Skip to main content

Location: Pakistan

For more information, contact CIMMYT’s Pakistan office.

Annual planning meeting for Wheat Productivity Enhancement Program supported by USDA

The Pakistan Agricultural Research Council (PARC) and CIMMYT organized a two-day annual wheat planning meeting at the National Agricultural Research Centre (NARC) in Islamabad. The meeting was in support of the Wheat Productivity Enhancement Program (WPEP), which is funded by the U.S. Department of Agriculture (USDA). The objectives of WPEP are to improve wheat though rust surveillance, breeding, pre-breeding, seed production, agronomy and coordination and capacity building. Meeting participants focused on a review of the progress made in 2013-14, identifying emerging opportunities and developing work plans for the coming year.

Dr. Shahid Masood, PARC chief science officer and senior director; Dr. Iftikhar Ahmed, PARC chairman; David Williams, agricultural counselor for the U.S. Embassy in Pakistan; Dr. Imtiaz Muhammad, country representative for CIMMYT in Pakistan.

“The United States has a long history of collaboration with Pakistan in the agriculture sector; WPEP has made exceptional progress in the country to develop Ug99-resistant wheat varieties which will ensure food security,” said David Williams, agricultural counselor at the U.S. Embassy in Islamabad. He also commended the integrated research efforts of national and international partners for the enhancement of the nation’s wheat yields.

David Williams, agricultural counselor for the U.S. Embassy in Pakistan, addresses the audience.

Imtiaz Muhammad, CIMMYT’s country representative in Pakistan, shared the impacts of WPEP on national and international wheat research systems. He added that CIMMYT’s efforts in the seed component of WPEP are substantial. WPEP has made significant progress; the release of Ug99-resistant wheat varieties (such as NARC-2011, PAK-13 and the upcoming Borlaug-14) will improve the livelihoods of smallholder farmers in Pakistan.

WPEP has played a vital role in developing a wheat rust surveillance system, upgrading infrastructure and improving the research capacity in Pakistan. Collaborative and coordinated efforts through PARC and CIMMYT have enabled the country to develop a rust culture bank. It has built the capacity of provincial wheat breeding programs to secure wheat production against the potential threat of Ug99 races.

During the technical session, partners from across Pakistan agreed that developing Ug99-resistant wheat varieties to replace traditional varieties and making them available to farmers is a critical step in maintaining high yields in Pakistan. Participants acknowledged the support of the USDA, CIMMYT and PARC in wheat research.

Wheat value chain workshop aims to bolster food security in Sindh, Pakistan

Food insecurity is a persistent problem in Sindh, a province in Pakistan slightly smaller than Tajikistan and home to 42.5 million residents. Almost three-quarters of the population are subject to regular food shortages due to the stagnation of staple food production and pressures caused by a doubling of the population since 1999.

One of several breakout groups brainstorms solutions during the workshop.

In an effort to address the food security challenges in the area, CIMMYT held a one-day workshop as part of the Agricultural Innovation Program (AIP) for Pakistan on 26 August in collaboration with the Wheat Research Institute and the Sakrand, Sindh and Pakistan Agricultural Research Council. More than 40 representatives vital to the wheat-seed value chain – including researchers, extension representatives, seed companies and the seed regulatory body of Pakistan – gathered in Hyderabad to analyze ways to transform wheat seed systems in the province.

The workshop was instrumental in revealing major opportunities and limitations across the entire spectrum of wheat seed systems, from breeding and releasing wheat varieties along with popularization and demand creation, to generating profitable and sustainable seed businesses.

On-farm evaluation of newly released varieties, Benazir 2013 and NARC 2011, indicated yield potentials 15 to 20 percent higher than existing varieties. If such varieties are made available and accepted throughout the region, food security could improve considerably due the varieties’ higher yield potential and rust resistance capability – traits critical to sustaining wheat productivity gains in Sindh.

According to the Federal Seed Certification and Registration Department (FSC&RD), only 31 percent of wheat seeds in Sindh are supplied by the commercial sector – public and privately owned seed companies – while 69 percent come from farmer-saved seeds.

Certified wheat seeds used in Sindh that are transported from Punjab province are not officially recognized in Sindh. If the unofficial transactions facilitating the flow of wheat seeds from Punjab are considered, this may indicate that wheat-seed systems in Sindh are fully functional and healthy.

Figure 1. Wheat varietal portfolio in Sindh seed systems (source: FSC&RD)
Figure 1. Wheat varietal portfolio in Sindh seed systems (source: FSC&RD)

However, this new batch of wheat varieties is not currently in the commercial seed production chain, so the average age of wheat varieties in Sindh indicates an unhealthy seed system. This is also illustrated by the predominance of the 10-year- old wheat variety TD 1 (Figure 1), the fact that wheat cultivars in the seed supply are, on average, 18 years old, and that two out of five varieties are more than 25 years old (Figure 1; Tj-83 and Sarsabz-89).

The Major Gap

The workshop identified a lack of coordinated efforts among those involved in the wheat-seed value chain to popularize new varieties as a significant weakness in Sindh. Weak coordination and linkages among research, extension, seed companies, the seed regulatory body and farmers has resulted in a very slow popularization of new varieties.

Many wheat varieties released in recent years have yet to reach farmers. This may be in part because the Sindh government’s Department of Agricultural Extension does not appear to have specific activities devoted to the publicity of new seed varieties.

More than 90 percent of certified wheat seeds in Sindh are supplied by private seed companies, which tend to focus on selling a few common wheat varieties with the highest market demand.

