Skip to main content

Location: Europe

Agriculture can help the world meet climate change emission targets

Precision levelers are climate-smart machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil, rather than running off or collecting in uneven land. This allows much more efficient water use and saves energy through reduced irrigation pumping, compared to traditional land leveling which uses animal-powered scrapers and boards or tractors. It also facilitates uniformity in seed placement and reduces the loss of fertilizer from runoff, raising yields. (Photo: CIMMYT)
Precision levelers are climate-smart machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil, rather than running off or collecting in uneven land. This allows much more efficient water use and saves energy through reduced irrigation pumping, compared to traditional land leveling which uses animal-powered scrapers and boards or tractors. It also facilitates uniformity in seed placement and reduces the loss of fertilizer from runoff, raising yields. (Photo: CIMMYT)

As world leaders meet in Paris this week to agree on greenhouse gas emission targets, we in the field of agricultural research have a powerful contribution to make, by producing both robust estimates of the possible effects of climate change on food security, and realistic assessments of the options available or that could be developed to reduce agriculture’s contribution to greenhouse gas emissions.

Agriculture is estimated to be responsible for about a fifth of global greenhouse gas emissions, and this share is increasing most rapidly in many developing countries; it may even increase as fossil fuels become scarcer and phased out in other sectors.

The solution being put forward today is climate-smart agriculture (CSA), which involves three components: adaptation, mitigation, and increased productivity. Adaptation is essential to cope with the impacts that cannot be avoided and to maintain and increase the global food supply in the face of resource constraints; mitigation can lessen but not prevent future climate changes.

Though CSA has been held up as an answer to the challenges presented by climate change, some would argue that it is no more than a set of agricultural best practices. Indeed, this is what lies at the heart of the approach.

In addition to making agriculture more efficient and resilient, the overall purpose remains to sustainably increase farm productivity and profitability for farmers. This is why over the last few years we have begun talking about the ‘triple win’ of CSA: enhanced food security, adaptation, and mitigation. But those who dismiss CSA as mere best practice ignore the value of seeing through the climate change lens, and guiding research to respond to expected future challenges.

To begin with, crop performance simulation and modeling, in combination with experimentation, has an important role to play in developing CSA strategies for future climates.

In a publication titled “Adapting maize production to climate change in sub-Saharan Africa,” several CIMMYT scientists concluded that temperatures in sub-Saharan Africa will likely rise by 2.1°C by 2050 based on 19 climate change projections. This is anticipated to have an extreme impact for farmers in many environments. Because it takes a long time to develop and then deploy adaptation strategies on a large scale, they warned, there can be no delay in our work.

This explains why CIMMYT is taking the initiative in this area, seeking support to develop advanced international breeding platforms to address the difficulty of developing drought-tolerant wheat, or bringing massive quantities of drought- and heat-tolerant maize to farmers through private sector partners in Africa and Asia.

Our insights into the causes and impacts of climate change lead us to important research questions. For example, how can farmers adopt practices that reduce the greenhouse gas footprint of agriculture while improving yield and resilience?

Colleagues at CIMMYT have challenged the idea that the practice of no-till agriculture (which does not disturb the soil and allows organic matter to accumulate) contributes significantly to carbon sequestration. I think it is important that we, as scientists, explore the truth and be realistic about where opportunities for mitigation in agriculture lie, despite our desire to present major solutions. It is also important to take action where we can have the greatest impact, for example by improving the efficiency of nitrogen fertilizer use.

Nitrous oxide emissions from agriculture have a climate change potential almost 300 times greater than carbon dioxide, and account for about 7% of the total greenhouse gas emissions of China. Improved nutrient management could reduce agricultural greenhouse gas emissions by the equivalent of 325 Mt of carbon dioxide in 2030. Overall, supply-side efficiency measures could reduce total agricultural emissions by 30%.

Some practices, such as laser land leveling, fall into both the adaptation and mitigation categories. Preparing the land in this way increases yields while reducing irrigation costs, the amount of water used, nutrients leached into the environment, and emissions from diesel-powered irrigation pumps.

Findings such as this offer real hope of reducing the severity of climate change in the future, and help us build a case for more investment in critical areas of agricultural research.

For climate-smart agriculture, the challenge of feeding more people and reducing emissions and environmental impact is not a contradiction but a synergy. We are improving our ability to predict the challenges of climate change, and proving that it is possible to greatly reduce agricultural emissions and contribute to global emission goals.

To face challenges such as climate change, we need high quality multi-disciplinary science combined with approaches to address problems at the complex systems level. Since my involvement in early large-scale studies, such as Modeling the Impact of Climate Change on Rice Production in Asia (CABI/IRRI, 1993), I am pleased to see that so much progress has been made in this regard and encouraged that our research is contributing to greater awareness of this vital issue and solutions to address it.

SUPER WOMAN: Julie King tames wild relatives of wheat, improving resilience

GENETIC VARIATION AND DIVERSITY TRANSFER ACROSS DIFFERENT GRASS SPECIES

Julie-KingInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, wheat breeder Jessica Rutkoski writes about her Super Woman of wheat, Julie King, a research fellow at Britain’s University of Nottingham.

Wild relatives of wheat are of particular importance to wheat breeders trying to develop disease-resistant and high-yielding varieties that can tolerate various environmental stresses, including drought and poor quality soils.

These wild grasses, cousins to the ancestors of modern-day wheat, provide a vast and largely untapped source of genetic variation for almost all traits important for wheat growers.

Plant geneticist Julie King, a research fellow with the University of Nottingham, has developed a new strategy for transferring genetic variation and diversity across different grass species. This strategy is now being used to transfer genetic variation into wheat from its distant relatives, which carry key disease resistance and stress tolerance genes. Very few people in the world are capable of this work, and so Julie plays a key role in adding new variations.

By crossing wheat with its wild relatives, a painstaking process, Julie and her research team aim to improve the ability of wheat to tolerate heat, drought, and salt – of key benefit in a world where freshwater is going to become even more scarce amid changing climate and population pressures.

Working with wild relatives is very difficult and not many people can do it – it’s like magic. It almost takes super powers to overcome the many barriers that can prevent hybridization of the species – so many crosses fail.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center.

