Skip to main content

Location: Russia

How to shockproof staples in a looming global food crisis

Empty shelfs in a Swiss grocery store. Photo Boris Dunand/Unsplash

The conflict in Ukraine has had a deeply destabilizing effect on the global wheat trade, causing unprecedented price volatility and uncertainty. As my colleagues and I have previously highlighted, the unintended consequences are likely to have outsized impacts on livelihoods in the Global South.

As the G7 group of nations recently acknowledged in a joint statement, the conflict is leading to steep price rises and increasing global food insecurity for millions, especially those most vulnerable, such as women and children.

In a new paper published in Nature Food, scientists and partners of the International Maize and Wheat Improvement Center (CIMMYT) present a package of applied solutions to respond to the crisis and ensure future wheat stability.

To stem the potential food crisis, food is needed in more places, and faster.

Recently announced talks between Russia, Turkey, Ukraine and the United Nations, among other negotiations, are already underway as part of this international effort to develop short-term solutions.

However, at present we are seeing the brakes applied in several places. For example, in India century-high temperature extremes have recently reduced official wheat production estimates by 6 percent, leading to reduced export potential. This shows the compounding effect of climatic instability on global wheat markets, an impact that is expected to worsen over time.

In our solutions agenda, we propose a package of short-, medium- and longer-term actions and urge immediate and sustained support for shockproofing major food security staple crops, including wheat.

  1. In the short term, the priority is mitigation of food security shocks through boosting production in existing high- and low-productivity areas, ensuring access to grain, and making use of flour substitution.
  2. In the medium term, we must increase the local, regional, and global resilience of wheat supply through targeted expansion (within agro-ecological boundaries), support for self-sufficiency, comprehensive technical support in production systems, and mainstreamed crop monitoring capacity.
  3. In the longer term, the transition to agri-food system resilience will need to encompass agroecosystem diversity, address gender disparities in agriculture and rural communities, and sustain an increased investment in a holistic, agri-food transition.

Conflict is being waged on wheat on multiple fronts: on battlefields, in the political arena and by our changing climate. Together these factors interact and amplify the threat to staple wheat production. To address this complexity, we now need to move beyond defining the problem to implementing practical action to ensure stable supply.

Essential actions to mitigate the food crisis, stabilize supply and transition to greater agrifood system resilience

Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)
Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)

As the Russia-Ukraine war continues to degrade global food security, a new analysis lays out concrete actions that governments and investors must do now to mitigate near-term food security risks and stabilize wheat supplies, while transitioning toward long-term resilience.

The guidance, published in Nature Food by scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners, lays out short-, medium- and long-term steps to respond to the global food crisis and ultimately lead to a more resilient global agrifood system.

“The Russia-Ukraine war will impact global food security over months — if not years,” said CIMMYT Global Wheat Program Director and lead author Alison Bentley. “We now need to move beyond defining the problem to implementing practical actions to ensure stable supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system.”

The war in Ukraine and trade sanctions against Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. More than 2.5 billion people worldwide consume wheat-based foods; those in lower- to middle-income countries dependent on imports from Russia and Ukraine are particularly affected. Some of the world’s poorest countries, such as Bangladesh, Sudan and Yemen, rely heavily on Russian and Ukrainian wheat. Given the highly interconnected nature of contemporary agrifood systems, few will remain unaffected by this new global food shock.

Mitigate the immediate crisis

The first priority, according to the authors, is to mitigate the immediate crisis by boosting wheat production in existing high- and low-productivity areas, ensuring grain access and blending wheat flour with other low-cost cereals. Bundled agronomic and breeding improvements and sustainable farming practices can reduce dependence on imported grain and fertilizer, while coordinated, multilateral policies can help conserve grain stocks for human consumption and avert trade restrictions.

Increase the resilience of wheat supply

In the medium term, the authors emphasized the need to increase the local, regional, and global resilience of the wheat supply. This can be done by expanding production within agro-ecological boundaries, supporting national wheat self-sufficiency and providing technical assistance, to increase the production of high-yielding disease-resistant wheat and to mainstream capacity for pest and disease monitoring.

Transition to system-level resilience

Finally, to reach crucially needed resilience in the world’s agrifood system, long-term measures must be taken that encompass agroecosystem diversity, address gender disparities in agriculture and rural communities and sustain increased investment in a holistic, agrifood transition.