Deployment of new varieties in seed systems is slow also due to limited land and financial resources of research organizations. The lack of a regulatory framework allowing private seed companies to produce pre-basic and basic seeds is also a factor limiting the supply of adequate seeds.

Private seed companies said they recognized there is a lack of varietal choice – including short-duration varieties – and expressed interest in being involved in wheat variety development. However, they said they are limited by a lack of technical capability, financial resources, land and capital to develop research and development capacity.

Workshop participants identified a number of actions to incorporate into the AIP work plan for the upcoming wheat season, which begins in October-November. These actions include:

• Participatory varietal selection involving small-, medium- and large-scale farmers.

  • Participatory on-farm demonstrations of new varieties with involvement of all major actors of the wheat seed value chain.
  • Initiation of pre-basic and basic seed production by private seed companies with support from research, extension and seed regulatory bodies.
  • Provision of new seed wheat varieties to landless and smallholder farmers in Sindh.
More than 40 wheat-seed value chain representatives attended the workshop.

AIP stakeholders share experiences with multi-crop bed planter in Pakistan

CIMMYT, in collaboration with Wheat Research Institute Sindh (WRIS) and Pakistan Agriculture Research Council (PARC) supported by USAID, initiated pilot testing of a multi-crop bed planter for planting cotton and wheat in a cotton-wheat cropping system in Sakrand, Pakistan under the Agricultural Innovation Program (AIP) for Pakistan.

Dr. Imtiaz Hussain, cropping systems agronomist, explained how the multi-crop bed planter is used for planting various crops such as cotton, maize, pulses, rice and wheat on raised beds. This planter will help farmers cut farming operations and costs. It can be used to make beds, plant crop and apply fertilizer in one operation in a cotton-wheat cropping system.

A multi-crop bed planter is demonstrated during a recent AIP field day. Photo: Hira Khalid.

A field day was organized by WRIS on 27 August for the stakeholders to observe bed planted cotton, a demonstration of a bed planting operation, and discuss its use and performance. Over 150 new and aspiring farmers, agriculture extension workers, agriculture researchers and representatives from private seed companies observed the planting of mung beans using the multi-crop bed planter in the field.

Badar ud Din Khokahar, agronomist at WRIS, spoke about his experience with this new technology, noting the bed planted cotton had better germination and plant population in comparison with conventionally ridge planted cotton. The ability to apply fertilizer close to plant resulted in better crop growth.

The field day was followed by a discussion forum, where the participants expressed their interest in this new and emerging technology. During this session, farmers showed appreciation for the introduction of a multi-crop bed planter and showed their interest in using the planter for wheat crop next season. In response, Dr. Kareem Laghari, director at WRIS, recognized the efforts and cooperation of CIMMYT in the introduction of new technologies, and ensured that this technology will be transferred to the farmers for wheat and cotton planting.

Dr. Atta Somoro, director general Agriculture Research Sindh, acknowledged CIMMYT’s efforts in wheat research in the country and especially in the Sindh province. He recognized how CIMMYT’s work in the Green Revolution is highly valued. He also mentioned that the continuous inflow of germplasm and technologies from CIMMYT has helped to improve wheat productivity.

Dr. Shahid Masood, member of Plant Sciences within the Pakistan Agricultural Research Council (PARC), recognized how the efforts of CIMMYT and the support of the U.S. Agency for International Development (USAID) are very helpful in scaling up mechanized planting in this area, which will ultimately help to improve crop productivity, along with saving in water and improving fertilizer use efficiency.

Dr. Imtiaz Muhammad, country representative CIMMYT-Pakistan, informed the participants that AIP is focusing on improving the productivity of the wheat and maize through better germplasm, seed and better agronomy. The project focuses on increasing agricultural productivity and incomes in the agricultural sector across Pakistan, with more emphasis on smallholder farmers from provinces with less access to agricultural resources. This equipment will be tested and it will also be manufactured locally through this project, so that more and more farmers can benefit from these activities.

Recent activities and accomplishments of the Agricultural Innovation Project (AIP) for Pakistan

The Agricultural Innovation Project (AIP) for Pakistan, led by CIMMYT and funded by USAID, has accomplished a great deal since its inception in March 2013. Among this year’s most notable AIP achievements by partner institutions were numerous training sessions and workshops, important vaccine developments, progress in baseline surveys and advances in seed improvement and distribution.

In May, 25 stakeholders involved in dairy production received training on the seven rapid assessment (RA) tools developed and modified by the International Livestock Research Institute (IRLI). Another 25 stakeholders involved in small ruminant production were given training on the small ruminant value chain rapid assessment (SRVC RA) tools by scientists from the International Center for Agricultural Research in the Dry Areas (ICARDA). On 4 June, a wheat seed value chain workshop organized by CIMMYT in collaboration with the Cereal Crops Research Institute (CCRI) and the Pakistan Agricultural Research Council (PARC) was held at CCRI in Nowshera, Khyber Pakhtunkhwa Province (KPP).

Nearly 50 actors in the wheat seed value chain participated in the workshop, in order to analyze gaps and identify opportunities in the KPP wheat seed system. A “training of trainers” was organized by the International Rice Research Institute (IRRI) on developing and validating a local rice crop check system at Engro Eximp, Muridke, Sheikhupura for seven field staff of the private sector on 24 June.