Making more from less: matchmaking maize to poor soils

WHEN FERTILIZER IS LIMITED, BREEDING SOLUTIONS FOR THE STAFF OF LIFE IN AFRICA

A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa
A farmer applying a solution only very few can afford in adequate amounts: nitrogen fertilisers for poor soils in Africa

Among the major crops produced and consumed in sub-Saharan Africa (SSA), maize leads, consumed by more than 650 million Africans. Therefore, maize and Africa’s food security and socioeconomic stability are inseparably intertwined. Poor maize productivity has contributed to food shortages, high prices and has pushed more Africans to extreme poverty. Low-fertility soils are part of the problem, and maize varieties specially bred for poor soils offer a partial solution.

Maize and Soil—Chemical Solution, Socioeconomic Problem, Nitrogen in Sips Not Gulps
After water, poor soil nitrogen is the single most critical constraint for Africa’s maize production. Lack of, or inadequate, soil nitrogen leads to low yields and crop failure. Farmers therefore need nitrogen fertilizers to improve yields when soils are depleted or infertile. However, for most smallholder farmers, the harsh reality is that chemical fertilizers—or adequate amounts of them—remain out of their reach, unaffordable owing to the high costs.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to develop maize varieties that are more efficient at using the small quantities of fertilizer that smallholder farmers can afford, typically less than 30 kilograms per hectare. This means that farmers obtain up to 50 percent more from the limited fertilizer applied.

From problems to solutions: everybody wins!
IMAS focuses on improving the genetics of maize varieties to better match the typical soil profiles of smallholder maize farms in eastern and southern Africa. Different maize varieties respond very differently to soil nitrogen stress. ‘In complement to improved agronomy and soil management, selection of appropriate maize varieties for specific soil conditions can play an enormous role in improving productivity and food security in Africa,’ observes Biswanath Das, a maize breeder at CIMMYT. By packaging nitrogen-use efficiency in the seed, IMAS hopes to improve maize yields efficiently and economically for small holder farmers in Africa.

At this year’s Global Soil Week (GSW) running from April 19–23 in Berlin, Germany, it is important that tangible solutions be formulated for farmers to nurture and sustain healthier soils. Engagement and dialogue forums like GSW and the recent #TalkSoil tweet chat initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television show targeting smallholder farmers) are critical for inclusive discussions to help farmers in Africa.

Such dialogues must continue throughout 2015—the UN International Year of Soils—but also beyond. Why? Because soil is the staff of life, and the Substance of Transformation, as the Global Soil Week theme this year reminds us.

Links

Poor soils a huge limitation for Africa’s food security

TEXCOCO, MEXICO, April 19, 2015 – Sustainable Development Goals being addressed at the Global Soil Week cannot ignore dependence on maize as a staple food for millions in Africa, and the need to help smallholder farmers maximize yields in African soils.

Today, Berlin, Germany, hosts soil scientists from across the world who have converged for the Global Soil Week (GSW) to find solutions for sustainable land governance and soil management. Farmers and other stakeholders in agriculture are keen to see outcomes that will translate into healthier soils for sustainable development in Africa and elsewhere.

For Africa’s smallholder farmers, low-fertility soils with poor nitrogen-supplying capacity are only second to drought as a limiting factor. Consequently, farmers suffer low yields and crop failure, a situation that has crippled food security for more than half (60 percent) of the population in this region who depend on smallscale farm produce.

To improve productivity, farmers apply nitrogen fertilizers, which provide necessary nutrients the soil needs to feed plants. However, most farmers cannot afford to apply the required amount of fertilizers because the costs are too high for them. It is estimated that nitrogen fertilizer costs as much as six times more in Africa that in any other part of the world.  “For my one-acre farm, I use a 50-kilogram bag that costs KES 4,000 [USD 42]. This is a lot of money, so I have to use very little to save for the next planting season,” says Ms. Lucy Wawera, a farmer in Embu County, Kenya.

Maize is the most important cereal crop in sub-Saharan Africa consumed by more than 650 million people. This dependence therefore dictates that solutions to Africa’s fragile food security also focus on improving maize production. The International Maize and Wheat Improvement Center (CIMMYT) and its partners are working through the Improved Maize for African Soils (IMAS) Project to address -nitrogen depleted soils. They are exploiting naturally occurring genetic variation in maize to develop new varieties that are nitrogen-use-efficient or better at utilizing the limited amounts of fertilizer that smallholders can afford in sub-Saharan Africa—typically less than 30 kilograms. These new varieties yield up to 50 percent more than current commercial varieties in nitrogen-poor soils. IMAS draws on strong collaboration between the public and private sectors involving the Kenya Agricultural and Livestock Research Organization, South Africa’s Agricultural Research Council and DuPont Pioneer.

“Matching appropriate crop varieties to specific soil systems and ecologies can play a major role in improving productivity of fragile smallholder farming systems in Africa,” says Dr. Biswanath Das, a maize breeder at CIMMYT. “Increasing productivity on existing farmland will prevent encroachment into marginal or virgin lands which leads to further soil degradation.” Helping farmers deal with the challenge of low-fertility soils will remain a key focus for international and national actors in Africa throughout 2015, the UN International Year of Soils. Open discussion platforms should therefore be encouraged to facilitate comprehensive and inclusive dialogue on soil matters. A recent tweet-chat forum titled ‘#TalkSoil’ initiated by the International Center for Tropical Agriculture and Shamba Shape Up (a Kenyan television program on smallholder agriculture) brought together scientists, farmers, regulators and other actors to discuss  a single topic – soil.

It is therefore important that GSW deliberations formulate sustainable solutions for farmers to build healthier soils, and to nurture and maintain them. This will not only arrest soil deterioration but also protect a critical livelihood for billions, and a source and ‘sustainer’ of life for us all – agriculture, deeply rooted and inseparable from soil.

Links for more information

·         IMAS Project: Overview |Update | Videos—Maize for hungry soils | Maize that thrives in poor soils
·         Follow the IMAS conversation on Twitter during #GlobalSoilWeek via #IMASPro
·         Global Soil Week 2015
·         International Year of Soils 2015
·         CIMMYT’s research on maize

For information on the IMAS project, please contact: Biswanath Das: IMAS Project Leader| Brenda Wawa: media contact

 

Maize and wheat Super Women campaign highlights diversity

IWDbuttonEL BATAN, Mexico (CIMMYT) – A social media crowd sourcing campaign initiated to celebrate the achievements of women has led to more than a dozen published blog story contributions about women in the maize and wheat sectors.