“The current global food crisis underscores and compounds existing inequalities in our global food system,” Bentley said. “A transition to agrifood system resilience requires us to urgently balance global food supply needs with the multi-layered challenges of climate change, achieving gender equity, nutritional sufficiency and livelihood security.”


RELATED RESEARCH PUBLICATIONS:

Near- to long-term measures to stabilize global wheat supplies and food security

This research is supported by CGIAR Trust Fund Contributors.

INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Ricardo Curiel, Communications Manager, CIMMYT. r.curiel@cgiar.org, +52 5558042004 ext. 1144.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agrifood systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

Experts analyze the impact of the Russia-Ukraine war on global food and energy systems

Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)
Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)

A panel of experts convened by the Woodrow Wilson International Center for Scholars on April 13, 2022, discussed the effects that the Russia-Ukraine war could have on global supply chains of critical resources including staple crops, oil and natural gas, and strategic minerals.

Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), joined three experts representing a security consulting firm, a mining investment company and the academic sector. They analyzed the complex ramifications of the armed conflict and put forward policy recommendations to mitigate its impact on global food and energy systems.

“We have immediate action to take in order to boost the production of crops with fewer resources available, such as fertilizers,” Govaerts said, reflecting on how to help food-insecure countries in the Middle East and North Africa that import most of their wheat supplies from the Black Sea region. “We also need to look at where we are going to be supplied with alternate sources,” he added.

Govaerts took this opportunity to position Agriculture for Peace, the CIMMYT-led call for secure, stable and long-term investment in agricultural research for development, to transform global food systems by shifting their focus from efficiency to resilience.

More information: System Shock: Russia’s War and Global Food, Energy, and Mineral Supply Chains

Russia-Ukraine conflict and global food security

For the past month, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have analyzed the expected impacts of the Russia-Ukraine war on global food security.

The war in Ukraine and the sanctions against Russia will disrupt wheat supply chains, fertilizer exports and other components of food systems. Their combined effect, along with other factors, could unchain a major food security crisis as well as increased inequality.

Explore our analysis and coverage on major media outlets and journals. To get in touch with our experts, please contact the media team.

CIMMYT scientists have also made available a summary of key facts and figures about the impact of the Russia-Ukraine war on wheat supply (PowerPoint, 32MB): changing patterns of consumption and effect on food prices, geographic export supply concentration, global wheat imports, and specific vulnerabilities particularly in the Global South.

Another food crisis?

The Russia-Ukraine conflict will cause massive disruptions to global wheat supply and food security. Agricultural research investments are the basis of resilient agri-food systems and a food-secure future.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Broken bread — avert global wheat crisis caused by invasion of Ukraine

War highlights the fragility of the global food supply — sustained investment is needed to feed the world in a changing climate, Alison Bentley explains on Nature.

Food is just as vital as oil to national security

A new Bloomberg op-ed urges nations to steer more money to organizations like CIMMYT that are advancing crucial research on how to grow more resilient wheat and maize crops in regions that are becoming steadily less arable.

What price wheat?

Crisis in Ukraine underscores the need for long-term solutions for global food security, Alison Bentley and Jason Donovan explain.

Wheat fields in Ukraine. Photo: tOrange.biz on Flickr (CC BY 2.0)

Multiple breadbasket failures: Nations must address looming food emergencies

The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable humanitarian consequences, civil unrest, and major financial losses worldwide, say Sharon E. Burke (Ecospherics) and Bram Govaerts (CIMMYT) on The Boston Globe.

Another food crisis?

Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)
Mature wheat spikes. (Photo: Alfonso Cortés/CIMMYT)

The impacts of the Ukraine crisis are likely to reverberate over months, if not years, to come. If the reductions in wheat exports from Russia and Ukraine are as severe as anticipated, global supplies of wheat will be seriously constrained. If a major reduction in fertilizer exports comes to pass, the resulting drop in global productivity will tighten global markets for wheat, other grains and alternate food sources — leaving vulnerable people all over the world facing higher food prices, hunger and malnutrition.

These massive disruptions will erode modest progress made toward gender equality, biodiversity conservation and dietary diversification. The severe impact of this single shock shows the underlying fragility and complexity of our agri-food systems. Climate change will bring many more.