The World Vegetable Center held a series of customized training workshops with its partners in order to identify gaps, exchange experiences and to further streamline the Center’s activities among public and private partners. Advances have also been made in improved maize seed under the AIP maize component, which evaluated the performance of about 220 recently introduced maize varieties against locally available checks in spring 2014. Preliminary results from the harvested sites show the good selection potential of introduced maize varieties, which consisted of early to intermediate maturity, climate-resilient and bio-fortified white and yellow kernel hybrids and open pollinated varieties.

Best or comparable varieties identified will be further tested to fulfill variety release procedures. With the help of ILRI, the production of the Peste des Petits Ruminants (PPR) vaccine in Pakistan will soon be improved. The version of the vaccine currently produced in Pakistan is thermo-stable at 35˚C, while the version of the vaccine produced by IRLI is thermo-stable at 45˚C and is therefore more resistant to damage and able to be kept at a wider variety of temperatures.

Dr. Jeff Mariner, a former ILRI employee, visited Pakistan in June and conducted a technical audit of the production process in the two laboratories that produce the PPR vaccine. An action plan that includes training and production of a first batch of vaccine based on ILRI’s vaccine composition was created based on this audit, and will be implemented in August in order to help Pakistan create a more heat-resistant variety of the PPR vaccine.

AIP staff members have also worked this year to address the issue of quality fodder for livestock in Pakistan by promoting the growth of spineless cactus on range-land. AIP Livestock, in collaboration with the Rangeland Research Institute (RRI) of the National Agricultural Research Council (NARC), held a farmer’s field day at NARC on 15 May to train farmers in the advantages and methodology of growing spineless cactus. Forty farmers participated, and many have since planted spineless cactus on their lands. IRRI, in collaboration with Engro Exemp, distributed 600 kilograms (kg) of certified, high-yielding Basmati-515 rice seed to 30 farmers in the Punjab region to scale up the adoption of this variety. Basmati-515 has good quality attributes and a comparatively short growing duration, and is an excellent supplement to super basmati, which has lost its yield potential and is also prone to damage by insects and diseases.

One hundred kg of high-yielding, salt-tolerant seed of low phytate rice variety NIAB IR-9 was also distributed to farmers in Usta Muhammad in Balochistan. In addition, IRRI is working to promote mechanized dry rice seeding in Pakistan; a method which uses significantly less water than rice cultivated using the conventional planting method and is much easier to harvest. IRRI scientists, with the help of local farm machinery manufacturer Greenland Engineering, have identified a proper seed drill for direct dry seeding, which they are popularizing through the creation of public and private partnerships.

In addition, AIP reports that baseline surveys for wheat and conservation agriculture as well as vegetables and mung bean value chains are in progress in Pakistan’s four provinces. A maize baseline survey will be launched in August, and will interview more than 500 maize growers. The CIMMYT socio-economics team is also preparing to initiate durum wheat value chain studies in Pakistan, which will target producers, millers, food processors, seed companies, dealers, consumers and restaurants. A total of US $82,829 in funding was awarded to 14 research and extension projects, including: three projects related to grape and mango processing from PMAS Arid Agricultural University, Rawalpindi; seven projects on citrus from a research group at Citrus Research International; and four projects focusing on mangoes from faculty at the Institute of Horticulture and Institute of Food Science and Technology at the University of Faisalabad.

UC-Davis and the AIP Perennial Horticultural Project in-country coordinator will conduct the first review of these funded projects in September. Looking to the future, AIP partners chaired by UC-Davis met in Islamabad in June and created a working group for vocational training, which collaboratively planned cross-institute vocational training activities. The top priorities are to implement a short course on proposal writing that will enable the collaborators to prepare highquality proposals for upcoming competitive grant submissions on AIP call, as well as statistics courses that cater to the specific needs of trials and breeders.

Heat stress-resilient maize hybrids for Asian farmers

The Heat Tolerant Maize for Asia (HTMA) project, supported by the United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, is a public-private alliance that targets resource-poor people of South Asia who face weather extremes and climate-change effects. HTMA aims to create stable income and food security for resource-poor maize farmers in South Asia through development and deployment of heat-resilient maize hybrids.

The project connects several public sector agricultural research institutions in South Asia, such as the Bangladesh Agricultural Research Institute; the Maize & Millets Research Institute, Pakistan; National Maize Research Program, Nepal; and Bhutan Maize Program. Also involved in the project are two state agriculture universities from India – Bihar Agriculture University, Sabor and University of Agriculture Sciences (UAS), Raichur – as well as seed companies in the region including DuPont Pioneer, Vibha Agritech, Kaveri Seeds and Ajeet Seeds and international institutions including Purdue University and CIMMYT.

The “2nd Annual Progress Review and Planning Meeting for the HTMA Project” was held 22-23 July at UAS, Raichur in Karnataka, India. The meeting was attended by scientists and representatives from the collaborating institutions in South Asia, Purdue University and CIMMYT. Dr. Nora Lapitan represented USAID at the meeting. To take advantage of the presence of renowned scientists at this newly established agricultural university, the inaugural session of the meeting was organized as a special seminar on “Global initiatives on climate resilient crops.”

Dr. B.V. Patil, director of education at the university, organized the seminar for UAS staff and students. In his welcome speech Dr. Patil highlighted the importance of the HTMA public-private alliance, especially for addressing such complex issues as developing and deploying heat stress-resilient maize. Dr. BM Prasanna, director of the CIMMYT Global Maize Program, lectured on “Adapting Maize to the Changing Climate,” talking about the importance of climate change effects and CIMMYT initiatives on different continents in the development and deployment of stress-resilient maize hybrids.

