As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYTâs work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.
On 27-28 May, representatives from CIMMYT, USAID, the Pakistan Agricultural Research Council (PARC), ILRI, IRRI, AVRDC, and UC Davis met with colleagues from several Pakistan universities, agricultural secretaries of the provinces, development sector organizations, private sector representatives, and farmer organizations, to discuss and plan the next stage of the USAID-supported Agricultural Innovation Program for Pakistan (AIP).
In his opening address, Randy Chester, USAIDâs Deputy Office Chief for Agriculture, stated that âAIP represents a unique and unprecedented collaboration, in that it will bring together the expertise and resources of all of these organizations, including USAID, to increase the income of farmers across Pakistan.â By using the Global Conference on Agricultural Research for Development (GCARD) approach of agricultural research for development (AR4D), AIP âwill foster a demand-driven, results-oriented, science research community, and enhance linkages between Pakistanâs agricultural research and innovation communities, the wider global community of agricultural scientists, and the private and civil society sectors,â he concluded.
AIP is a unique program for CIMMYT, aiming to address not only cereals and cereal systems, but also livestock, vegetables, and fruit trees, through a combination of commissioned projects, a competitive grants system, and human resource development. The program will draw on the expertise and resources of the five international partners, but many other Pakistan partners will be brought on as the program develops. PARC Chairman, Iftikhar Ahmad, highlighted the role that Pakistan organizations have to play: âWe need a new kind of collaboration,â he said. âIt must be a two-way process in that Pakistan must also contribute to international science. Pakistani scientists must play a crucial role in paying back what we get from the outside. Other economies can benefit from Pakistani science as well,â he added.
It would not be the first time that Pakistan has positively impacted worldwide agricultural development. Its national agricultural research system was instrumental in identifying two high-yielding wheat mega-varieties, âMexi-Pakâ and âPak81â, also known as âSiete Cerrosâ and âSeriâ, respectively, recalled Hans Braun, Director of CIMMYTâs Global Wheat Program.
During spirited working groups, participants put forward their suggestions for project priorities that will enable AIP to increase the incomes of tens of thousands of farmers, through increased agricultural productivity, in the shortest time frame possible. There will be a strong focus on adapting and up-scaling existing technologies present elsewhere in the region, such as Greenseeker sensors for improved nutrient management.
Closing the meetings, Jonathon Conly, USAID Mission Director, Pakistan, praised the group in their collaboration to revolutionize Pakistanâs agricultural sector. âIf we care about driving economic growth, it has to be done by increasing farm productivity, by increasing adoption of technologies, and human capacity,â he said; concluding: âI believe that AIP will lead to the desperately-needed increases in agricultural productivity in this country.â
From 29 April to 10 May, 16 agricultural engineers, agronomists, machinery importers, and machinery manufacturers from Ethiopia, Kenya, Tanzania, and Zimbabwe took part in a study tour in India organized by CIMMYT, the Indian Council of Agricultural Research (ICAR), the Australian Centre for International Agricultural Research (ACIAR), and the Australian International Food Security Centre (AIFSC). The tour was organized as part of the âFarm Mechanization and Conservation Agriculture for Sustainable Intensificationâ (FACASI) project to identify opportunities for exchange of technologies and expertise between India and Africa and strengthen South-South collaborations in the area of farm mechanization. The project is funded by AIFSC and managed by ACIAR.
India is the worldâs largest producer of pulses, and the second largest producer of wheat, rice, potatoes, and groundnuts. But would Indiaâs agricultural performance be that high if the number of tractors in the country was divided by six and the number of draught animals by three? Such a reduction in farm power would bring Indian agriculture close to the current situation of Kenya and Tanzania. In India, most agricultural operations are mechanized, including planting, harvesting, threshing, shelling, and transportation to the market; in Africa, these are generally accomplished manually. Bringing African agriculture closer to the situation in India is the goal of the FACASI project. This tour was designed as the first step in the construction of an enduring trilateral partnership between Africa, India, and Australia, consolidated by CIMMYT, to facilitate exchange of research and development results in the area of farm mechanization.
During his opening speech, S. Ayyapan, ICAR director general, stressed the importance of farm mechanization for agricultural intensification, pointed at the commonalities between the circumstances of Indian and African smallholders, and invited the group to develop concrete country-specific proposals regarding possible partnerships with India. The participants then spent five days at the Central Institute of Agricultural Engineering (CIAE) in Bhopal, Madhya Pradesh state, where they were exposed to various low-cost gender-friendly technologies for post-harvest operations and weeding; sowing, fertilizing, spraying, and harvesting technologies adapted to animal traction; two-wheel and four-wheel tractors; as well as conservation agriculture based technologies. Through calibration exercises and other field activities, participants gained hands-on experience with these machines. The group also visited the Central Farm Machinery Training and Testing Institute in Budni.
