Skip to main content

Location: Global

2023 Women In Triticum (WIT) Award Winners Announced

The Borlaug Global Rust Initiative (BGRI) is pleased to announce the 2023 Jeanie Borlaug Laube Women in Triticum (WIT) Early Career and Mentor awardees, recognizing excellence in science and leadership for a wheat-secure future.

The WIT awards are a premier recognition of talent and dedication of early-career women scientists and those who have excelled at mentoring women working in wheat and its nearest cereal relatives. This year’s winners are innovative wheat researchers from Malawi, Morocco, New Zealand, Spain, Tunisia and the United States.

“It is an honor to recognize these incredible scientists for their drive and vision in support of food security,” said Jeanie Borlaug Laube, chair of the BGRI and daughter of Nobel Prize Peace-winner Norman E. Borlaug. “My father believed that generations of hunger fighters would be needed to rid the world of food insecurity, and I’m proud to recognize these 2023 awardees for continuing to carry that mission forward.”

The WIT Early-Career Award provides women working in wheat with the opportunity for additional training, mentorship and leadership opportunities. The WIT Mentor Award recognizes the efforts of men and women who have played a significant role in shaping the careers of women working in wheat and demonstrated a commitment to increasing gender parity in agriculture.

“The WIT Awards have proven to be influential in shifting gender dynamics towards more equity in wheat science. WIT awardees are taking on leadership roles in scientific settings all over the world, and these newest awardees have the potential to continue that trend towards a more inclusive future,” said Maricelis Acevedo, director for science for the BGRI and research professor of global development in Cornell University’s College of Agriculture and Life Sciences.

Since founding the WIT awards in 2010, the BGRI has now recognized 71 early-career award winners from 31 countries and 13 mentors from 9 countries.

2023 Early-Career Awardees

Veronica Faith Guwela

From Malawi, Veronica is a Ph.D student, University of Nottingham (UoN)-Rothamsted Research (RRes) in the United Kingdom, and Lilongwe University of Agriculture and Natural Resources (LUANAR) in Malawi. She focuses on exploiting the wider genetic variation among wheat and wild relatives to identify novel sources for increased grain zinc and iron concentration, and transfer these to African varieties.

Hafssa Kabbaj

From Morocco, Hafssa is genomic selection expert for the durum wheat breeding program at International Center for Agricultural Research in the Dry Areas (ICARDA) in Morocco. Her work is aimed at implementing genomic selection and speed breeding tools to deliver superior cultivars to national partners from Central and West Asia, North Africa, and West Africa.

Marina MillĂĄn-BlĂĄnquez

From Spain, Marina is a fourth-year Ph.D. student at the John Innes Centre where she studies the post-anthesis development of the unpollinated wheat carpel under the supervision of CristĂłbal Uauy and Scott Boden and in collaboration with KWS and Syngenta. Marina is applying a combination of approaches, including field trials, microscopy work, machine learning, and transcriptomics to better understand the genetic processes regulating different aspects of female fertility in bread wheat.

Megan Outram

From New Zealand, Megan is a CERC Postdoctoral Research Fellow at the Commonwealth Scientific and Industrial Research Organisation (CSIRO). She focuses on developing molecular understanding of the interactions between rust fungi and wheat through structural biology and protein biochemistry, and recently adopted new artificial intelligence technologies in her work to facilitate structural analysis on a genome-wide scale for the purpose of exploiting structural conservation to engineer novel, durable genetic resistance in wheat and ensure effective utilization of current resistance.

Amanda Peters Haugrad

From the United States, Amanda is a research geneticist at the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) at the Cereal Crops Research Unit in Fargo, North Dakota. Her current research program focuses on pre-breeding and germplasm improvement for both tetraploid and hexaploid wheat, focusing on the Great Plains region.

2023 Mentor Award Winner

Amor Yahyaoui

A dual citizen of Tunisia and the United States, Amor is vice president of the Borlaug Training Foundation. His work has spanned organizations on multiple continents, with positions at the University of Tunis, ICARDA, and CIMMYT. As Wheat Training Officer at CIMMYT from 2012-2018, he enhanced academic and hands-on training on wheat improvement for junior scientists from over 20 countries annually. There he developed a modular advanced wheat improvement course for mid-career scientists. In Tunisia he initiated the CRP-Wheat Septoria Precision Phenotyping Platform in Tunisia, where from 2015 to 2021 he fully involved graduate research as part of platform that led to women researchers earning seven Ph.D. and two MSc degrees in a six-year period.