Each year, International Women’s Day gives the world a chance to inspire women and celebrate their achievements. This year, the International Maize and Wheat Improvement Center (CIMMYT) put out a call asking for blog contributions from the social media community.

CIMMYT asked readers to submit stories about women who have made a difference in the maize and wheat sectors, including women involved in conservation agriculture, genetic resources, research, technology and related socio-economics.

The “Who is Your Maize or Wheat Super Woman?” stories are featured on the CIMMYT website from Monday, March 2, 2015 in the lead up to International Women’s Day on Sunday, March 8, 2015.

Contributions include blog stories about women from Britain, Canada, Guatemala, India, Indonesia, Kenya, Mexico, and the United States. Their stories will also be made available in Spanish-language.

SUPER WOMEN BLOG POSTS:

CIMMYT

Index insurance to safeguard farmers from climate change

“We’ve got the germplasm and improved varieties, but what can we do to overcome the hurdle of farmer adoption of these technologies?” Jon Hellin, value chain and poverty specialist for CIMMYT’s Socioeconomics Program presented this challenge and how crop-index insurance may be part of the solution, at a high-level Climate Change, Agriculture and Food Security (CCAFS) webcast event Wednesday, 28 January in London. The event covered innovations in index insurance and how Nigeria can implement them, as part of a plan to safeguard its farmers from climate change effects.

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies”

– Jon Hellin

CIMMYT’s Socioeconomics Program

Benefits of Index Insurance

“Unfortunately, threats like drought – the very reason for adopting climate-smart practices – also represent a huge risk that makes farmers reluctant to invest in new technologies,” said Hellin. Traditional crop insurance gives payouts that are explicitly determined on measured loss for a specific client. Index insurance allows farmers to purchase coverage based on an index that is correlated with those losses, such as average yield losses over a larger area or a well-defined climate risk, e.g. erratic rainfall, that significantly influences crop yields.

This approach can address many of the problems that limit the application of traditional crop insurance, including lower transaction costs and eliminating the need for in-field assessments. In addition, because the insurance product is based on an objective index it can also be reinsured, allowing insurance companies to efficiently transfer part of their risk to international markets. This makes index insurance financially viable for private-sector insurers and affordable for small-scale farmers.

CIMMYT is involved in a CCAFS-supported crop index insurance project. One focus is to determine how crop index insurance can enhance adoption of drought tolerant maize varieties. CIMMYT, along with international partners and scientists, has been developing many such varieties under the Drought Tolerant Maize for Africa (DTMA) initiative. “When it comes to these varieties and exciting initiatives like crop index insurance, that’s where we can come together and get great win-wins,” Hellin stated.

 

Challenges and Opportunities

Scientifically-validated crop-index insurance schemes need indices that are affordable and attractive to stakeholders, particularly farmers and the insurance industry and other refinements. However, as demonstrated by examples from Ethiopia, Kenya, Rwanda and Senegal, if implemented correctly index insurance can build resilience for smallholder farmers not only by ensuring a payout in the event of a climate shock, but also by giving farmers the freedom to invest in new technology and inputs, such as seed.

“The Nigerian government’s interest in crop insurance will allow us to test different approaches for bundling insurance with technologies, making it attractive to farmers and private sector actors,” Hellin proposed.

Index-Insurance

Scientists seal agreement to boost adaptability of wheat to climate change

climate change FOR IMMEDIATE RELEASE 

Frankfurt, Germany – December 9, 2014 – Wild ancestral relatives of wheat will play a key role in fortifying the world’s food supply as climate change warms the planet, according to a team of top scientists.

Heat and drought are already a major cause of wheat yield losses in both developing and developed countries, a situation that scientists predict will worsen due to warmer temperatures and erratic rainfall patterns caused by global climate change. Some of the potential risks were demonstrated in 2003, when farmers in France lost nearly a quarter of their crop due to an unusually hot growing season.

More than 100 plant scientists from 22 major wheat-growing countries in the global south and north, met last week to discuss an ambitious international plan to incorporate the most advanced genetic technologies into traditional plant breeding to improve heat and drought tolerance of wheat.

“Not only are the livelihoods of farmers at risk from climate change, but people living in some of the world’s most vulnerable areas could see entire food supplies wiped out with increasing frequency if we don’t act quickly to boost the resilience of wheat to heat waves and more extreme periods of drought,” said Matthew Reynolds, a distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT), who co-organized the three-day Heat and Drought Wheat Improvement Consortium (HeDWIC) meeting.

“A new generation of plant screening and molecular technologies can speed up our capacity to transfer stress-tolerance traits into new wheat varieties. Wild relatives of wheat, which evolved in hot and dry places, will provide the crucial genes we need for crop improvement,” Reynolds added.

Findings in a report released earlier this year by the Intergovernmental Panel on Climate Change (IPCC) state it is very likely that heat waves will occur more often and last longer throughout the 21st century and rainfall will be more unpredictable.

Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, despite efforts to limit the global rise in temperature to 2 degrees Celsius, the report said.

Wheat – a major staple crop, which provides 20 percent of calories consumed worldwide and is an important source of protein especially for poor consumers– is expected to be subject to dramatic increases in temperature and more variable and extreme precipitation, particularly in tropical and semi-tropical regions.

“The risks to food security will be highest for people living in vulnerable parts of Africa and Asia, but will affect the disadvantaged and low-income communities in every country,” Reynolds said.

Adaptation can play a key role in reducing potential socio-economic shocks caused by climate change.

HeDWIC, launched in 2014 by the Global Agricultural Research Partnership (CGIAR) Research Program on Wheat, is a multi-disciplinary, 15- to 20-year global partnership serving as a vehicle for plant scientists to address these food security challenges. In its initial stages, it will be funded by the CGIAR Research Program on Wheat, and attract support from other public and private sector donors.