The world must take essential actions to mitigate food shocks, stabilize local wheat supplies and transition toward agri-food system resilience, from the current efficiency-driven model. We call for large and sustained agricultural research investments as a foundational element of any viable, food-secure future.

From chronic challenges to food crisis conditions

Global wheat production for export is geographically concentrated, placing inherent vulnerabilities on the global system. Dominance of the wheat export trade by a relatively small number of countries makes sense under an efficiency paradigm, but it opens the door to price spikes and food-related crises. At the same time, biophysical vulnerability of major global breadbaskets is on the rise as drought and other weather extremes increase volatility in cereal yields, exports and prices.

Russia and Ukraine produce 28% of the world’s total wheat exports and Russia is a globally important source of fuel and fertilizer. With over 2.5 billion people worldwide consuming wheat-based products and wheat futures at their highest levels since 2012, disrupted exports from Russia and Ukraine would usher in substantial new pressures on global wheat markets and tremendous risks for vulnerable populations around the world.

Dependence on wheat imports from Russia and Ukraine imperils food security in lower- and middle-income countries in North Africa and the Middle East (Algeria, Egypt, Libya, Morocco, Yemen), the Mediterranean (Azerbaijan, Turkey), sub-Saharan Africa (Nigeria, Sudan), Southern Asia (Bangladesh, Pakistan) and throughout Southeast Asia. Globally elevated food prices will hit hardest in those countries already struggling with food insecurity.

Layered onto the existing concentration of wheat-exporting countries and the climate-induced vulnerabilities in essential global breadbaskets, the crisis in Ukraine and trade sanctions on Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. We may well see a range of negative effects over the short, medium and long term, including:

  • Severe food insecurity and economic impacts due to reduced global wheat supplies and price increases affecting all wheat-importing countries and humanitarian agencies.
  • Diminished global grain productivity due to fertilizer supply limitations and price escalation, especially in low-income, fertilizer-import-dependent countries.
  • Higher food prices and expanded global hunger and malnutrition as a result of tighter fuel supplies driving up costs of agricultural production.
  • Pressure on household budgets negatively affecting nutrition, health, education and gender equity.
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo MejĂ­a/CIMMYT)
The employee of an Ethiopian seed association smiles as bags of wheat seed are ready to be distributed. (Photo: Gerardo MejĂ­a/CIMMYT)

Stabilize while building resilience

With these multi-layered challenges in view, we propose essential actions to mitigate near-term food security crises, to stabilize wheat supply and to concurrently transition toward agri-food system resilience.

Without doubt, the world’s top priority must be to mitigate food security crises at our doorstep. This will involve boosting wheat production through expanded acreage (e.g. in high-performing systems in the Global North) and closing yield gaps (e.g. improved management and value chains of rainfed, wheat-based systems in the Global South) using policy incentives such as price guarantees and subsidized agricultural inputs. Short-term food insecurity can also be addressed through demand-side management (e.g. market controls to conserve grain stocks for human consumption; use of lower-cost flour blends) and de-risking alternative sourcing (e.g. trade agreements).

As these actions are taken, a range of strategies can simultaneously drive toward more resilient wheat supply at local to global scales. Well-functioning seed systems, demand-driven agronomic support and other elements of wheat self-reliance can be encouraged through shifts in local policy, regulatory and sectoral contexts. Enhanced monitoring capacity can track spatial patterns in wheat cropping, including expansion into areas where comparative advantage for wheat production (e.g. agro-ecological suitability; supporting infrastructure) has been identified in rural development frameworks and national plans (e.g. as a double crop in Ethiopian midlands). In addition to enabling yield forecasts, surveillance systems are critical to phytosanitary control of geographically restricted pathogens under altered wheat trade routes.

Yet, these steps to mitigate food shocks and stabilize local wheat supplies will not adequately protect the world from climate-related biophysical risks to food and nutritional security. In parallel, a transition toward agri-food system resilience requires transformative investments in agricultural diversification, sustainable natural resource management and low-greenhouse-gas agroecosystems, as well as meaningful actions toward achieving gender equality, nutritional sufficiency and livelihood security.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Sustained research & development for a food-secure future

None of the critical actions described above are guaranteed given the oscillating global investment in agricultural research. Enabled by decades of agricultural research, the world has managed to constrain the number and severity of food security crises through major gains in agricultural productivity.