Read the original article: 2023 Women In Triticum (WIT) Award Winners Announced

A. G. Adeeth Cariappa

Adeeth Cariappa is an Environmental and Resource Economist working on Carbon Credits from Agriculture. Before joining CIMMYT, Cariappa was working in the Agriculture & Allied Sectors Vertical of NITI Aayog (the premier thinktank for Government of India) and as a Consultant for Food and Agriculture Organization (FAO). Cariappa has a PhD in Agricultural Economics from the  ICAR-National Dairy Research Institute.

Harish Gandhi

Harish Gandhi is a Breeding Lead for Dryland Legumes and Cereals in CIMMYT’s Genetic Resources program in Kenya. He is a transformative plant breeding and genetics professional, with more than 15 years experience of driving genetic gains, building effective teams, and pioneering innovative research and development.

One year of Women in Crop Science at CIMMYT

To mark International Women’s Day 2023, Nele Verhulst, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT), shares progress from the Women in Crop Science group and how their work tries to contribute to gender equality in agriculture and science.

Growing up in the nineties in Belgium, I was interested in feminism, but I also assumed that the fight for equal rights for women and men had been fought and won. Studying bioscience engineering in the 2000s, more than half of the students were women, so this demonstrated to me that we were all set (although the large majority of professors were men, it seemed to be just a matter of time for that to be resolved). I have now been working in Latin America as an agronomist and researcher for more than 15 years and have come to realize that there is still a lot of work to do to achieve equal opportunities for female farmers, farm advisors, scientists, and other professionals in agriculture.

At CIMMYT, between 20 and 25 percent of staff in the science career track – careers involving field, lab, data, and socioeconomic work – are female. Because of that, Alison Bentley and I started a group of women in crop science at CIMMYT about one year ago on the International Day of Women and Girls in Science in 2022. In our first meeting, we aimed to connect, discussed how to build a network (we did not even have a list of all women in science at CIMMYT, so it was hard to know who to invite), and decided whether we wanted to commit to additional actions to achieve a more inclusive environment at CIMMYT.

Since that first meeting, we have organized coffee mornings and other events, and have split into smaller working groups to draft action plans on ten topics: gender in the workplace strategy development, advancement for locally recruited staff, mentorship, recruitment processes, microaggressions, harassment policies, work-life balance, family friendly work environment, raising external awareness about women in agriculture, and ensuring internal visibility.

Our group is also linked to the worldwide network of Women in Crop Science and the One CGIAR Women in Research and Science (WIRES) group.

I have enjoyed being able to make some first small changes – who knew sanitary facilities would turn out to be a recurring topic! – but most of all I have loved the opportunities over the past year to connect with women with a shared passion for crop science in all its aspects. That passion and the opportunities it creates to improve the lives of farmers and rural communities is the most important thing we are celebrating today.

Cover photo: Women participate in a public harvest event for timely sown wheat organized by the Cereal Systems Initiative for South Asia (CSISA) project with Krishi Vigyan Kendra (KVK) in in Nagwa village near Patna in Bihar, India. (Photo: Madhulika Singh/CIMMYT)

Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

The CGIAR Initiative on Market Intelligence represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach. (Photo: Susan Otieno/CIMMYT)

What is ‘Market Intelligence’?

Strategies for breeding and seed systems to deliver greater impact will benefit from reliable and comparable evidence on the needs and requirements of farmers, processors and consumers. This includes anticipating how farmers may respond to emerging threats and opportunities in light of seed-sector and product-market evolution and the changing environment. Experts generally agree that ‘demand-led breeding’ will be essential to achieve more impact from investments in crop breeding. But the continued interest in a demand-led approach to the design of varieties and the prioritization of breeding pipelines requires reliable, comparable and timely market intelligence. It also requires new mechanisms for how market intelligence is collected, shared and discussed with those engaged in the design and funding of breeding pipelines and seed systems.

