaerts and the CIMMYT team for such a constructive dialogue and hospitality.â
CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.
Reporter Nina Lakhanivisited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.
A climate change hotspot region that features both small-scale and intensive farming, South Asia epitomizes the crushing pressure on land and water resources from global agriculture to feed a populous, warming world. Continuous irrigated rice and wheat cropping across northern India, for example, is depleting and degrading soils, draining a major aquifer, and producing a steady draft of greenhouse gases.
Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) has helped to study and promote resource-conserving, climate-smart solutions for South Asian agriculture. Innovations include more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations. Partners are recently exploring regenerative agriculture approaches â a suite of integrated farming and grazing practices to rebuild the organic matter and biodiversity of soils.
Along with their environmental benefits, these practices can significantly reduce farm expenses and maintain or boost crop yields. Their widespread adoption depends in part on enlightened policies and dedicated promotion and testing that directly involves farmers. We highlight below promising findings and policy directions from a collection of recent scientific studies by CIMMYT and partners.
Getting down in the dirt
A recent scientific review examines the potential of a suite of improved practices â reduced or zero-tillage with residue management, use of organic manure, the balanced and integrated application of plant nutrients, land levelling, and precise water and pest control â to capture and hold carbon in soils on smallholder farms in South Asia. Results show a potential 36% increase in organic carbon in upper soil layers, amounting to some 18 tons of carbon per hectare of land and, across crops and environments, potentially cutting methane emissions by 12%. Policies and programs are needed to encourage farmers to adopt such practices.
Another study on soil quality in Indiaâs extensive breadbasket region found that conservation agriculture practices raised per-hectare wheat yields by nearly half a ton and soil quality indexes nearly a third, over those for conventional practices, as well as reducing greenhouse gas emissions by more than 60%.
Ten years of research in the Indo-Gangetic Plains involving rice-wheat-mungbean or maize-wheat-mungbean rotations with flooded versus subsoil drip irrigation showed an absence of earthworms â major contributors to soil health â in soils under farmersâ typical practices. However, large earthworm populations were present and active under climate-smart practices, leading to improved soil carbon sequestration, soil quality, and the availability of nutrients for plants.
The field of farmer Ram Shubagh Chaudhary, Pokhar Binda village, Maharajganj district, Uttar Pradesh, India, who has been testing zero tillage to sow wheat directly into the unplowed paddies and leaving crop residues, after rice harvest. Chaudhary is one of many farmer-partners in the Cereal Systems Initiative for South Asia (CSISA), led by CIMMYT. (Photo: P. Kosina/CIMMYT)
Rebooting marginal farms by design
Using the FarmDESIGN model to assess the realities of small-scale, marginal farmers in northwestern India (about 67% of the population) and redesign their current practices to boost farm profits, soil organic matter, and nutritional yields while reducing pesticide use, an international team of agricultural scientists demonstrated that integrating innovative cropping systems could help to improve farm performance and household livelihoods.
More than 19 gigatons of groundwater is extracted each year in northern India, much of this to flood the regionâs puddled, transplanted rice crops. A recent experiment calibrated and validated the HYDRUS-2D model to simulate water dynamics for puddled rice and for rice sown in non-flooded soil using zero-tillage and watered with sub-surface drip irrigation. It was found that the yield of rice grown using the conservation agriculture practices and sub-surface drip irrigation was comparable to that of puddled, transplanted rice but required only half the irrigation water. Sub-surface drip irrigation also curtailed water losses from evapotranspiration and deep drainage, meaning this innovation coupled with conservation agriculture offers an ecologically viable alternative for sustainable rice production.
Given that yield gains through use of conservation agriculture in northern India are widespread but generally low, a nine-year study of rice-wheat cropping in the eastern Indo-Gangetic Plains applying the Environmental Policy Climate (EPIC) model, in this case combining data from long-term experiments with regionally gridded crop modeling, documented the need to tailor conservation agriculture flexibly to local circumstances, while building farmersâ capacity to test and adapt suitable conservation agriculture practices. The study found that rice-wheat productivity could increase as much as 38% under conservation agriculture, with optimal management.