The second part of the study tour took place in the states of Punjab and Haryana, where the group interacted with scientists from the Punjab Agricultural University (PAU) and the Borlaug Institute for South Asia (BISA), and was exposed to various Indian innovations including laser land levelers operated by two-wheel tractors, relay direct seeders, multi-crop planters, crop threshers, and rotary weeders. They also participated in a discussion session organized by a farmer cooperative society at Noorpur-Bet focusing on institutional innovations encouraging farmer access to mechanization, and interacted intensively with Indian agribusinesses such as National Agro-Industry, Dashmesh Mechanical Engineering, Amar Agro Industries, and All India Machinery Manufacturers Association.
The study tour was concluded by a visit of the Central Soil and Salinity Research Institute (CSSRI) in Karnal to observe the role of conservation agriculture in reclaiming degraded land, and a visit to the Indian Wheat Research Centre in Karnal.
The lessons learnt in India will be put in practice in Ethiopia, Kenya, Tanzania, and Zimbabwe through the FACASI project. The study tour has generated several ideas for the development of new machines by African engineers and created contacts between Indian manufacturers and African machinery importers which may materialize into business opportunities.
Breeding of durable resistance to stripe rust âthe greatest biotic threat to wheat production in the largest wheat producer and consumer in the world, Chinaâ was the major theme of a workshop jointly organized by the CIMMYT-Sichuan office and the Sichuan Academy of Agricultural Sciences (SAAS) at the SAAS Plant Breeding Institute in Chengdu, Sichuan province, China, on 18 May 2013. The workshop aimed to promote the adoption of second-generation parents and slow-rusting breeding strategies in spring wheat-producing areas of China and to facilitate collaborative breeding strategies between SAAS and its sister organizations in neighboring provinces. The workshop consisted of a seminar and a discussion session on germplasm and breeding strategies led by Gary Rosewarne (CIMMYT Global Wheat Program senior scientist) and Bob McIntosh (Emeritus Professor at the University of Sydney), and followed by a field visit to the Southern China Field Station at Xindu.
China has the largest area prone to stripe rust epidemics in the world. Traditionally, the disease has been controlled through genetic strategies focused on incorporating major seedling resistance genes to provide immunity. However, this method places strong pressure on the fungus to evolve and overcome these genes. Since the 1950s, the development of virulent pathotypes to widely used resistance genes has caused numerous serious stripe rust epidemics, with the major ones in 1990 and 2002 resulting in the loss of 2.65 and 1 million tons of grain, respectively. Given Chinaâs importance in the worldâs wheat production and consumption, any threat to the countryâs wheat production has implications for global food security.
CIMMYT has pioneered breeding of durable resistance to stripe rust through the incorporation of multiple, slow-rusting loci, a breeding strategy well established at SAAS but largely ignored by most other wheat breeders in China who still focus on major seedling resistance. At the beginning of this century, SAAS and CIMMYT established a shuttle breeding system to introduce slowrusting loci into Sichuan germplasm. Five high-yielding but susceptible Sichuan lines were sent to Mexico each year for three years; Ravi Singh, CIMMYT distinguished scientist and head of Bread Wheat Improvement, then made single backcrosses with several CIMMYT donor lines. The resulting lines were advanced in Toluca and Obregón, Mexico, and large populations of early generation materials were sent back to Sichuan for further advancement and final selection. Fixed lines from these first generation crosses have shown good levels of resistance in China, along with yields comparable to those of the check varieties. There is currently a range of second generation parental lines with slow-rusting loci in Chinese backgrounds; it is expected that with these as donors, researchers should be able to raise yield potential further while maintaining resistance.
The workshop resulted in a proposed collaborative strategy which would allow breeders representing different regions of China to receive several lines of second generation Chinese slow-rusting donors and to conduct single backcrosses with some of their elite germplasm that has become susceptible. Chinese scientists involved in the process will be invited to help select early generation materials using the bulk selection methodology. After selection, large early generation populations will be sent back to the regions for further selection and advancement under local conditions. âWe anticipate that through this mentoring process, breeders will feel comfortable adopting new breeding strategies that can increase their efficiencies and ensure that durable stripe rust resistant lines are released throughout China,â explained Rosewarne.