Over the past 25 years, social science researchers from CGIAR, NARES and universities have generated important insights on the traits and varieties farmers prefer. These farmer preferences for traits and varieties have been explored through household surveys, participatory rural appraisals and participatory varietal selection. More recently, economists have employed tools such as choice experiments, experimental auctions and gamification of farmer priority traits. Overall, a large body of work has emerged, but variations in research questions, methodologies and interventions have contributed to disparate research findings and limited the opportunities for consolidation and comparative analyses.

Looking ahead, a strategic opportunity to guide more impactful investments in crop breeding and seed systems development lies in:

  • designing a consistent approach for generating and disseminating market intelligence
  • coordinating research across CGIAR and NARES to deliver timely market intelligence;
  • establishing processes for coordination across social science teams and among social science, crop modelers, CGIAR-NARES networks and the private sector.

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach.

Within this initiative, the International Maize and Wheat Improvement Center (CIMMYT) leads Work Package 1, ‘Market Intelligence’, which is responsible for the design of innovative methods and tools to collect market intelligence and the application of these tools across different regions and crops relevant for CGIAR breeding. The Work Package engages either other CGIAR centers and external partners, such as CIRAD and the World Vegetable Center. An early, but critical, challenge facing the Work Package team was how to disseminate in an accessible and timely manner market intelligence to breeding teams, funders, and the private sector.

Market Intelligence Briefs

Traditionally, researchers from CGIAR, NARES and universities who have sought to inform crop breeding and seed systems programming have done so by publishing their work in reputable international peer-reviewed journals. However, the process can be slow, potentially requiring multiple revisions over years. The practical nature of market intelligence research can limit its relevance for journal editors who are looking to push theoretical debates forward. Thus, for Market Intelligence to deliver on its promise, new ways of communicating will be essential. In looking to address these limitations, work package 1 has led the design and implementation of a new publication series called Market Intelligence Briefs (MIB). Each brief is reviewed by peers, is concise (less than 4000 words), avoids technical jargon, and attempts to present conclusions in a clear and decisive manner. In 2022 the first two editions of the MIB series were published, both led by CIMMYT researchers and available online.

MIB 1: a framework for informing crop breeding

This brief defines several important concepts that, when taken together, form the basic framework used by the Initiative to generate comparable and useful market intelligence. Some of the definitions are inspired by previous work on demand-led breeding, while others build on work by CGIAR’s Excellence in Breeding (EiB) platform. A confusing set of terms and definitions has emerged around market intelligence—a field rooted in commercial product innovation—with different terms and definitions for similar concepts. In the interest of clear communication and understanding among those engaged in crop breeding, seed systems and social science, this brief presents key concepts and definitions that have been discussed extensively during the initial months of implementation of Market Intelligence. We conclude the brief with reflections on the way forward for implementation.

MIB 2: future market segments for hybrid maize

The second brief zooms into the maize market segments in East Africa and proposes a new methodology for gathering insights from farmers about their varietal preferences to inform future market segmentation. This brief explains the conceptual and methodological underpinnings of Video-based Product Concept Testing (VPCT) and presents an application of the tool in hybrid maize. Seven new product concepts (representing potential future market segments) were identified based on discussions with breeders, seed companies and farmers, which we labelled: home use, intercropping, drought avoidance, nutritious, feed (yellow), green maize and food and fodder. These future concepts, together with the resilient benchmark product concept (the current breeding target), were evaluated through triadic comparisons with 2400 farmers in Kenya and Uganda. The results showed that concepts focused on agronomic performance were preferred over concepts focused on end use characteristics, but that diversity in farming practices can lead to different seed preferences.

Looking ahead

In 2023, several briefs will be published from scientists working in the market intelligence initiative and various partners of Market Intelligence from outside the CGIAR. An on-line repository for these briefs is being designed now. Future briefs will cover a variety of topics, from competition in maize seed markets in Kenya (based on a two year study that tracked seed sales at the retail level), methods for assessing the demand for future step-change innovations in genetic innovations, and preferences for future groundnut seed products in Tanzania, considering the needs of farmers and processors. We believe that these briefs will become a valuable communication tool to support informed decision making by crop breeders, seed system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector and non-governmental organizations (NGOs).