This was followed by another highprofile lecture on “Climate-Resilient Crops: A Key Strategy for Feed the Future,” which was delivered by Lapitan. She spoke about the priorities of the FTF initiative, including efforts to reduce poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. The inaugural session was followed by a series of HTMA annual review and planning technical sessions. In the first, Dr. P.H. Zaidi, HTMA project leader and CIMMYT senior maize physiologist, presented updates on the project’s execution and the progress achieved at the end of the second year. The project has met agreed milestones, and is even ahead on some fronts.

This was followed by detailed progress reports on objectives given by each collaborating partner. Professor Mitch Tuinstra of Purdue University presented on membrane lipid profiling in relation to heat stress, as well as identifying quantitative trait loci for heat stress tolerance and component traits by joint linkage analysis. The leads from each of the public and private sector partners presented the results of the HTMA trials conducted at their locations, and also shared a list of top-ranking, best-bet heat-tolerant maize hybrids to take forward for large-scale testing and deployment. During the project’s first two years, each partner identified promising and unique maize hybrids suitable for their target environment. In molecular breeding, Zaidi presented the results of the association mapping panel, and Dr. Raman Babu, CIMMYT molecular maize breeder, presented the progress made on genotyping and association analysis. Dr. M.T. Vinayan, CIMMYT maize stress specialist for South Asia, presented a progress report on genomic selection for heat stress tolerance.

Nora Lapitan of USAID addressing the audience in HTMA seminar at UAS Raichur. Photo: UAS, Raichur photographer

Dr. K. Seetharaman, CIMMYT special project scientist in abiotic stress breeding and Dr. A.R. Sadananda, CIMMYT maize seed system specialist , presented jointly on the HTMA-product pipeline, including the promising heat stress-resilient hybrids ready for deployment, and a series of new hybrids ready for testing across locations in target environments. Dr. Christian Boeber, CIMMYT socio-economist, talked about progress in HTMA product targeting, pricing and adoption, summarizing the ongoing work on crop-modelling, reviewed work on the IMPACT model component, presented the survey tool and reviewed study sites in heat stress-prone ecologies of South Asia. Zaidi and Tuinstra presented the progress in project capacity building, including nine Ph.D. student fellowships. three workshops/training courses including in-country courses on “Precision phenotyping for heat stress tolerance” in Nepal and Pakistan, and a course on “Statistical analysis and genomic selection.” Project progress was critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed high satisfaction on its overall development. Speaking for USAID, Lapitan said: “I am highly impressed with the progress in the HTMA project. Within a period of two years there is a first wave of heat-tolerant hybrids ready for large-scale testing and deployment. This is one of the 26 projects in our climate-resilient cereals portfolio, but this project successfully demonstrated excellent balance between up-stream and down-stream research. We have made impressive progress, and are rather ahead on some milestones. I consider it a model project.”

Other PSC members also expressed their satisfaction, and agreed that HTMA has made tremendous progress in products for heat stress ecologies in the partners’ target environments. After discussing the progress in detail, project partners discussed the work plan and research activities for the third year. A parallel group discussion on objectives helped finalize the workplans and activities for each partner during the project’s third year.

HTMA-Project Steering Committee meeting.

Finally, the PSC met and discussed the overall progress of the project in detail. In addition to Prasanna chairing the PSC, members include Dr. Mohammda Munir, chief scientific officer, Pakistan Agricultural Research Council; Dr. Yagna Gajadhar Khadka, director, crops and horticulture, Nepal Agricultural Research Council; Dr. Khalid Sultan, research director, Bangladesh Agricultural Research Institute; Dr. B.V. Patil, director of education at UAS; Tuinstra; Dr. N.P. Sarma, Kaveri Seeds; and Zaidi as member secretary.

Overall, the PSC members expressed their satisfaction with ongoing activities and the progress being made by HTMA, particularly the close collaboration with partner institutions. “I sincerely hope that the same momentum is maintained for rest of the project, which is certainly going to have a strong impact on the maize farming community in stressprone agro-ecologies of South Asia,” said Munir.

The meeting was also attended by special guests, including Drs. Navin Hada and Danielle Knueppel from USAID in Nepal, and Dr. Mahendra Prasad Khanal and Mr. Dilaram Bhandari from the Agricultural Ministry of Nepal. They stated their appreciation for the opportunity to participate in the meeting for the project model and noted HTMA’s fast-track progress. Khanal said, “We need to have a similar project for maize research and development in Nepal, since we are also pushing for hybrid varieties, and we should use a similar public-private partnership model for the product development and deployment.”

Why wheat matters

Photo credit: Ranak Martin
Photo credit: Ranak Martin

Thomas Lumpkin served as director general at CIMMYT from 2008 to 2015.

The history of wheat is the history of civilization. Over 10,000 years ago in the Fertile Crescent our ancestors ascended from an existence as hunter-gatherers and began tending and domesticating crops. Thus began wheat’s symbiotic relationship with the history of civilization and humankind’s responsibility as stewards of planet Earth.

Wheat is not only a major diet component but wheat-based products are the personification of cultural heritage and pride. Imagine Italians without pasta, North Africans without couscous, Indians without Chapattis or Chinese without noodles or steamed bread. It is time to pay homage to this grass, which was the basis for the development of modern civilizations and has done so much for the human race.

Wheat is the staple food of humankind, and its history is that of civilization. Yet today wheat is losing its crown. Many perceive wheat to be a food eaten and produced only by rich countries. Atkins, Davis (wheat belly) and other diets have convinced even more that wheat is bad for you and less wholesome than other crops. Although wheat remains an important crop, funding for wheat research has decreased significantly in recent years.