The meeting was organized by CIMMYT, CGIAR’s lead research center for wheat, part of a global coalition that includes CGIAR’s International Centre for Agricultural Research in the Dry Areas (ICARDA), and shares a mandate to deliver new wheat cultivars to resource-poor farmers. It was co-sponsored by Bayer CropScience, which has heavily invested in wheat breeding as part of its overall mission to provide agricultural technologies for professional farmers and growers.

Co-organizers of the event included the Julius Kuehn Institute (JKI), Germany’s Federal Research Centre for Cultivated Plants affiliated with the country’s Federal Ministry of Food and Agriculture, and the international public-private Wheat Initiative coalition.

“The meeting was a good example of the private and public sectors working together to solve a common problem,” said Hans Braun, director of CIMMYT’s Global Wheat Program.

“We’ve laid the foundations for a successful research venture that will help farmers and many of the world’s most marginalized people living in some of the most difficult environmental conditions. From here, we’ll produce a comprehensive road map,” he said.

Representatives from international development and science funding agencies also attended the three-day meeting

Contacts:

Matthew Reynolds
Distinguished Scientist
International Maize and Wheat Improvement Center (CIMMYT)
Email: m.reynolds@cgiar.org

Julie Mollins
Wheat Communications Officer
International Maize and Wheat Improvement Center (CIMMYT)
Telephone: +52 (55) 5804 2004
Email: j.mollins@cgiar.org

Address:
International Maize and Wheat Improvement Center (CIMMYT)
Km. 45 Carretera México Veracruz
El BatĂĄn, Texcoco
Estado de México, C.P. 56237

About the International Maize and Wheat Improvement Center (CIMMYT)
CIMMYT, headquartered in El Batan, Mexico, is the global leader in research for development in wheat and maize and wheat- and maize-based farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat systems to improve food security and livelihoods.

CIMMYT is a member of the CGIAR Consortium and leads the Consortium Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.
CIMMYT wheat research: http://staging.cimmyt.org/en/what-we-do/wheat-research
Additional links:

JKI: http://www.jki.bund.de/en

ICARDA: http://www.icarda.org/

CGIAR: http://www.cgiar.org/

Wheat: http://www.wheat.org

Bayer CropScience: http://www.cropscience.bayer.com/

Wheat Initiative: http://www.wheatinitiative.org/

IPCC: http://www.ipcc.ch

Scientists ship 2 tons of wheat seed samples around the world

Wheat Seed Samples Around the World
Juan Hernandez Caballero (L) and Victor Cano Valencia, prepare to load wheat samples onto a van at CIMMYT headquarters in El Batan, Mexico, for shipment overseas. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Wheat farmers can boost yields and protect crops from pests and disease by using improved seed varieties, but in the developing world more than 80 percent of farmers use poor quality varieties, losing potential earnings and putting food security at risk, according to research.

Farmers often sell and trade wheat seed among themselves without having much knowledge about the size of the yield they can expect and how a particular variety fares with regard to climate, soil type or disease resistance.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are continuously developing improved varieties and each year seed samples — known as International Wheat Nurseries — are sent out to government and university research institutions and national agricultural research systems around the world.

“Wheat plays a vital role in food security,” said Tom Payne, head of CIMMYT’s Wheat Germplasm Bank, which stores almost 145,000 wheat varieties collected over the past 60 years. “We’ve been sending out wheat samples each year since 1974, so if you do the math that’s 367 tons over the years.”

In October, 1,720 kilograms (3,790 pounds) of experimental seeds were shipped to India, one of 75 current recipient countries.

Overall, the 2014 international shipment of seeds delivered in 351,990 sample envelopes weighed 9,230 kilograms. Recent recipient countries included Algeria, Pakistan, Turkey, Ukraine and Sudan.

SORTING SEEDS

Over the past 24 years, Efren Rodriguez, head of CIMMYT’s Seed Distribution Unit has overseen the five-month process of preparing, packaging and shipping of wheat seed samples.

“This year the seed requests we received filled 94 boxes,” Rodriguez said. “Seeds are requested at the end of summer prior to planting season. Each box is filled with envelopes of wheat seed and weighs up to 10 kilograms (22 pounds).”

Seeds arrive at CIMMYT’s headquarters near Mexico City in June in bags weighing from 10 to 35 kilograms from CIMMYT’s research station in Mexicali in northeastern Mexico accompanied with paperwork naming the varieties for inclusion in the shipment.

The seed is sorted according to instructions from the wheat breeders, cleaned with chlorine, rinsed in an industrial restaurant-style dishwasher, doused in protective fungicide, dried, placed in small envelopes by machine, then boxed.

“Research institutions plant the seeds, which have different characteristics designed to solve particular problems – for example, they may be heat, drought- or disease-resistant – and then recommend varieties for general release and sale to farmers,” Rodriguez said, explaining that the seeds tested and selected by the international research programs are incorporated into national wheat breeding or growing programs.

CIMMYT also distributes wheat nurseries as part of a partnership with Turkey and the International Center for Agricultural Research in the Dry Areas (ICARDA).

Globally, wheat provides 20 percent of the world’s daily protein and calories.

Wheat area expansion faces a headwind requiring increased spending on R&D to raise yields

 

Photo credit: Madan Raj Bhatta

 

Derek Byerlee is a visiting scholar at Stanford University.
Any views expressed are his own.

Over the last 50 years or so, the big increases in agricultural production have come through improved yields largely as a result of the Green Revolution.

From 1961 to 2011, per capita cereal production increased by 40 percent, while the amount of cropland per capita fell by half. In most regions, the total area of cropland has either reached a peak or declined. However, in three tropical regions, land expansion has been and still is a significant source of agricultural growth: Southeast Asia, tropical South America and sub-Saharan Africa.

Since 1990, wheat is the only major crop to experience an overall decline in area.

Looking to the future, how much land can be expected to come into production for cropping?

Currently, about 1,500 million hectares (Mha) of land is used for crops.

I project that additional demand for land will be 6 to 12 Mha each year for a total of 120 to 240 Mha increase from 2010 to 2030.

The higher projection allows a greater role for trade and thereby production by the lowest-cost producers who are often located in land-abundant countries.