The International Maize and Wheat Improvement Center (CIMMYT), the global international wheat research Center of the CGIAR, has been working tirelessly to maintain wheat harvests around the world in the face of mounting disease pressures and climate challenges. The estimated benefit-cost ratio for wheat improvement research ranges from 73:1 to 103:1. Yet, research funding only rises when food crises occur, revealing the globalized risks of our highly interconnected agri-food systems, and then tapers as memories fade.

With limited resources, scientists around the world are attacking the complex challenge of increasing agricultural yields and ensuring stable, equitable food supplies. Receiving only about 2% of international agricultural research funding over time, CIMMYT and the entire CGIAR have had limited ability to develop the long-term research capabilities that could mitigate or prevent short-term emergencies with medium- to long-term effects.

Responding to the mounting pressures on deeply complex agri-food systems requires integrative solutions that allow farmers and other agri-food stakeholders to mitigate and withstand shocks and to achieve viable livelihoods. Knowledge and technology needs are extensive across production systems (e.g. wheat-legume intercropping; cereals-focused agroecological interventions), value chains (e.g. context-appropriate seed systems; nutrition enhancement through flour blending), monitoring systems (e.g. genomics-based surveillance), and social dimensions (e.g. gender implications of new production and consumption strategies; policy interventions).

Generating such solutions depends on robust, multidisciplinary and transparent research capabilities that fuel the transition to agri-food system resilience. Robust international investment in resilient agricultural systems is an essential condition for national security, global peace and prosperity.

Read the full article (pre-print):
Another food crisis? The Ukraine conflict, global wheat supply and food security

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

Broken bread — avert global wheat crisis caused by invasion of Ukraine

In an analysis piece on Nature, the director of CIMMYT’s Global Wheat Program, Alison Bentley, highlights the expected income of the Russia-Ukraine war on food security.

In low-income nations, the ability of governments to continue to subsidize bread will be strained; the knock-on effects on overall government spending and provision of public services will reach far beyond wheat. The last time wheat prices increased sharply, in 2008, it precipitated food riots from Burkina Faso to Bangladesh.

An unprecedented level of international political and economic action is now required to safeguard the immediate food supply of those who are already vulnerable, including in the global south. At the same time, a range of agricultural interventions must be deployed to make the supply of wheat more resilient in the years ahead.

Read the full analysis:
Broken bread — avert global wheat crisis caused by invasion of Ukraine

 

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

What price wheat?

Wheat fields in Ukraine. Photo: <a href="http://www.torange.biz">tOrange.biz</a> on <a href="https://flic.kr/p/k6WPqM">Flickr</a> (<a href="https://creativecommons.org/licenses/by/2.0/">CC BY 2.0</a>)
Wheat fields in Ukraine. Photo: tOrange.biz on Flickr (CC BY 2.0)

When wheat prices rise, so do global food prices, along with conflict, inequality and instability. Over the past two decades, the world has witnessed multiple crises erupt over the social and political instability caused by rising costs for staple cereals. The global food crisis that impacted many parts of the world in 2007–2008 was a response, in part, to the prices for wheat and rice which had increased 130% and 70%, respectively, compared to the year before. More recently, spikes in grain prices catalyzed the 2011 Arab Spring.

With the ongoing conflict in Ukraine and the resulting longer-term disruptions of the country’s rural economy, there is potential for another round of turmoil linked to prices for staple cereals.

Ukraine is a breadbasket for the world, with 57% of its land area arable for agriculture. Wheat production in the country increased roughly 10%, on average, between 2000 and 2020. In 2022, Ukraine ranked as the fifth largest wheat exporter globally, exporting $3.59 billion of wheat.

Today, global wheat prices are at their highest levels since 2012: $9 per bushel, based on data from the Chicago Board of Trade.

Wheat is a staple crop, essential to food security. It is consumed by over 2.5 billion people worldwide, including large proportions of the populations of many food-insecure regions in the world. Many of the wheat-consuming countries in these regions are far from wheat self-sufficient, relying on global imports to meet demand. This causes significant vulnerability in food supply and increases associated humanitarian risks. In 2019, important quantities of Ukrainian wheat were exported to low- and middle-income countries in North Africa and the Middle East. Although the impacts of current price increases are anticipated to be short-term, they are likely to be inequitably felt, as not all buyers are able to pay higher prices.