In spite of all these challenges, the demand for wheat is not dropping. Wheat is the staff of life for 1.2 billion poor people who live on less than US$ 2 a day; providing 20 to 50 percent of daily calories and 20 percent of protein. From South Asia through to Central Asia across the Middle East and on to North Africa, wheat is a staple food. Demand for wheat is not isolated to these traditional wheat-eating regions. Today African countries spend about US$ 12 billion annually to import some 40 million tons of wheat. What was once considered a minor crop for consumers in Sub-Saharan Africa, demand for wheat is now growing faster than for any other commodity and is now considered a strategic crop for food security by African leaders.

Perhaps what is most concerning are the predictions for the near future. Demand for wheat in the developing world is projected to increase 60 percent by 2050. India, the largest wheat-consuming country after China, has 17.5 percent of total world’s population and 20.6 percent of the world’s poor. If you look at a map showing the locations of recent food riots, it is almost identical to one showing where wheat provides more than one-third of a person’s daily calories. Households in developed countries spend less than 10 percent of their income on food supplies, in many countries, that percentage is much more. For example, in Pakistan and Egypt this figure is around 40 percent.

An Intergovernmental Panel on Climate Change (IPCC) report published earlier this year predicts that wheat will be the first of the main staple crops to be significantly affected by climate change, because of its sensitivity to heat and the fact that it is grown all over the world. Current projections predict that with every Celsius degree increase in temperature, wheat yields in semi-tropical areas could drop by 10 percent. Changes in weather may also lead to an increased risk in the severity of wheat diseases, which may cause severe losses in areas that were previously thought of as unimportant.

Recurrent food crises combined with climate change, depletion of natural resources and rising food prices are threatening the lives of millions of poor people who depend on wheat for both diet and livelihood. Demographers predict that by 2050 the earth’s population will peak at 9.6 billion. Developing countries, especially those in Africa and South Asia, are experiencing tremendous population growth. Based on current crop yields and food distribution methods, feeding nearly 10 billion people will not be trivial. Sustainably increasing wheat production will have a crucial impact on food security.

Wheat’s significant contribution to humankind is not yet over.

CIMMYT and Punjab agricultural research institutions partner to introduce multi-crop bed planter

By Imtiaz Hussain and Hafiz Nasrullah/CIMMYT

Farmers visiting cotton planted on wide beds with the planter.

CIMMYT and the Punjab Department of Agriculture Research have introduced a multi-crop bed planter system in Bahawalpur, Pakistan that can be used to plant crops such as cotton, maize, pulses, rice and wheat on raised beds while applying fertilizer at the same time. The Agronomy Research Station (ARS) and the Regional Agriculture Research Institute (RARI) are collaborating with CIMMYT to test and promote the planters in Punjab State.

To create awareness among the farming community in Bahawalpur, ARS and RARI held a field day on 26 June. More than 100 farmers and agriculture experts visited the cotton field that had been planted using the multi-crop bed planter, and Dr. Muhammad Akhter of ARS shared his experience in using the planter to plant cotton on wide beds. Farmers were impressed with the crop stand in the cotton fields and were later given a demonstration on planting mung bean with the planter.

Demonstration of mung bean planting with multi-bed crop planter.

Dr. Ghulam Hussain, director of RARI, highlighted the importance of using mechanical planting for different crops in order to save resources and time while also increasing yields. Dr. Muhammad Aslam of ARS said that planting on raised beds reduces the amount of water needed for irrigation by 30 to 40 percent and also improves crop yield by 15 to 25 percent.

An assistant agronomist at RARI, Dr. Hafiz Nasrullah, explained to farmers that they only need to purchase one planter, which can be used for various crops.  Farmers also learned that the multi-crop bed planter can be used to plant crops in residue and in zero tillage conditions, and that this would save them the cost of land preparation.

Farmers attending discussion and lectures on the field day in Bahawalpur.

 

Aslam and Chaudhary Bashir Ahmed, agriculture extension experts, assured farmers and researchers that the extension department would do its best to transfer the successful and productive technologies to the farmers after the pilot testing had been completed.

This effort to promote conservation agriculture in Pakistan is supported by Feed the Future U.S. Agency for International Development under the Agricultural Innovation Program.

Predominance of informal seed systems in Khyber Pakhtunkhwa (KP) Pakistan: a wake-up call for improvement

By Krishna Dev Joshi, Muhammad Imtiaz and Akhlaq Hussain/CIMMYT

Improving and sustaining wheat productivity gains in Khyber Pakhtunkhwa province (KP) and other parts of Pakistan is vital to addressing national food security, as wheat is a major staple in the country.

Photos: Asad Khan

Regular deployment of new, high-yielding and rust-resistant wheat varieties is essential to ensure ongoing improvement in wheat yields. This can only be achieved once a sustainable and profitable wheat seed system is in place. A workshop held on 4 June at the Cereal Crops Research Institute (CCRI), Nowshera, KP, brought together 49 participants representing major actors in the wheat value chain.

Participants included researchers from institutes in KP as well as from the Pakistan Agricultural Research Council (PARC), farmers, extension personnel, private seed companies, seed regulatory bodies and CIMMYT scientists. Participants analyzed gaps and opportunities in the current seed system. CIMMYT organized the event under the Agriculture Innovation Program (AIP) for Pakistan with CCRI, KP, Nowshera and PARC. The AIP is funded by the USAID Feed The Future Initiative.