Key partner organizations in this research include the following: Indian Council of Agricultural Research (ICAR); Central Soil Salinity Research Institute (CSSRI), Indian Agricultural Research Institute (IARI), Indian Institute of Farming Systems Research (IIFSR), Agriculture University, Kota; CCS Haryana Agricultural University, Hisar; Punjab Agricultural University, Ludhiana; Sri Karan Narendra Agriculture University, Jobner, Rajasthan; the Borlaug Institute for South Asia (BISA); the Trust for Advancement of Agricultural Sciences, Cornell University; Damanhour University, Damanhour, Egypt; UM6P, Ben Guerir, Morocco; the University of Aberdeen; the University of California, Davis; Wageningen University & Research; and IFDC.
Generous funding for the work cited comes from the Bill & Melinda Gates Foundation, The CGIAR Research Programs on Wheat Agri-Food Systems (WHEAT) and Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements), The Indian Council of Agricultural Research (ICAR), and USAID.
Cover photo: A shortage of farm workers is driving the serious consideration by farmers and policymakers to replace traditional, labor-intensive puddled rice cropping (shown here), which leads to sizable methane emissions and profligate use of irrigation water, with the practice of growing rice in non-flooded soils, using conservation agriculture and drip irrigation practices. (Photo: P. Wall/CIMMYT)
Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco AlarcĂłn/CIMMYT)
Representatives from the National Association of State Departments of Agriculture (NASDA) of the United States visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on May 19, 2022. Ted McKinney, NASDAâs Chief Executive Officer, was joined by RJ Karney, Senior Director of Public Policy, and John Goldberg, consultant and partner at The Normandy Group.
âI wish the world could all understand what you do here. This is just fantastic,â said McKinney after seeing the broad range of work conducted at CIMMYT.
NASDAâs tour of CIMMYTâs global headquarters in Texcoco, Mexico, included visits to the museum, the maize and wheat genebanks, the greenhouse, the bioscience complex, the wheat quality laboratory and the experimental station.
In each location, the visitors met with CIMMYT representatives who provided an overview of their research areas. Discussions ranged from the importance of preserving disease resistance in wheat in order to conduct experiments, the process for using DNA to inform breeding programs, and the assessment process for wheat grain. NASDAâs representatives also gained an understanding of how CIMMYT connects experiments with the needs of farmers, ensuring that scientific progress is translated into real-life solutions.
(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYTâs Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco AlarcĂłn/CIMMYT)
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco AlarcĂłn/CIMMYT).
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYTâs global headquarters in Texcoco, Mexico. (Photo: Francisco AlarcĂłn/CIMMYT)
Written by Bea Ciordia on . Posted in Uncategorized.
The Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project, led by the International Maize and Wheat Improvement Center (CIMMYT), is expanding the use of biodiversity held in the worldâs genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide. It aims to identify plant accessions in genebanks that contain alleles, or gene variations, responsible for characteristics such as heat, drought or salt tolerance, and to facilitate their use in breeding climate-resilient crop varieties.
Through this project, breeders will learn how to use genebank materials more effectively and efficiently to develop climate-smart versions of important food crops, including cassava, maize, sorghum cowpea, and rice.
Building on 10 years of support to CIMMYT from the Mexican government, CGIAR Trust Fund contributors, and the UK Biotechnology and Biological Sciences Research Council, the Mining Useful Alleles for Climate Change Adaptation from CGIAR Genebanks project combines the use of cutting-edge technologies and approaches, high-performance computing, GIS mapping, and new plant breeding methods to identify and use accessions with high value for climate-adaptive breeding of varieties needed by farmers and consumers.
Support faster and more cost-effective discovery and deployment of climate -adaptive alleles from the world’s germplasm collections
Test integrated approaches for five major crops (i.e., cassava, maize, sorghum, cowpea, and rice), providing a scalable model for the rapid and cost-effective discovery and deployment of climate-adaptive alleles.
Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.
Genomic selection
The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.
Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.
âThis finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendousâ, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.
The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Index selection
One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. âThe latter, unfortunately, is often the case in South Asiaâ, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.
A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.
This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.
A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.
The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.
âIf routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,â said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. âWhile focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.â
Breeding milestone
The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.
This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.
Yield for climate resilience
The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.
“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).
Matthew Reynolds â Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)
Gustavo Ariel Slafer â Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida
For more information or to arrange interviews, please contact the CIMMYT media team:
The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische UniversitĂ€t MĂŒnchen, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).
ABOUT CIMMYT:
The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.
Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYTâs research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.
CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.
The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.