There are over 6 million hectares of wheat planted in farmers’ fields across Ukraine that will be due for harvest in June and July of 2022. The length and depth of the current crisis has potential implications for the fate of this in-field crop, and for its subsequent harvest and global distribution. Likewise, sanctions and trading restrictions on Russia, the world’s largest wheat exporter — exporting $7.92 billion of wheat in 2020 — are likely to place added pressure on international wheat markets. This comes at a time of rising costs in agriculture, including the soaring price of nitrogen fertilizer and increasing fuel and supply chain costs. The gap between supply and demand is also becoming wider with climatic instability — such as drought conditions — hitting both domestic production and export stocks in several countries.

Rising prices for staple cereals have historically led to instability, particularly in fragile regions where food security is low. The impacts of current high wheat prices are likely to be felt most significantly by populations in the Global South who rely on wheat imports.

The potential humanitarian crisis beyond the borders of the current conflict needs to be addressed to avoid deepening global divisions in equality of access to food. In the case of wheat, long-term solutions will require much higher levels of investment, coordination and cooperation between governments, development organizations and agro-industry. Without doubt, part of the solution lies in increasing wheat productivity and profitability in food-insecure regions where wheat has traditionally been grown, as well as supporting the expansion of wheat production into climatically suitable areas in countries which have traditionally relied on imports to meet local demand.

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.

Wheat breeding must account for warmer, wetter climates in North America and Russia, new study shows

A wheat crop in northern Kazakhstan. (Photo: Alexey Morgounov/CIMMYT)
A wheat crop in northern Kazakhstan. (Photo: Alexey Morgounov/CIMMYT)

FOR IMMEDIATE RELEASE           

MEXICO CITY — Breeders of spring wheat for North America and Russia need to adapt their varieties to the regions’ changing climates, which are bringing longer and wetter whegrowing seasons, according to a scientific paper published yesterday.

Published by a five-country team of wheat researchers, the study analyzed changes in wheat yields, along with air temperatures and precipitation, on farms and research stations in Canada, Kazakhstan, Russia, and the USA, from 1981 to 2015.

The 22 million hectare study area — nearly the size of the United Kingdom — accounts for as much as 10 percent of global wheat production and exports nearly all its wheat, making it a big contributor to world food markets, according to Alexey Morgounov, wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the paper.

“June, when the grain-holding wheat spike begins to form, turned out to be the critical month for spring wheat,” Morgounov said. “Maximum temperatures for that month rose over the 35 years studied, which hurt yields, but average rainfall increased and boosted grain yield, offsetting the temperature effect.”

Still, breeding for adaptation to higher temperatures will be critical to increasing spring wheat yields, according to Morgounov, who added that there were substantial changes in the dates of planting and harvesting, normally leading to longer growing seasons in the regions studied. “New varieties should be able to take advantage of the longer wheat growing seasons that warming brings.”

Overall, climate changes were more favorable for spring wheat in North America than in Kazakhstan and Russia, with greater precipitation in Canada and the USA and less exposure to extreme, high temperatures. Growing season precipitation increased as much as 15 percent at North American locations.

The two regions covered in this study represent distinct environments. The Kazakhstan and Russia locations are more than 500 kilometers further north than the North American latitudes and experience colder winters, hotter summers, and less precipitation.

“Interestingly, the two regions appear to complement each other, over the period we studied,” Morgounov said. “Higher-than-average wheat yields in one were normally associated with lower yields in the other, helping to foster stability in grain markets.”

“The whole high-latitude, continental climate spring wheat area certainly presents a huge potential for global wheat production,” he added, “and both can benefit from germplasm exchange and cooperation, with emphasis on the climate change challenges and opportunities presented in this paper.”

Morgounov acknowledged contributions for the study from the Prairie Recommending Committee on Wheat, Rye and Triticale, Canada, and other Canadian partners; the USDA-ARS Plant Science Research Unit; the Samara Agricultural Research Institute, the Agricultural Research Institute of Southeast Saratov, the Altay Agricultural Research Institute at Barnaul, the Siberian Agricultural Research Institute at Omsk, the Shortandy Variety Testing Site, and the Siberian Crop  Production Research Institute at Novosibirsk, Russia; and the Karabalyk Agricultural Research Station, Kostanay, Kazakhstan. Finally, Morgounov thanked the CGIAR Research Program on Wheat for its support.