This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by the Bill & Melinda Gates Foundation, the UK’s Foreign, Commonwealth & Development Office (FCDO), the Foundation for Food & Agricultural Research (FFAR) and the United States Agency for International Development (USAID).

Read the original article: Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

Growing stronger with every season

The United Nations International Day of Women and Girls in Science (IDWGIS) is observed annually on February 11 to highlight the gender gap in the disciplines of science, technology, engineering and mathematics (STEM).

Data shows that women are given smaller research grants than their male colleagues, are underrepresented in cutting edge fields, and account for a lower percentage of STEM graduates.

At the International Maize and Wheat Improvement Center (CIMMYT), women are leaders, mentors, and role models in agricultural science and research, helping to support the next generation. Across our global programs, women are making a difference to the lives of farmers and their communities every day.

Adapting growing seasons to climate change can boost yields of world’s staple crops

Rising global temperatures due to climate change are changing the growth cycles of crops worldwide. Recent records from Europe show that wild and cultivated plants are growing earlier and faster due to increased temperatures.

Farmers also influence the timing of crops and tend to grow their crops when weather conditions are more favorable. With these periods shifting due to climate change, sowing calendars are changing over time.

Over thousands of years of domesticating and then breeding crops, humans have also managed to artificially change how crop varieties respond to both temperature and day length, and in turn have been able to expand the area where crop species can be grown. Farmers can now choose varieties that mature at different rates and adapt them to their environment.

Including farmers’ decisions on when to grow crops and which varieties to cultivate are vital ingredients for understanding how climate change is impacting staple crops around the world and how adaptation might offset the negative effects.

In a ground-breaking study, a team of researchers from the Potsdam Institute for Climate Impact Research (PIK), the Technical University of Munich and the International Maize and Wheat Improvement Center (CIMMYT) investigated how farmers’ management decisions affect estimates of future global crop yields under climate change.

“For long time, the parametrization of global crop models regarding crop timing and phenology has been a challenge,” said Sara Minoli, first author of the study. “The publication of global calendars of sowing and harvest have allowed advancements in global-scale crop model and more accurate yield simulations, yet there is a knowledge gap on how crop calendars could evolve under climate change. If we want to study the future of agricultural production, we need models that can simulate not only crop growth, but also farmers’ management decisions.”

Using computer simulations and process-based models, the team projected the sowing and maturity calendars for five staple crops, maize, wheat, rice, sorghum and soybean, adapted to a historical climate period (1986–2005) and two future periods (2060–2079 and 2080–2099). The team then compared the crop growing periods and their corresponding yields under three scenarios: no adaptation, where farmers continue with historical sowing dates and varieties; timely adaptation, where farmers adapt sowing dates and varieties in response to changing climate; and delayed adaptation, where farmers delay changing their sowing dates and varieties by 20 years.

The results of the study, published last year in Nature Communications, revealed that sowing dates driven by temperature will have larger shifts than those driven by precipitation. The researchers found that adaptation could increase crop yields by 12 percent, compared to non-adaptation, with maize and rice showing the highest potential for increased crop yields at 17 percent. This in turn would reduce the negative impacts of climate change and increase the fertilization effect of increased levels of carbon dioxide (CO2) in the atmosphere.

They also found that later-maturing crop varieties will be needed in the future, especially at higher latitudes.

“Our findings indicate that there is space for maintaining and increasing crop productivity, even under the threat of climate change. Unfortunately, shifting sowing dates – a very low-cost measure – is not sufficient, and needs to be complemented by the adaptation of the entire cropping cycle through the use of different cultivars,” said Minoli.

Another important aspect of this study, according to Anton Urfels, CIMMYT systems agronomist and co-author of the study, is that it bridges the GxMxE (Gene-Management-Environment) spectrum by using crop simulations as an interdisciplinary tool to evaluate complex interactions across scientific domains.

“Although the modeled crops do not represent real cultivars, the results provide information for breeders regarding crop growth durations (i.e. the need for longer duration varieties) needed in the future as well as agronomic information regarding planting and harvesting times across key global climatic regimes. More such interdisciplinary studies will be needed to address the complex challenges we face for transitioning our food systems to more sustainable and resilient ones,” said Urfels.