Workshop participants stressed using innovative approaches for research, extension, seed production and marketing. According to the KP Department of Agriculture Extension, wheat productivity in the province is nearly 1.6 tons per hectare (t/ha) while the national average yield in Pakistan is around 2.7 t/ha. Wheat is grown on about 730,000 hectares in KP. Considering a 30 percent seed replacement rate, about 30,000 tons of wheat seeds is needed annually in the province. According to the Federal Seed Certification and Registration Department (FSC&RD) only around 7 percent of certified seeds are replaced every year (3.8 percent by public sector and 2.9 percent by private seed companies).

The remaining 93 percent of seed comes from informal sources. The lack of business perspective among almost all the major value chain actors coupled with weak coordination and linkage between them were identified by workshop participants as the main reasons for the predominance of informal seed systems in the province. The prevalence is a concern for wheat growth and sustainability. Farmer Abdul Malik from Swabi stressed that “seed is very important to maximize yield, and unavailability of quality seeds is the main cause of low productivity.”

He asked for better wheat seed of the right varieties that is available locally, adapted to specific conditions and affordable. Another farmer asked for focus on wheat varieties suitable for rain-fed conditions, as more than 60 percent of the wheat grown in KP is rain-fed. The workshop identified the long adoption lag phase as another major issue in releasing new varieties and making certified seed available. Workshop participants stressed that seeds coming to villages should include information about new varieties and associated technologies. Seed packets should contain information about new varieties and their specific adaptation to irrigated or Barani (rainfed) lands and other relevant traits. Demonstration plots and other adaptive research are important to popularize new varieties as well as for educating farmers about new seed varieties.

A total of 23 private seed companies are registered in KP, the majority of which are in urban areas, and few of these are functional. The majority of functional seed companies do not have wheat seed in their business portfolio or only have a small quantity of wheat seed because demand is low and this business is unprofitable. The high cost of seed production (small holdings and majority of nonirrigated areas, low productivity, etc.) adds to this complexity. complexity. The net returns from the sale of wheat seeds by the public sector Agricultural Development Fund (ADF) project were only around 7 percent (disregarding staff salary, overheads, seed storage costs).

The wheat seed business is unlikely to become a business of choice for private sector companies in this province. Wheat seed from Punjab does have a market in KP because of lower seed procurement prices. ADF, within the Department of Agriculture Extension, encourages local private seed companies to minimize dependency on Punjab, though the implementation is complicated without changing wheat grain pricing policy regime in the province, a major factor responsible for making this industry highly uncompetitive.

Workshop participants highlighted the role of seed and agricultural input dealers that sell wheat seed in the province. These dealers are vital actors in areas with underdeveloped seed markets, such as KP. Ensuring access to correct and appropriate information about the seeds they sell is vital. Participants, for example, raised concerns that some seed dealers sold seeds of a rust- susceptible wheat variety last year in Swabi, resulting in big losses for farmers. This was linked with a lapse in the implementation of Seed Act provisions, which is meant to protect farmers.

CIMMYT maize projects creating synergies for enhanced impacts in South Asia

By AbduRahman Beshir and P.H. Zaidi/CIMMYT

South Asia is particularly vulnerable to climate fluctuations, and extreme weather conditions can cause abiotic stress in rain-fed crops such as maize. Recognizing these challenges to crop production, CIMMYT has partnered with national programs in South Asia to develop and deploy climate-smart agricultural technologies through two projects supported by USAID’s Feed the Future initiative – Agricultural Innovation Program (AIP) for Pakistan and Heat Tolerant Maize for Asia (HTMA).

HTMA is an alliance between private and public research and development institutes in Bangladesh, India, Nepal and Pakistan whose goal is to develop new generations of maize hybrids that can withstand heat stress. AIP for Pakistan is a multi-stakeholder and multi-disciplinary project partly focused on deploying the most promising technologies, including stress-resilient maize cultivars, suitable for the country’s environment. Recognizing an opportunity for the two initiatives to collaborate, the Maize and Millets Research Institute (MMRI) and CIMMYT organized a workshop for 35 AIP and HTMA project partners 29-31 May at Sahiwal, Pakistan.

Dr. P.H. Zaidi explaining about phenotypic traits. Photos: AbduRahman Beshir

Dr. Abid Mehmood, director general of agricultural research of Punjab Province, Pakistan, told the Pakistani maize scientists that “maize is one of the important crops for the food security of Pakistan” and said the workshop was “an excellent platform to learn and work together and share knowledge among scientists.” Mian Muhammad Shafique, director of MMRI, gave an overview on maize research and development at MMRI and its importance for Pakistan, and for Punjab in particular.Drs. P.H. Zaidi, B.S. Vivek and Raman Babu from CIMMYT-India and AbduRahman Beshir from CIMMYT-Pakistan shared current developments associated with conventional and molecular breeding for abiotic stress tolerance to help the scientists understand various principles, tools and techniques involved in developing climate-smart maize hybrids, with enhanced tolerance to major stresses such as drought and heat. The training also addressed the basic principles of quality maize seed production.

The workshop was followed by a field visit at the MMRI experimental farm, where participants got practical experience in identifying important phenotypic traits for climate-resilient maize and evaluated the performance of AIP, HTMA and MMRI maize trials at the institute. Zaidi commended the MMRI team for the way it managed the field trials, saying, “The longtime research work from MMRI and other centers is a primary reference for people working on developing heat stress-tolerant maize, and this effort has to continue at an accelerated pace.”