These estimates are broadly in line with a synthesis by Erik Lambin & Patrick Meyfroidt who also include projections of the loss of land due to expansion of urban settlements and infrastructure as well as losses due to land degradation. Taking these losses into account, Tony Fischer provides an estimate of total additional gross cropland demand from 2010 to 2030 of 160 Mha to 340 Mha. Global models also suggest expansion of cropland to 2050 of about 300 Mha, given projected yield growth.

Is there enough land to satisfy demand? The Food and Agriculture Organization of the United Nations’s World Agriculture Towards 2030/2050 report estimates that some 1.4 billion hectares of currently uncultivated land that is not forested or in protected areas is suited to crop agriculture although they note that this is an optimistic estimate. A more conservative estimate of available land with at least moderate suitability for rainfed cultivation in low population-density areas – that is, non-forested, non-protected and with a population density of less than 25 people per square kilometer – is approximately 450 Mha.

At first glance, it would thus seem that projected demand for land (even under the scenarios of the higher demand estimates) over the next two decades can be accommodated by available uncultivated land.

However, most of this uncultivated land is concentrated in a few countries in Sub-Saharan Africa, Latin America, Eastern Europe and Central Asia and is often far from ports and roads.

A global analysis may also miss key constraints at the local level such as human diseases and unrecorded current land use that reduce effective land supply.

In addition, an expansion of land area of the order of 160 Mha (the lower-bound estimate of the estimated future land needs) could have significant biodiversity costs from conversion of natural ecosystems, even in the non-forested areas considered above.

Indeed, one of the sustainable development goals currently under discussion in international fora is to reduce deforestation to zero by 2030 – implying a closing of the land frontier. Finally with the exception of some areas in Russia, Ukraine and Kazakhstan, most of the available land is in the tropics and is unsuitable for wheat production.

Overall then, projections of future land availability for agriculture suggest a growing land scarcity, particularly for wheat, especially when taking into account that demand for food and feed will continue to rise with growing affluence in rapidly industrializing countries, as well as the use of land for biofuel feedstocks.

Growing scarcity together with high commodity prices have combined to stimulate global investor interest in farmland that underlies much of the recent discussion on intensification as a strategy to save land and concerns about a global ‘land grab’ by investors from land-scarce countries.

Wheat area is also being pushed out by other crops in many countries. Over the period 1993 to 2013, wheat area has fallen by 4.5 Mha, exceeded only by other winter cereals (barley, rye, and oats) that have collectively lost over 40 Mha.

During the same period, the area of oil crops (mostly soybeans, rapeseed and oil palm) has increased by an astonishing 100 Mha, maize by a hefty 53 Mha and rice by 20 Mha.

This year for example, North Dakota, a quintessential wheat-producing state in the United States, for the first time planted more soybeans than wheat.

In Argentina, soybeans rotated with maize have also displaced a significant wheat area, while in northern China, increasing maize area appears to be at the expense of spring wheat. Wheat area in the United States and China has fallen by 7 Mha and 6 Mha respectively since 1993. The major exceptions to these trends are India and Australia, where wheat area is up sharply.

All of this, of course, implies that increasing wheat yields will be especially critical to maintain its competitiveness and to save further land expansion into forests.

Norman Borlaug, the pioneer of the Green Revolution, long recognized that increased yields were not only essential to increasing global food security but also to saving forests.

This has now been enshrined in the environmental literature as the Borlaug Hypothesis. The real world is not so simple since there are situations where increasing yields may enhance crop profitability and encourage its expansion at the expense of forests. However, we found that just the CGIAR investment in germplasm is likely to have saved from 18-27 Mha of land from 1965-2000.

The bottom line is that increased spending on research and development (R&D) by national programs and CGIAR is a priority to achieving not only food security but confronting land scarcity.

None of the above considers the negative impacts of climate change, but a recent thoughtful analysis by David Lobell of Stanford University has shown that investing in R&D to adapt to climate change and maintain yields in the face of rising temperatures and increased drought is one of the most cost-effective ways to save forests and therefore mitigate climate change.

Surprisingly, wheat is the crop that faces the strongest headwind from both land scarcity and climate change. Wheat also appears to be grossly underfunded at the international level as measured by the budget provided to the WHEAT CRP – one of the lowest among the 15 CRPs. Tony Fischer, Honorary Research Fellow, at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in a companion piece has shown that there are many promising avenues to higher R&D spending, both to raise yield potential and close large yield gaps.

 

Interested in this subject? Find out more information here:

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

Borlaug, N. 2007. “Feeding a Hungry World.” Science 318(5849):359–359.

Deininger, K.W., and D. Byerlee. 2011. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Benefits? Washington D.C.: World Bank Publications.

Fischer RA, Byerlee D, Edmeades GL. 2014. Crop Yields and Food Security: Will Yield Increase Continue to Feed the World? Canberra: Aust. Cent. Int. Agric. Res.

Lambin, E. F. 2012. Global land availability: Malthus versus Ricardo. Global Food Security. 1; 83-87.

Lobell, D.B., U.L.C. Baldos, and T.W. Hertel. 2013. “Climate Adaptation as Mitigation: the Case of Agricultural Investments.” Environmental Research Letters 8(1):015012.

Stevenson, J.R., N. Villoria, D. Byerlee, T. Kelley, and M. Maredia.  2013. “Green Revolution Research Saved an Estimated 18 to 27 Million Hectares from Being Brought into Agricultural Production.” Proceedings of the National Academy of Sciences. Available at: 10.1073/pnas.1208065110 [Accessed May 13, 2013].

 

 Go back to: Wheat Matters

 

Angola: shifting from landraces to improved maize varieties

By Florence Sipalla/CIMMYT

CIMMYT, in partnership with the Instituto de Investigação Agronómica (IIA), the Angolan national agricultural research institute, is helping the country shift from using maize landraces to locally adapted materials.

Angola is rebuilding its infrastructure after a prolonged civil war that slowed down agricultural production. During the war, farmers could not access improved maize seed and relied on landraces. “After the war, they started shifting from the landraces to open-pollinated varieties (OPVs),” explained Peter Setimela, CIMMYT seed systems specialist. “Five years ago, there were no improved maize seeds in Angola. Now, we have some good OPVs and hybrids.”