Read the study: Global crop yields can be lifted by timely adaptation of growing periods to climate change

Cover photo: Work underway at the International Maize and Wheat Improvement Center in Zimbabwe (CIMMYT), is seeking to ensure the widespread hunger in the country caused by the 2015/6 drought is not repeated, by breeding a heat and drought tolerant maize variety that can still grow in extreme temperatures. CIMMYT maize breeders used climate models from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) to inform breeding decisions. (Photo: L. Sharma/Marchmont Communications)

David Omar Gonzalez Dieguez

David Omar Gonzalez Dieguez is a Post-Doctoral Fellow – Molecular Pre-Breeder in the Global Wheat Program at CIMMYT. He leads the application and integration of molecular tools in research and pre-breeding activities in wheat physiology.

In the research context, Dieguez focuses on the genetic basis of physiological traits related to yield components and climate resilience for yield potential, heat, and drought adaptation by performing GWAS analyses for gene/marker/QTL discovery and establishing marker validation for pre-breeding and breeding application to assist stacking of complementary physiological and agronomic traits.

In the pre-breeding context, Dieguez conducts the application and integration of genomic-assisted breeding tools (i.e. MAS/MABC and GS) at appropriate stages of the pre-breeding pipeline to support pre-breeder’s decisions for selecting lines for yield potential and tolerance to heat and drought stress and for trait introgression.

Carlos Alfredo Robles Zazueta

Carlos Alfredo Robles Zazueta is a Postdoctoral Fellow – Wheat Physiology in the Global Wheat Program at CIMMYT.

His research interests are focused in understanding the physiological basis of yield improvement by studying physiological traits such as photosynthesis, stomatal conductance, biomass accumulation, resource use efficiency, all of this using conventional and high-throughput phenotyping methods.

How a new generation of women are changing wheat science

by Krisy Gashler 

For Charlotte Rambla, winning the 2022 Jeanie Borlaug Laube Women in Triticum (WIT) Early-Career Award was an “incredible, unreal experience.”

Each year, the Borlaug Global Rust Initiative (BGRI) honors five to six female early-career wheat researchers with the WIT award in recognition of scientific excellence and leadership potential. With the award, women scientists receive leadership training and professional development opportunities meant to support them as they join the community of scholars who are fighting hunger worldwide.​

“The training I’ve received with this award has been one of the best experiences of my professional life,” said Rambla, an Italian native who recently completed her Ph.D. at the Queensland Alliance for Agriculture and Food Innovation in Australia and has begun a postdoctoral appointment at the Salk Institute for Biological Studies. “Meeting these incredible women working in the same field, sharing our knowledge and experiences, it felt like we belonged together and were working toward one shared purpose; We are all joined by this same passion for agriculture and science.”

The 2022 awards honored six early-career scientists from Morocco, Indonesia, Ethiopia, Italy, Pakistan and China. Since 2010, the WIT awards have recognized 66 early-career scientists from 29 different countries. The training and development opportunities offered to each year’s cohort varies, based on the needs and interests of the winners, said Maricelis Acevedo, director for science for the BGRI, research professor in the Department of Global Development at Cornell University, and a 2010 WIT awardee. The 2022 WIT cohort visited the World Food Prize Foundation in October, just before the foundation announced the winner of this year’s World Food Prize, widely considered the Nobel Prize for food and agriculture.

“The role of the WIT award is to recognize emerging scientific leadership and provide training and support for women working in wheat to create a cohesive group of hunger-fighters who have the skills to lead the next generation of scientists and create the solutions that we need at such a critical time,” Acevedo said. “As these women receive the award, we hope that they continue to support other women and other early-career scientists, and to train their students in a more open, diverse network.”

Meriem Aoun, a 2018 WIT awardee and native of Tunisia, was a postdoctoral associate at Cornell University when she won her award. Her cohort received a month-long training at the International Maize and Wheat Improvement Center (CIMMYT) – the center where Norman Borlaug did the research that earned him the 1970 Nobel Peace Prize –  and attended the 2018 international BGRI conference in Morocco. Aoun believes that the WIT award supported her professional career development and gave her the opportunity to connect with other WIT winners from many countries.  “I am thrilled to see more and more ambitious and career-interested wheat scientists and that our community of WIT winners is growing each year,” she said.