Participants of the international refresher course on Statistical and Genomic Analysis. Photo: CIMMYT

The participants also appreciated the performance of some of the germplasms in Sahiwal, where the maximum temperature often exceeds 45oC during May and June. Dr. Beshir explained how the scientists can access CIMMYT’s germplasm and encouraged public and private institutions to further engage in the development and deployment of CIMMYT maize materials.

In the closing session, Dr. Sartaj Khan, national coordinator for cereal systems at the Pakistan Agricultural Research Council (PARC), thanked CIMMYT for organizing the course and urged participants to use the knowledge gained in their day-to-day activities. He also requested more training sessions with participants from diverse disciplines.

CIMMYT promotes the role of women in agriculture at Pakistan maize conference

By AbduRahman Beshir and Imtiaz Muhammad/CIMMYT

Dr. Imtiaz Muhammad, CIMMYT country representative for Pakistan, urged academics to encourage women to pursue agricultural careers during his keynote speech at a maize conference 3 May at the University of Agriculture Faisalabad-Pakistan.

Dr. AbduRahman Beshir, right, accepting an honor shield on behalf of CIMMYT staff.

“Why are women not competing for jobs in the field of agriculture, despite the relatively good numbers of women in the university?” he asked. He mentioned a recent example from the CIMMYT-Pakistan office, which advertised local vacancies for maize, wheat and agronomy positions but was unable to find qualified women candidates with relevant experience. He emphasized the role of women in Pakistan’s agricultural sector and said failing them is tantamount to failing half the country’s population.

The conference, organized by the university’s Department of Plant Breeding and Genetics, drew 150 participants from public and private maize research and development institutions, including multinational companies and academia, for an update on recent trends in maize production.

Dr. AbduRahman Beshir, a maize improvement and seed systems specialist at CIMMYT-Pakistan, spoke about CIMMYT’s activities to enhance productivity and promote maize excellence in Pakistan. He encouraged public and private institutions to test and use CIMMYT maize germplasm in order to fast-track the deployment of improved maize varieties.

Participants expressed appreciation for CIMMYT’s recent efforts to bring maize excellence back to Pakistan and enthusiasm for partnering with the organization. CIMMYT staff received an honor shield during the closing ceremony.

AIP-maize establishes public-private variety evaluation network in Pakistan

By AbduRahman Beshir Issa/CIMMYT

The maize component of the recently launched Agricultural Innovation Program (AIP) for Pakistan has created a public-private network to evaluate CIMMYT international trials of white and yellow kernel hybrids and OPVs including conventionally developed bio-fortified maize.

Faisal Hayat, R&D manager of Jullundur Private Ltd. (right), and AbduRahman Beshir Issa during a maize evaluation at JPL. Photos: AbduRahman Beshir

Seven types of maize trials consisting of different maturity groups, various tolerances to water stress and enhanced levels of protein quality were introduced from CIMMYT Colombia, Mexico and Zimbabwe and distributed to five private seed companies, six public research institutes and two universities for evaluation during the spring season (February-June). The preliminary evaluation during seed setting showed good performance of introduced materials, and a number of entries are showing strong selection potential.

The testing will continue in the summer season (July-November) with additional varieties and partners to check seasonal variations on the performance of the varieties. The AIP is funded by the USAID Feed the Future Initiative and collaborators receive grants to conduct variety evaluation and other project activities. This approach will strengthen the public-private partnership and ensure accelerated diffusion of improved maize cultivars to the smallholders at an affordable price. In addition, partners will enrich their gene pool and enhance their breeding program through the acquisition of CIMMYT maize germplasm.

Maize evaluation at MMRI.

AIP maize trials distributed to public and private partners in Pakistan (Spring 2014)

Partner institution/center No. of trials

  • Maize and Millet Research Institute (MMRI): 4
  • Cereal Crops Research Institute (CCRI): 5
  • National Agricultural Research Institute (NARC): 7
  • Jullundur Private Ltd (JPL): 3
  • Four Brothers Seed company (4B group): 3
  • Ali Akbar Group: 2
  • ICI Pakistan Ltd: 2
  • Petal Seed Company (PSC): 1
  • Agricultural Research Institute – Balochistan/Quetta: 1
  • Agricultural Research Institute- Tandojam (ARIT)-Sindh: 1
  • Agricultural Research Institute- Gilgit Biltistan: 1
  • University of Agriculture Faisalabad (UAF): 1
  • University of Agriculture Peshawar (UAP): 1

CIMMYT, Pakistan renew host country agreement

Photo: Awais Yaqub

By Yahya Rauf and Imtiaz Muhammad/CIMMYT

CIMMYT and the government of Pakistan have formally agreed to continue the Host Country Agreement signed in 1984, which allows CIMMYT to host other partners in the country. Thomas Lumpkin, CIMMYT director general, and Iftikhar Ahmad, chairman of the Pakistan Agricultural Research Council (PARC), signed a memorandum of agreement that will give CIMMYT new avenues to work with the government of Pakistan, PARC, public and private universities, corporations, nongovernmental organizations and farmer associations. In addition, CIMMYT may locate international staff, experts and consultants in the country after getting approval from the government. CIMMYT has already brought international partners like ILRI, AVRDC, UC Davis and IRRI under the umbrella of the Agriculture Innovation Program (AIP).