Pivot irrigation at a seed production farm in Angola. Both Kambondo and Matogrosso farms use pivot irrigation; this frees the farms from dependence on rain for seed production.
Pivot irrigation at a seed production farm in Angola. Both Kambondo and Matogrosso farms use pivot irrigation; this frees the farms from dependence on rain for seed production.

The country has been importing improved maize varieties from Brazil and France, though not without problems. “They discovered that some of these varieties were hampered by diseases such as gray leaf spot, maize streak virus and northern leaf blight,” said CIMMYT breeder Cosmos Magorokosho. Working in partnership with IIA breeders, CIMMYT scientists have been testing materials that are locally adapted, some of which are now being produced by local seed companies. Last month, a multidisciplinary team from CIMMYT and IIA, led by the Drought Tolerant Maize for Africa (DTMA) Project Leader Tsedeke Abate, went on a field tour in Angola.

The team visited seed production farms in Kwanza Sul, demonstrations and on-farm and on-station trials at the IIA Chianga experimental station in Huambo to evaluate drought-tolerant maize varieties being grown and tested in the country. The team, including CIMMYT and IIA breeding, communications, seed systems and socioeconomics staff, visited a community seed production farm managed by Cooperativa Faca Tudo Pelo Tempo (“do everything on time” in Portuguese). The farmer’s cooperative produces rain-fed basic seed for the OPV maize varieties ZM309, ZM521 and ZM523, with technical support from IIA breeder Dibanzilua Nginamau. The cooperative is an umbrella body for 30 farmer groups with 1,250 members, including 600 women, according to Nginamau.

Participants stand in front of 50 hectares of the CIMMYT hybrid CZH03030 and a rainbow at Kambondo farm in Kwanza Sul, Angola.

The team visited smallholder farmer Dominga Ngueve, who planted varieties for demonstration on her farm near the Chianga station. “I prefer ZM309 because it matures early and I am able to get [maize for] food earlier,” Ngueve said. “When improved seed is unavailable, I buy local varieties from other farmers.” The smallholder farmer practices the crop rotation of planting maize during the long season and beans during the low season. She also grows cassava and potatoes. “Our food crop is maize; if you sell it, you create hunger,” said Ngueve, explaining the importance of maize in her community.

CIMMYT is helping Angola improve this important crop. “Angola has great potential for advancing agriculture,” Abate said, citing the country’s arable land and water resources. CIMMYT is using its germplasm resources to help public and private sector partners, such as SEDIAC, Matogrosso and Kambondo farms, that have recently ventured into seed production in Angola. CIMMYT is also contributing to capacity building by training breeders and technicians from the national program and seed companies.

Visitors at the DTMA stand during the SEDIAC field day in Kwanza Sul, Angola.

Angola is producing ZM523 on 560 hectares at Kambondo and Matogrosso farms with technical support from DTMA. An expected 2,400 tons of certified seed will be available for use by local farmers in the coming season. These two companies are well-positioned to produce certified seed through irrigation, as they each have six units of pivot irrigation that enable them to continue production even when the rains are erratic.

Kambondo farm has already produced nine tons of CZH03030 and has planted 50 hectares of the same variety for grain production. Abate commended SEDIAC for hosting the field day. “It is an opportunity for researchers from the national agriculture research system to network with all the agricultural stakeholders in Angola,” he said. The field day was also attended by three traditional leaders from the local community.

Through the collaborative work of IIA, CIMMYT, seed companies and cooperatives to strengthen seed systems in Angola, “farmers can increase their food security and livelihoods by taking up droughttolerant varieties,” said CIMMYT socioeconomist Rodney Lunduka.

Strengthening CIMMYT cooperation with Russia

Left to right: Vladimir Shamanin, Alex Morgounov, Sergey Petukhovskiy, Hans Braun, and Nina Kazydub.
Left to right: Vladimir Shamanin, Alex Morgounov, Sergey Petukhovskiy, Hans Braun, and Nina Kazydub.

CIMMYT Global Wheat Program director Hans-Joachim Braun and winter wheat breeder Alex Morgounov attended the G-20 Meeting of Agricultural Chief Scientists in Moscow, Russia, on 24-25 July 2013 where they presented on CRP WHEAT and the cooperation between CIMMYT and Russia. The G-20 meeting adopted a declaration stating the importance of cooperation in agricultural research and defining future priority areas and directions for this cooperation. The meeting also emphasized the involvement of the Russian Federation in international agricultural research and development. In 2013, Russia supported CRP WHEAT with US$1.1 million, part of which was allocated to the Kazakhstan-Siberian Network on Wheat Improvement (KASIB) for spring wheat improvement and part to Strategic Initiatives related to biotic and abiotic stresses. The funds utilization and strengthening of cooperation with Russian scientists were discussed with Sergey Kiselev, director of Eurasian Center of Food Security at Lomonosov Moscow State University, and Ivan Savchenko, vice president of the Russian Academy of Agricultural Sciences.

Following the meeting, Braun and Morgounov visited Omsk in Western Siberia on 26 July to sign a sub-grant agreement between CIMMYT and Omsk State Agrarian University on technical coordination of KASIB activities; development of shuttle breeding germplasm for Russian cooperating institutions; and expansion of training and visits between the university and CIMMYT, and attendance of regional and international conferences for Russian scientists.

The subsequent field visits to the university and Siberian Agricultural Research Institute demonstrated the value of regional germplasm exchange and improved adaptation of the shuttle germplasm developed for the region in Mexico and Turkey. “The shuttle breeding program, initiated in early 2000s to incorporate rusts resistance into local material, finally bears fruit as several advanced lines competitive with local checks have been identified and will be considered as variety candidates in the near future,” said Morgounov. As Northern Kazakhstan and Western Siberia jointly cultivate almost 20 million hectares of high latitude spring-planted wheat, this area plays a significant role in global wheat supply.

Course on remote sensing using an unmanned aerial vehicle in Peru

Course-on-remote-sensing-using-an-unmanned-aerial-vehicleTraining on the use of remote sensing from an unmanned aerial vehicle was given at INIAP-Peru’s Vista Florida experiment station on 1-5 June 2013. The course was organized by INIAP, the University of Barcelona, Spain, and CIMMYT’s regional office in Colombia. Remote sensing is used in precision agriculture and for phenotyping crops that are important for the region, such as maize, rice, and sugar cane.