Now an assistant professor of wheat pathology at Oklahoma State University (OSU), Aoun studies the genetics of disease resistance to wheat pathogens. She is a key member of OSU’s wheat improvement team developing disease-resistant wheat varieties suited for Oklahoma and the Southern Great Plains of the U.S.

For 2013 winner and Swiss-Argentinian Sandra Dunckel, the fact that BGRI chooses a cohort of women each year, rather than a single winner, is one of the strengths of the award. Now head of Breeding Barley, Special Crops and Organics at KWS Group, a multinational seed company headquartered in Germany, Dunckel said the networking opportunities were among the most beneficial aspects of her WIT award training.

“There is this group of women who are working on a common goal, and even if you aren’t in touch for several years, you can contact someone from your year, or really any year, and say, ‘Hello, fellow WIT winner, I’m looking for a breeder with great potential for one of my teams, can you recommend someone, or  I need help with this question.’ It’s always there to fall back on,” she said.

Dunckel won her WIT award while completing her PhD at Kansas State, then worked for two years as a wheat breeder in Australia before moving to her current role at KWS, where she oversees nine breeding teams across Europe who are working to develop new barley, peas, oats and protein crop varieties that are more tolerant to drought and heat, have desired quality profiles and can be grown more sustainably globally.

Paula Silva, a 2020 WIT awardee, also won her award while completing her PhD at Kansas State. She has since returned to her native Uruguay, where she leads the breeding team developing disease resistant varieties of barley and wheat for Uruguay’s National Institute of Agricultural Research (INIA). From 2019-2022, she coordinated breeding efforts with CIMMYT by leading the Precision field-based Phenotyping Platform (PWPP) for Multiple Resistance to Wheat Diseases.

One of the purposes of the WIT award is to help achieve gender parity among wheat scientists, and Silva said she believes the award “is playing a big part in building gender equality.”

Silva said that as a student, she was encouraged to apply for the WIT award by Sarah Evanega, who, along with Ronnie Coffman, international professor emeritus of plant breeding and genetics at Cornell, lobbied for the establishment of the WIT award. The BGRI now annually presents WIT honors to early-career scientists and a mentor award for excellence in advising of women working in wheat and its nearest relatives.​

“Sarah was always advocating for young, female participation,” Silva said. “I remember her counting how many females there were in conference pictures, and I do that now, too. You can see, year by year, the female representation gets bigger and bigger.”

Full gender equality in science is still lacking, but progress is being made. The gains are seen in wider perspectives that challenge orthodoxy and improve scientific possibilities.

“The WIT awards are a fantastic way to recognize and support emerging leaders in our community. The impressive cohort of past and present WIT recipients are actively contributing to global efforts to improve crop production and food security,” said Alison Bentley, who now leads the Global Wheat Program at CIMMYT.

Part of Acevedo’s leadership role for BGRI is helping choose each year’s winner, as part of a panel that includes previous WIT awardees and globally recognized wheat scientists, and working with each cohort to develop appropriate training opportunities. Acevedo said as she progressed in her career, she realized how important it was to help young female scientists not only with traditional training and networking opportunities, but also with leadership, communication, and work-life balance.

“It’s really tough to be an isolated scientist: science can be very individualistic. It can be competitive. As women in science, we feel particularly isolated because a lot of our colleagues are males. So you may feel like, ‘This is only happening to me, I’m the only one struggling with this,’” Acevedo said. “In these trainings, we celebrate professional and personal successes but also share  our challenges, normalize struggles, and find support. As we think about a more collaborative and open science, we need to be talking more about humbleness, the positive impact of recognizing and making peace with weakness, and seeking support from one another to thrive as a diverse research community.”

Read the original article: How a new generation of women are changing wheat science

Scaling Scan website launched

The Scaling Scan website has been launched offering the latest news, manuals, videos, trainings, a directory of consultants, and a forum to engage with peers and experts on how to use the Scaling Scan tool to support scaling processes.