FOR MORE INFORMATION OR TO ARRANGE INTERVIEWS:

Courtney Brantley
Junior communications consultant
International Maize and Wheat Improvement (CIMMYT)
Email: c.brantley@cgiar.org
Tel: +52 55 5804 2004

 

Seminar seeks to boost wheat production in West and Central Asia

The sixth International Winter Wheat Travelling Seminar was recently held in Krasnodar, Russia, to improve wheat breeding across West and Central Asia. Photo: CIMMYT
The sixth International Winter Wheat Travelling Seminar was recently held in Krasnodar, Russia, to improve wheat breeding across West and Central Asia. Photo: CIMMYT

KRASNODAR, Russia (CIMMYT) – The sixth International Winter Wheat Travelling Seminar was recently held in Krasnodar, Russia, to improve wheat breeding across West and Central Asia.

Wheat is a staple in Central and West Asia and is critical to food security in the region. The biannual traveling seminar allows breeders from across the region to tackle challenges like climate change’s impact on wheat production, the spread of rust disease and improving grain quality.

The seminar was first launched in 2007 by the International Winter Wheat Improvement Program (IWWIP), a partnership between Turkey’s Ministry of Food, Agriculture and Livestock, the International Maize and Wheat Improvement Center and the International Center for Agricultural Research in the Dry Areas to bringing together IWWIP members from Central and West Asia to share the results, discuss challenges and develop future plans for cooperation. Previous seminars were held in Azerbaijan, Bulgaria, Georgia, Romania, Turkey, Ukraine and Uzbekistan.

Through IWWIP, improved wheat varieties are annually distributed from the Facultative and Winter Wheat Observation Nursery in Turkey to more than 100 partners in 50 countries.  To date, more than 70 varieties have been released in Central and West Asia by IWWIP, covering up to 20 percent of all wheat grown in the region.

The seminar was held at the Krasnodar Agricultural Research Institute and Agricultural Research Center, attracting 74 participants from 17 countries in Central and West Asia, as well as Eastern and Western Europe.

Participants were shown wheat breeding and research plots, as well as multiplication of new barley and wheat varieties. The group was highly impressed by the level of breeding and research activities, the diversity of the germplasm and its yield potential. Varieties from the Krasnodar Institute are grown on several million hectares in Russia and other countries, contributing to regional and global food security. In the afternoon, several presentations were made from hosts and guests reviewing the current status of winter wheat improvement and regional collaboration. Participants also focused on breeding and agronomy activities.

Sixth International Winter Wheat Travelling Seminar participants. Photo: CIMMYT
Sixth International Winter Wheat Travelling Seminar participants. Photo: CIMMYT

The group also traveled to a farm in Rostov, Russia, that was demonstrating different winter wheat varieties and saw two seed production state farms that multiply the varieties from the Krasnodar Institute. All the fields visited were very well maintained, clean and with yield expectations exceeding 7-8 tons per hectare. More than two million hectares of wheat is grown in Rostov, providing about 8 percent of Russia’s total wheat.

Winter wheat varieties from Russian public breeding programs dominate about 95 percent of the country’s production area, though local and multinational private companies are increasingly emerging as key players in the sector.

A wrap up meeting was held with several presentations by the participants and the IWWIP strategy was presented and endorsed. Participants also stated their appreciation for the organizers, Krasnodar Agricultural Research Institute, and for IWWIP’s activities in developing and distributing germplasm. The event was supported by the Turkish government, the CGIAR Research Program on WHEAT and the Food and Agriculture Organization of the United Nations.

Any questions about the seminar? Please contact Alexey Morgounov (a.morgounov@cgiar.org ) Fatih Ozdemir (fatihozde@hotmail.com) or Mesut Keser (M.Keser@cgiar.org)

Wheat area expansion faces a headwind requiring increased spending on R&D to raise yields

 

Photo credit: Madan Raj Bhatta

 

Derek Byerlee is a visiting scholar at Stanford University.
Any views expressed are his own.

Over the last 50 years or so, the big increases in agricultural production have come through improved yields largely as a result of the Green Revolution.