Course participants included 44 representatives from the International Potato Center (CIP), the University of Talca (Chile), INIA-Peru, and Peru’s Ministry of Agriculture, among other institutions. The course is one of several activities sponsored by the “Affordable field-based HTPPs” project led by JosĂ© Luis Araus of the Department of Plant Biology of the University of Barcelona and funded by  CRP MAIZE. During the event, a phenotyping platform developed within the framework of the project was presented to INIA.

The director of the Vista Florida station, Miguel Monsalve Aita, opened the course, which was given by distinguished academics and scientists such as JosĂ© Luis Araus; Pablo Zarco and Alberto Hornero from the Sustainable Agriculture Institute, CĂłrdoba, Spain; AntĂłn HernĂĄndez, president of AirElectronics, Madrid, Spain; Carlos Poblete, Claudio BalbotĂ­n, and Gustavo Lobos from the University of Talca, Chile; Hildo MacLean and Susan Palacios from CIP, and Luis Narro from CIMMYT’s Global Maize Program.

The lectures focused on topics such as applying remote sensing in phenotyping; spectral and thermal remote sensing of stress from unmanned aircraft; image and data processing; use of software to process the gathered information; and thermal image analysis for diagnosing drought stress and controlling irrigation. In addition, Hildo MacLean showed how the Oktokopter–XL works. Luis Narro demostrated how to use the new version of the GreenSeeker for making recommendations on N application in maize and, Antón Hernández showed how the unmanned aircraft Sky Walker, which comes equipped with a flight programmer, an infrared camera, and a multispectral camera for collecting data, works. The aircraft used in the demonstration was donated to the Vista Florida station as part of the project’s contributions.

Another essential part of the course was the intensive training on subjects such as platform management, flight programming, and downloading and processing information that was provided to a group of technicians from INIA and private seed companies. Also, Given that INIA technicians who are in charge of the platform need to become thoroughly familiar with it, three technicians from Vista Florida will go to Spain in September to take a course on processing and interpreting images.

The course organizers wish to express their appreciation to the Vista Florida Maize Program.

Course-on-remote-sensing-using-an-unmanned-aerial-vehicle3

Agrovegetal and CIMMYT renew alliance

AgrovegetalOn 12 April 2013, CIMMYT director general Thomas Lumpkin and José Ortega Cabello, chairman of the Campo de Tejada cooperative in Spain, signed a five-year extension of a collaborative agreement between Agrovegetal S.A. and CIMMYT dating back to 1998. The objective of the agreement is to develop improved durum wheat, bread wheat, and triticale varieties.

Agrovegetal is an association of several farmer cooperatives and other entities, whose objective is to offer quality seed to farmers in the AndalucĂ­a region of Spain. To that end, it channels resources and efforts towards strategic research and development priorities and activities aimed at developing improved varieties.

Ortega Cabello, Ignacio Solís Martel, Agrovegetal’s technical director, and Rafael Sánchez de Puerta Díaz from the Andalucian Federation of Agricultural Cooperatives, met with Hans Braun, CIMMYT’s Global Wheat Program director, to define the specific durum wheat, bread wheat, and triticale research activities that will be conducted to develop high-yielding, highquality, drought-tolerant, and disease-resistant varieties.

Among the alliance’s successes to date is the development of materials with high yield stability and resistance to downy mildew and leaf rust, as well as durums with high pasta-making quality and bread wheats with good baking quality and yellow rust resistance. It has also produced triticales with high protein content, high specific grain weight, and resistance to foliar diseases (downy mildew, rusts, and septoria).

Agricultural Innovation Systems: what do they mean to the work we do?

DSC_7906On daily basis, we interact with farmers, extension workers, researchers, seed companies, government officials, and many others. Our work would not be possible without these actors, many of whom focus on bringing new products, new processes, new policies, and new forms of organization into economic use. In their attempts to bring about change in agriculture, these multiple stakeholders are all part of what may be seen as agricultural innovation systems (AIS). However, CIMMYT’s engagement with AIS and its role within innovation platforms was not discussed more closely until recently. To review CIMMYT’s role and current approach to the AIS framework, summarize what has been done, and touch upon future plans, CRP MAIZE, the Global Conservation Agriculture Program (GCAP), and the Royal Tropical Institute (KIT) organized a workshop on “Agricultural Innovation Systems: what does it mean to the work we do?” The day-long event took place at CIMMYT-El Batán on 11 April 2013; it was attended by over 30 participants from several CIMMYT departments, programs, and regional offices, and facilitated by Remco Mur and Mariana Wongtschowski from KIT.

What led to this cooperation between KIT and CRP MAIZE? When presented with the challenges of CRP MAIZE, such as lifting 10 million people out of extreme poverty in 10 years, David Watson, CRP MAIZE program manager, realized that innovations systems and innovation platforms are often seen as key in achieving these high-aiming goals. “I looked on the ground, but there was no explicit agricultural innovation expertise,” Watson said, explaining why CRP MAIZE contacted KIT to take stock of innovation platform structures and operation processes in CRP MAIZE projects, and suggest ways to strengthen the AIS approach and multi-stakeholder interaction structures.