CIMMYT-Pakistan supports training on physiological breeding

By Noor Muhammad and Imtiaz Muhammad/CIMMYT

CIMMYT-Pakistan, in collaboration with the Wheat Research Institute (WRI), Faisalabad, conducted a hands-on training workshop on the use of sensor-based technologies for physiological breeding at the Ayub Agriculture Research Institute, Faisalabad, and the National Agricultural Research Centre (NARC), Islamabad. Nearly 40 agronomists, breeders and physiologists representing 11 national research institutes participated in the training.

A field demonstration shows the correct use of the GreenSeeker™ at NARC, Islamabad. Photo: Awais Yaqub

The workshop was planned to train professionals on the use of sensor-based equipments to improve physiological breeding efforts at Pakistan’s national breeding programs. Sensor-based technologies are useful in understanding plant response to various climate clues. Alistair Pask, from CIMMYT’s wheat physiology group, shared his knowledge of and experiences with wheat physiology and its implementation in plant breeding, especially under stress conditions. Lectures included information on wheat physiology, data recording, data handling and data interpretation in breeding approaches. Equipment including infrared thermometers for measuring canopy temperature, chlorophyll meters for measuring chlorophyll content and the GreenSeeker™ sensor used for normalized difference vegetation index (NDVI) measurements were demonstrated. CIMMYT also provided small pocket-sized GreenSeeker™ sensors to the WRI and the NARC Wheat Program.

 

CIMMYT-Pakistan: modernizing national wheat breeding programs

By Yahya Rauf and Imtiaz Muhammad/CIMMYT

In collaboration with the Pakistan Agricultural Research Council (PARC) and the U.S. Department of Agriculture (USDA), CIMMYT organized a ceremony at the National Agricultural Research Center (NARC), Islamabad, to present wheat planters to various research institutions and universities under the Wheat Productivity Enhancement Project (WPEP).

CIMMYT Country Representative Imtiaz Muhammad highlighted the importance of these newly imported small-plot planters, which will replace the traditional hand-sowing crop systems and antiquated machinery currently used by many of the Pakistan national programs. The planters will bring precision and efficiency to research trials.

Planters will be used in the coming wheat season by all WPEP partner institutes and will be tested at small farms for wheat cultivation. The technology will be transferred to farmers to improve crop productivity once it is successful.

Imtiaz Muhammad, CIMMYT country representative, explains the wheat planter to MNFS&R, PARC and USDA officials. Photos: Awais Yaqub

Clay Hamilton, USDA agriculture counselor in Pakistan, said the machinery handover ceremony was an example of the successful scientific collaboration between the United States and Pakistan and institutes like CIMMYT, which is critical in order to achieve better results in agriculture production. This year, CIMMYT, PARC and USDA are celebrating the 50th anniversary of Dr. Norman Borlaug beginning his work in Pakistan to improve wheat productivity.

Seerat Asghar, the secretary of the Ministry of National Food Security and Research (MNFS&R), acknowledged the ongoing technology transfer to Pakistan from the U.S. and CIMMYT. PARC Chairman Iftikhar Ahmad said WPEP achieved its goal of increased productivity by introducing disease-resistant wheat varieties, building research capacity, improving disease surveillance systems, developing seed distribution systems and modernizing national crop development programs through upgrading infrastructure and equipment. Moreover, Pakistan is now prepared to cope with the challenges of Ug99 while also developing new wheat varieties to help meet increasing food demand.

Agriculture extension and research promote conservation agriculture in Pakistan

By Imtiaz Hussain/CIMMYT

CIMMYT and the Department of Agriculture Research, Punjab, held a one-day training for agriculture extension workers in Bahawalpur, Pakistan, to share information, promote collaboration and encourage the dissemination of technologies from the USAID-Feed the Future funded Agriculture Innovation Program (AIP).

Held at the Regional Agriculture Research Institute (RARI) on 10 March, the training was attended by 28 workers from the Department of Agriculture Extension, Punjab, and 22 students from the University College of Agriculture and Environmental Sciences, Islamia University of Bahawalpur (IUB). Ghulam Hussain, director of RARI, lauded CIMMYT and USAID efforts in strengthening agriculture research in the country, especially in southern Punjab.

Researchers, extension workers and students learn in the field. Photos: Ahsan Irshad

RARI’s Manzoor Hussain highlighted the institute’s efforts to develop wheat varieties for southern Punjab. He also emphasized the collaboration between research and agriculture extension. Imtiaz Hussain, CIMMYT cropping system agronomist, briefed the participants about AIP activities and shared conservation agronomy experience in Pakistan’s different cropping systems. Muhammad Akhter, from the Agronomic Research Station (ARS), Bahawalpur, presented on relay cropping of wheat in standing cotton. This technique allows farmers to plant wheat on time without land preparation and save on cultivation costs. Liaqat Ali explained the method of ridge planting for wheat, which involves land preparation, shallow tillage with cultivators and the use of ridgers to make ridges and furrows. Ridge planting can help farmers achieve 10 percent higher wheat grain yields and 30 to 40 percent savings in water over traditional techniques.

Tanveer Ahmed, executive director of Agriculture Extension, Bahawalpur, praised the collaboration between agriculture extension and research for technology transfer to farmers. After the seminar, participants visited field trials and demonstrations at RARI and ARS, Bahawalpur. Field demonstrations included information about salient characteristics of wheat varieties including Fareed-06, Maraj-08 and Aas-11, performance of wheat varieties in early and late planting, the balanced use of nutrients for wheat crops, relay cropping of wheat in standing cotton on flat and beds and ridge planting of wheat. During the field visit, researchers explained the methodologies of field technologies and answered questions. Participants from the extension department said these activities should be continued in the future to improve links between research and extension.