US ambassador hands Wintersteiger keys to the chairman of PARC.
On 8 May 2013, US ambassador Richard Olson reaffirmed the United States governmentâs long-term support to farming communities in Pakistan during his visit to the National Agricultural Research Center (NARC) in Islamabad. The visit, organized by CIMMYT in collaboration with US embassy in Pakistan and Pakistan Agricultural research Council (PARC)/NARC, was to recognize the success of the Wheat Productivity Enhancement Project (WPEP), a USDA program implemented by CIMMYT in collaboration with national and provincial research partners, and to inaugurate the harvesting ceremony for the Ug99 resistant wheat variety called NARC 2011. âSince the 1950s, the United States has been working to support agriculture in Pakistan,â stated Olson. âWheat accounts for approximately 60% of the daily caloric intake of the average Pakistani, so our joint efforts to combat this disease are critical.â
Muhammad Imtiaz, CIMMYT country liaison officer and wheat breeder, briefed the ambassador on CIMMYTâs mission to sustainably increase productivity of wheat and maize systems to ensure global food security and reduce poverty. âCIMMYT collaboration on sustainable agricultural research with national and provincial research institutes in Pakistan began when Dr. Manzoor Bajwa and Dr. Norman Borlaug worked together to develop âMexi-Pak,â the wheat variety that started the Green Revolution in Pakistan and helped to double Pakistanâs wheat production between 1965 and 1970,â Imtiaz commented on the long-lasting importance of the partnership for Pakistani farmers. The work is not over as the need for disease resistant wheat varieties continues: experts estimate that Pakistanâs annual wheat harvest could be reduced by as much as 50% if and when Ug99 arrives. âAgriculture contributes 21% to the GDP of Pakistan and employs 45% of the labor force, making it one of the most significant economic drivers of Pakistan,â Imtiaz explained the importance of the sector. Pakistani farmers grew about 24 million tons of wheat on 8 million hectares last year, accounting for about 2.4% of the GDP.
Abdul Basit Khan, Additional Secretary at the Ministry of National Food Security and Research, and Iftikar Ahmed, PARC Chairman, appreciated CIMMYTâs effective role in wheat improvement through technical support and implementation of international funded projects, and reiterated its importance for enhancement of the research efficiency and capacity of Handing over of Wintersteiger key to Chairman PARC Pakistani national institutes.
The Chinese Academy of Agricultural Sciences (CAAS)
and Murdoch University, Australia, with financial support from the Chinese Ministry of Science and Technology and the Australian government, officially opened the Australia-China Joint Center for Wheat Improvement in Beijing, China, on 9 April 2013. The center is one of six approved jointly by the two governments. It was opened in the presence of the Prime Minister of Australia Honorable Julia Gillard, CAAS President Jiayang Li, CIMMYT distinguished scientist and liaison officer for China Zhonghu He, and Rudi Appels from Murdoch University. The establishment of the center builds upon more than 10 years of successful wheat quality improvement collaboration between the CAAS-CIMMYT wheat program and Murdoch University.
During 15-17 April, over 50 participants from Murdoch and 8 Chinese institutes attended a workshop for the Australia-China Joint Center for Wheat Improvement held in Beijing. They focused on discovery of new genes, development of elite germplasm, and development of gene specific markers by genomic approach for important traits such as yield, drought resistance, and quality. Ten scholarships, each for 12 months, are available for Chinese postgraduate students to work on thesis research at Murdoch University.
Conservation agriculture methods enable producers to sustainably intensify production, improve soil health, and minimize or avoid negative externalities. However, these practices have not yet taken off in most Central Asian countries. The FAO Sub-Regional Office for Central Asia, in cooperation with CIMMYT, ICARDA, and the national counterparts, conducted a study on the status of conservation agriculture in Central Asia to develop policy recommendations for its promotion. The document titled âConservation Agriculture in Central Asia: Status, Policy, Institutional Support, and Strategic Framework for its Promotionâ presents the existing opportunities for adoption and uptake of conservation agriculture techniques, as well as the conditions that need to be taken into account in designing and promoting policy and institutional support strategies for its up-scaling.