From 1961 to 2011, per capita cereal production increased by 40 percent, while the amount of cropland per capita fell by half. In most regions, the total area of cropland has either reached a peak or declined. However, in three tropical regions, land expansion has been and still is a significant source of agricultural growth: Southeast Asia, tropical South America and sub-Saharan Africa.

Since 1990, wheat is the only major crop to experience an overall decline in area.

Looking to the future, how much land can be expected to come into production for cropping?

Currently, about 1,500 million hectares (Mha) of land is used for crops.

I project that additional demand for land will be 6 to 12 Mha each year for a total of 120 to 240 Mha increase from 2010 to 2030.

The higher projection allows a greater role for trade and thereby production by the lowest-cost producers who are often located in land-abundant countries.

These estimates are broadly in line with a synthesis by Erik Lambin & Patrick Meyfroidt who also include projections of the loss of land due to expansion of urban settlements and infrastructure as well as losses due to land degradation. Taking these losses into account, Tony Fischer provides an estimate of total additional gross cropland demand from 2010 to 2030 of 160 Mha to 340 Mha. Global models also suggest expansion of cropland to 2050 of about 300 Mha, given projected yield growth.

Is there enough land to satisfy demand? The Food and Agriculture Organization of the United Nations’s World Agriculture Towards 2030/2050 report estimates that some 1.4 billion hectares of currently uncultivated land that is not forested or in protected areas is suited to crop agriculture although they note that this is an optimistic estimate. A more conservative estimate of available land with at least moderate suitability for rainfed cultivation in low population-density areas – that is, non-forested, non-protected and with a population density of less than 25 people per square kilometer – is approximately 450 Mha.

At first glance, it would thus seem that projected demand for land (even under the scenarios of the higher demand estimates) over the next two decades can be accommodated by available uncultivated land.

However, most of this uncultivated land is concentrated in a few countries in Sub-Saharan Africa, Latin America, Eastern Europe and Central Asia and is often far from ports and roads.

A global analysis may also miss key constraints at the local level such as human diseases and unrecorded current land use that reduce effective land supply.

In addition, an expansion of land area of the order of 160 Mha (the lower-bound estimate of the estimated future land needs) could have significant biodiversity costs from conversion of natural ecosystems, even in the non-forested areas considered above.

Indeed, one of the sustainable development goals currently under discussion in international fora is to reduce deforestation to zero by 2030 – implying a closing of the land frontier. Finally with the exception of some areas in Russia, Ukraine and Kazakhstan, most of the available land is in the tropics and is unsuitable for wheat production.

Overall then, projections of future land availability for agriculture suggest a growing land scarcity, particularly for wheat, especially when taking into account that demand for food and feed will continue to rise with growing affluence in rapidly industrializing countries, as well as the use of land for biofuel feedstocks.

Growing scarcity together with high commodity prices have combined to stimulate global investor interest in farmland that underlies much of the recent discussion on intensification as a strategy to save land and concerns about a global ‘land grab’ by investors from land-scarce countries.

Wheat area is also being pushed out by other crops in many countries. Over the period 1993 to 2013, wheat area has fallen by 4.5 Mha, exceeded only by other winter cereals (barley, rye, and oats) that have collectively lost over 40 Mha.

During the same period, the area of oil crops (mostly soybeans, rapeseed and oil palm) has increased by an astonishing 100 Mha, maize by a hefty 53 Mha and rice by 20 Mha.

This year for example, North Dakota, a quintessential wheat-producing state in the United States, for the first time planted more soybeans than wheat.

In Argentina, soybeans rotated with maize have also displaced a significant wheat area, while in northern China, increasing maize area appears to be at the expense of spring wheat. Wheat area in the United States and China has fallen by 7 Mha and 6 Mha respectively since 1993. The major exceptions to these trends are India and Australia, where wheat area is up sharply.

All of this, of course, implies that increasing wheat yields will be especially critical to maintain its competitiveness and to save further land expansion into forests.

Norman Borlaug, the pioneer of the Green Revolution, long recognized that increased yields were not only essential to increasing global food security but also to saving forests.

This has now been enshrined in the environmental literature as the Borlaug Hypothesis. The real world is not so simple since there are situations where increasing yields may enhance crop profitability and encourage its expansion at the expense of forests. However, we found that just the CGIAR investment in germplasm is likely to have saved from 18-27 Mha of land from 1965-2000.