The website, which was developed by Lennart Woltering, scaling advisor with the International Maize and Wheat Improvement Center (CIMMYT), and the Scaling team in CIMMYT, builds on the success of the Scaling Scan, a user-friendly tool designed for anyone to learn about scaling: appreciate that context is king, that innovations don’t scale alone, and that collaboration is key for success

“The idea behind the Scaling Scan has always been to make it accessible to users of all levels, to bring the discussion on scaling to the ground and therefore, just like the tool, the materials on the site are available in English, French, and Spanish,” said Woltering.

It features materials used in training programs and workshops by CIMMYT’s scaling team over the past five years, repurposing them neatly for users around the world to assess the scalability of their own pilot projects and innovations. The website also includes a forum where users can engage in conversations, exchange information, and ask experts and other users questions and advice related to scaling. The platform also acts as a conversation space, allowing users around the world to share their experiences with the Scaling Scan, ask questions, and learn from each other. This has the added benefit of helping the Scaling Scan team understand on the ground needs so that they can create more user-friendly content.

“The demand for Scaling Scan workshops has been overwhelming, within CIMMYT, the CGIAR, but also with development organizations like Catholic Relief Services and GIZ and the private sector and we realized that we should bank much more on its biggest asset: accessibility. So, in 2022 we started with trainings for facilitators and the website serves as the platform for them to draw inspiration, materials, and methodologies how to apply the Scaling Scan in their context,” said Woltering.

Scaling is a process that aims to achieve sustainable change at scale. This means that not only should many people benefit from a new technology, but the results of a particular project should carry over beyond its immediate context and transform communities for the better.

It’s a complex process, and there is no one single recipe or blueprint. The Scaling Scan can, however, give direction to scaling new projects and highlight key factors scaling teams need to look out for

“The Scaling Scan aims to provide a framework for people to understand how much they should scale, and what else should be taken into consideration, in addition to the technology, for the next steps in their scaling process,” said CIMMYT Scaling Coordinator Eva Marina Valencia Leñero. “It also intends to show that scaling is not only about focusing on where the innovation is ready or mature, but also whether there are enabling conditions – what we call scaling ingredients – surrounding this innovation that managers have to plan for if they want their innovation to last in the long-term.”

“Considering that the core of the tool was developed at a kitchen table with three people over two days with no funding, it is amazing that the tool has served more than 2,000 people in the last five years,” said Woltering. With support from GIZ, the Scaling Scan is now being digitized which allows for the development of different versions, for example one with more emphasis on social inclusion or on climate mitigation for the One CGIAR Low-Emission Food Systems (MITIGATE+) Initiative. The lessons from over five years of applying the Scaling Scan from rural areas in Honduras to Bangladesh are currently being written up.

Tracking the development and reach of CIMMYT’s climate research

Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.

Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.

In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.

Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.

The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.

“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.

The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.

The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.

The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.

According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.

Read the study: Digital artifacts reveal development and diffusion of climate research

Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)

Taking Aim Against the Dire Threat of Fall Army Worm

Fall armyworm (FAW) is present in 109 countries in Africa, the Middle East, South and East Asia, and Oceania, and it has spread due to rapid increases in global trade. Maize is highly susceptible to the disease, but it affects more than 300 plant species.

Research by organizations such as the International Maize and Wheat Improvement Center (CIMMYT), CGIAR and CABI has developed effective strategies and tools for managing the disease, such as improved seed, proven agronomic practices, and biologic and chemical crop-protection tools.

An article in The Farming Forum explores FAW prevention developments and partnerships that are helping smallholder farmers protect their crops against this devastating disease.

Read the original article: Taking Aim Against the Dire Threat of Fall Army Worm

Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency

In an interview, Bram Govaerts, Director General of the International Maize and Wheat Improvement Center (CIMMYT), highlights the challenges facing crop cultivation management and agricultural product trade in Mexico and the rest of the world.

“At present, one of the most pressing challenges [in Mexico] is water scarcity exacerbated by la Niña’s occurrence,” explains Govaerts. “The global average of freshwater consumption for food production is 70 percent. However, Mexico ranks 24 in a global Water Stress Index facing high levels of stress by consuming between 40 and 80 percent of water supplies available in any given year.”

The article explores successful local sustainable grain sourcing projects in Mexico, research into sustainable global agricultural development, genetically-modified crops and their connection to biodiversity, and soil health.

Read the original article: Mexico Agriculture: Thrive on the Shift from Efficiency to Resiliency