Wongtschowski presented some of the KIT report findings. Addressing the strong technology focus of CIMMYT, she stressed that innovation is not only about developing technology, but also about setting up mechanisms that would put the technology into practice. “Innovation emerges from interaction,” Wongtschowski added, casting more light on the potential role of CIMMYT, “and while researchers may play a role, their role isn’t the most important one.” Jens Andersson, CIMMYT innovation systems scientist based in Zimbabwe, provided a reflection on the KIT report focusing on the implications of adopting an AIS framework for CIMMYT’s organization of research and its partnerships. “At CIMMYT, we look at innovation platforms as a means to reach impact at scale, or as a vehicle for technology transfer,” he said; but, as the report states, feedback loops from farmers and other stakeholders back to the researchers are often missing. At the same time, innovation platforms play a key role in articulating demand for research within the AIS framework. Yet, as Andersson pointed out, there are a number of problematic assumptions about how stakeholders interact within such platforms. For example, it is generally assumed that once an innovation platform has been established, stakeholders can voice their demands. “We have to be wary of those who talk very little,” Andersson said, alluding to the often silent majority of women farmers in meetings. “They might talk little because they can’t express their ideas,” he explained, pointing to the continued role of research in identifying demand. Then he followed with a photograph from first-year on-farm trial plots under conventional ridgeand- tillage and conservation agriculture in southern Africa. Against all expectation, the maize on the conservation agriculture plot was significantly taller than the conventionally grown maize, despite the same fertilizer regime and the absence of soil cover and nitrogen-mineralizing soil tillage in the conservation agriculture treatment. Behind this mystery lies another assumption about stakeholder participation: are farmers participating in researchers’ field trials because of their keen interest in a technology package, or do they have other reasons? In this case, the trialhosting farmer ‘helped’ the researcher by deliberately planting the conventional treatment late so that the researcher’s treatment would look better. The farmer sought to secure the farm inputs supplied to him also for next season. In this area, farmers’ biggest struggle is to source expensive inputs, notably fertilizer, and the input-supported trials of the researcher provided an opportunity. Farmer participation was thus motivated by a constraint beyond the field scale. “If we don’t research and understand how the wider system works, we can’t effectively introduce new technologies,” Andersson concluded his argument for a system-oriented research.

The workshop’s morning section was wrapped up with a group discussion on the changes necessary for successful innovation. Participants discussed and presented their ideas on what could be improved in our daily work regarding AIS. One question recurred several times during the lively discussions: is it our role to always be the facilitator within innovation platforms, or should this role be carried out by farmers’ associations or other actors?

The afternoon session was devoted to presentations by Bram Govaerts, leader of the Take it to the Farmer component of MasAgro, and Michael Misiko, GCAP innovation specialist, who focused on innovation platforms and their components within Take it to the Farmer and SIMLESA, respectively. While providing an overview of Take it to the Farmer, Govaerts stressed the importance, complexity, and history of farmer organizations as parts of agricultural innovation systems, reiterating Andersson’s previous statement on the importance of understanding the system. Misiko focused on the forms of and need for innovation platforms within SIMLESA. The foundations of SIMLESA lie on integration and partnerships of systems and institutions, sustainable innovation, and impact. However, the organizations operating within SIMLESA are often poorly clustered, sometimes completely detached from the commodities with which they work. According to Misiko, the next step towards further efficiency of the project is a higher level of integration of institutions within SIMLESA’s innovation platform systems.

Bruno Gerard, GCAP director, and Watson, concluded the workshop with reflections on AIS and their roles. “Innovation platforms and innovation approaches should not be taken as the next silver bullet to achieve impact scale,” said Gerard. “They are a mean rather than an end. They are critical for better understanding of social processes within farming systems and for putting technical innovations in context as they can provide important missing knowledge for researchers, farmers, and other actors, including the private sector, in a co-learning fashion.” Gerard pointed out some of the drawbacks as well; innovation platforms and approaches are often resource-intensive and difficult to scale out and scale up due to their context-specificity. “But they can generate valuable, more generic lessons on adoption, adoptability, and the way forward,” he added. “As researchers we have to be careful to intervene more as a catalyst and honest broker and not be too central in order to achieve positive long-term changes. We have to think of a good exit strategy from the beginning. At GCAP, innovations approaches are one piece of the puzzle within our systems research framework and impact pathways,” Gerard concluded.DSC_0004

New doubled haploid facility will strengthen maize breeding in Africa

CIMMYT’s Global Maize Program will establish and operate a maize doubled haploid (DH) facility in Kiboko, Kenya. With financial support from the Bill & Melinda Gates Foundation, this centralized DH facility will be able to produce at least 100,000 DH lines per year by 2016, thus strengthening maize breeding programs in Africa and improving breeding efficiency. The DH technology will reduce the cost and time for breeding work as it enables rapid development of homozygous maize lines and fast-tracking development and release of elite maize varieties. The facility will be built at the Kiboko Experimental Station on 20 hectares of land provided by the Kenya Agricultural Research Institute (KARI). The Maize DHAfrica Project will both establish the facility and refine the DH technology in collaboration with the University of Hohenheim, Germany.

Doubled-Haploid“One of the important ways to increase genetic gains and accelerate the development and deployment of improved varieties is to reduce the time needed for inbred development,” said B.M. Prasanna, CIMMYT’s Global Maize Program director. “The technology would also allow breeders to couple molecular marker-based selection for important traits such as disease resistance and quality at an early generation.” A project planning and review meeting held in Nairobi during 18-19 February 2013 was attended by representatives from national agriculture research systems, Kenya Seed Company, Seed Trade Association of Kenya, University of Hohenheim, the International Institute of Tropical Agriculture (IITA), and CIMMYT. “This technology will help us significantly improve maize food security in sub-Saharan Africa,” said Joseph Ochieng, KARI deputy director (food crops and crop protection), who spoke on behalf of the institute’s director Ephraim Mukisira. The KARI official emphasized the importance of educating stakeholders on this novel technology to ensure they understand its benefits and use the DH lines efficiently in breeding programs.

The DH facility will also serve as a training hub for scientists and technical personnel from national programs and small and medium-sized seed companies that may not have advanced breeding facilities. It will enhance CIMMYT’s capacity to generate DH lines for effective use in Africa-based breeding programs such as the Drought Tolerant Maize in Africa (DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), and the Maize HarvestPlus in Africa.

“We are fully enthused and geared towards establishing a state-of-the-art DH Facility in Kiboko,” said Sotero Bumagat, CIMMYT maize DH operations manager and project leader. During a visit to the field site in Kiboko, Bumagat explained the proposed layout of the facility and received very positive feedback. Seed sector stakeholders who participated in the meeting expressed excitement and anticipation to see the DH facility established and operational in 2013. “This is a technology that the seed sector in Africa has been waiting for,” said Willy Bett, managing director of the Kenya Seed Company and member of the Project Steering Committee. “Faster breeding of improved maize varieties is quite important for effectively managing problems such as the maize lethal necrosis disease,” said Evans Sikinyi, executive officer of the Seed Trade Association of Kenya.

Doubled-Haploid2