The bottom line is that increased spending on research and development (R&D) by national programs and CGIAR is a priority to achieving not only food security but confronting land scarcity.

None of the above considers the negative impacts of climate change, but a recent thoughtful analysis by David Lobell of Stanford University has shown that investing in R&D to adapt to climate change and maintain yields in the face of rising temperatures and increased drought is one of the most cost-effective ways to save forests and therefore mitigate climate change.

Surprisingly, wheat is the crop that faces the strongest headwind from both land scarcity and climate change. Wheat also appears to be grossly underfunded at the international level as measured by the budget provided to the WHEAT CRP – one of the lowest among the 15 CRPs. Tony Fischer, Honorary Research Fellow, at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in a companion piece has shown that there are many promising avenues to higher R&D spending, both to raise yield potential and close large yield gaps.

 

Interested in this subject? Find out more information here:

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

Borlaug, N. 2007. “Feeding a Hungry World.” Science 318(5849):359–359.

Deininger, K.W., and D. Byerlee. 2011. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Benefits? Washington D.C.: World Bank Publications.

Fischer RA, Byerlee D, Edmeades GL. 2014. Crop Yields and Food Security: Will Yield Increase Continue to Feed the World? Canberra: Aust. Cent. Int. Agric. Res.

Lambin, E. F. 2012. Global land availability: Malthus versus Ricardo. Global Food Security. 1; 83-87.

Lobell, D.B., U.L.C. Baldos, and T.W. Hertel. 2013. “Climate Adaptation as Mitigation: the Case of Agricultural Investments.” Environmental Research Letters 8(1):015012.

Stevenson, J.R., N. Villoria, D. Byerlee, T. Kelley, and M. Maredia.  2013. “Green Revolution Research Saved an Estimated 18 to 27 Million Hectares from Being Brought into Agricultural Production.” Proceedings of the National Academy of Sciences. Available at: 10.1073/pnas.1208065110 [Accessed May 13, 2013].

 

 Go back to: Wheat Matters

 

Strengthening CIMMYT cooperation with Russia

Left to right: Vladimir Shamanin, Alex Morgounov, Sergey Petukhovskiy, Hans Braun, and Nina Kazydub.
Left to right: Vladimir Shamanin, Alex Morgounov, Sergey Petukhovskiy, Hans Braun, and Nina Kazydub.

CIMMYT Global Wheat Program director Hans-Joachim Braun and winter wheat breeder Alex Morgounov attended the G-20 Meeting of Agricultural Chief Scientists in Moscow, Russia, on 24-25 July 2013 where they presented on CRP WHEAT and the cooperation between CIMMYT and Russia. The G-20 meeting adopted a declaration stating the importance of cooperation in agricultural research and defining future priority areas and directions for this cooperation. The meeting also emphasized the involvement of the Russian Federation in international agricultural research and development. In 2013, Russia supported CRP WHEAT with US$1.1 million, part of which was allocated to the Kazakhstan-Siberian Network on Wheat Improvement (KASIB) for spring wheat improvement and part to Strategic Initiatives related to biotic and abiotic stresses. The funds utilization and strengthening of cooperation with Russian scientists were discussed with Sergey Kiselev, director of Eurasian Center of Food Security at Lomonosov Moscow State University, and Ivan Savchenko, vice president of the Russian Academy of Agricultural Sciences.

Following the meeting, Braun and Morgounov visited Omsk in Western Siberia on 26 July to sign a sub-grant agreement between CIMMYT and Omsk State Agrarian University on technical coordination of KASIB activities; development of shuttle breeding germplasm for Russian cooperating institutions; and expansion of training and visits between the university and CIMMYT, and attendance of regional and international conferences for Russian scientists.

The subsequent field visits to the university and Siberian Agricultural Research Institute demonstrated the value of regional germplasm exchange and improved adaptation of the shuttle germplasm developed for the region in Mexico and Turkey. “The shuttle breeding program, initiated in early 2000s to incorporate rusts resistance into local material, finally bears fruit as several advanced lines competitive with local checks have been identified and will be considered as variety candidates in the near future,” said Morgounov. As Northern Kazakhstan and Western Siberia jointly cultivate almost 20 million hectares of high latitude spring-planted wheat, this area plays a significant role in global wheat supply.