The challenges facing the dissemination and adoption of conservation agriculture practices in the region include development of enabling government policies and institutional environment to mainstream conservation agriculture, changing the farmersâ tillage mind-set, training to operate conservation agriculture equipment, and availability and accessibility of suitable implements. However, the authors believe that there is a great potential to revitalize the withered economies of Central Asian countries via improved productivity and higher total output through conservation agriculture based agricultural development. Kazakhstan, the only country that has actively embraced conservation agriculture, provides great evidence for such claims. With the support of CIMMYT, FAO, ICARDA, the World Bank, the Ministry of Agriculture of Kazakhstan, and other international organizations and donors, Kazakhstan began adoption of conservation agriculture practices in 2000; by 2012 there were 2 million hectares â13% of the countryâs wheat growing areaâ under conservation agriculture. According to the FAO Investment Center mission to Kazakhstan, the adoption of zero tillage and conservation agriculture had raised domestic wheat production by almost 2 million tons, which equals some US$ 0.58 billion more income over 2010-12, enough grain to satisfy the annual cereal requirements of almost 5 million people, and the sequestering of about 1.8 million additional tons of CO2 per year. CIMMYTâs work in Kazakhstan demonstrates that the challenges facing Central Asia regarding conservation agriculture can be overcome. âThe main achievement of CIMMYT in Kazakhstan has been the changing of the minds of farmers and scientists,â observes Bayan Alimgazinova, head of the Crop Production Department of KazAgroInnovation. Auyezkhan K. Darinov, president-chairman of the Republic Public Union of Farmers of Kazakhstan adds: âKazakhstan is now the most experienced in conservation agriculture in Central Asia.â Hopefully, the practices and experience will spread to other Central Asian countries seeking to ensure food security.
If asked âWhat is the most limiting factor to cereal production in sub-Saharan Africa,â most agronomists would say water, nitrogen, or phosphorus. Could farm power also have a place in this list? From 25 to 30 March 2013, a multidisciplinary group of 40 agronomists, agricultural engineers, economists, anthropologists, and private sector representatives from Kenya, Tanzania, Australia, India, and other countries attended a meeting in Arusha, Tanzania, to officially launch the âFarm Mechanization & Conservation Agriculture for Sustainable Intensificationâ project, supported by the Australian International Food Security Centre (AIFSC) and managed by the Australian Centre for International Agricultural Research (ACIAR). The meeting focused largely on planning for activities that will take place in Kenya and Tanzania, but the project will eventually explore opportunities to accelerate the delivery and adoption of two-wheel tractors (2WTs) based conservation agriculture (CA) and other 2WT-based technologies (transport, shelling, threshing) by smallholders in Ethiopia, Kenya, Tanzania, and Zimbabwe. This project will be implemented over the next four years by CIMMYT and its partners.
Why do these issues matter? In many countries, the number of tractors has declined in the past decades (as a result of structural adjustment plans, for example), and so did the number of draught animals in many parts of the continent (due to biomass shortage, droughts, diseases, etc.). As a result, African agriculture increasingly relies on human muscle power. This problem is compounded by labor shortages arising from an ageing population, rural-urban migration, and HIV/ AIDS. Even in areas where rural population is increasing faster than the cultivated area, labor may be in short supply during critical field operations due to competition with more rewarding sectors, such as construction and mining. One consequence of low farm mechanization is high labor drudgery, which disproportionately affects women, as they play a predominant role in weeding, threshing, shelling, and transport by head-loading, and which makes farming unattractive to the youth. Sustainable intensification in sub-Saharan Africa appears unlikely if the issue of inadequate and declining farm power is not addressed. Power supply could be increased through appropriate and equitable mechanization, while power demand could be reduced through power saving technologies such as CA. Synergies can be exploited between these two avenues: for example, the elimination of soil inversion in CA systems reduces power requirements âtypically by a factor of twoâ making the use of lower powered and more affordable tractors such as 2WTs a viable option. 2WTs are already present in Eastern and Southern Africa, albeit in low numbers and seldom used for CA in most countries. Several CA planters adapted for 2WTs have also been developed recently and are now commercially available. These are both manufactured outside (e.g. China, Brazil) and in the region (e.g. in Kenya and Tanzania).
The first set of the projectâs activities will aim at identifying likely farmer demand by defining main sources of unmet power demand and labor drudgery. This will help determine the choice of technologies â from the 2WT-based technologies available for CA (seed drilling, strip tillage, ripping, etc.) and non-CA operations (transport, threshing, shelling) â to evaluate on-station and on farm, with participation of farmers and other stakeholders involved in technology transfer. The second set of activities will aim at identifying and testing site-specific unsubsidized business models â utilizing private sector service providers to support market systems â that will enable efficient and equitable delivery of the most promising 2WT-based technologies to a large number of smallholders; technologies affordable to the resource-poor and women-headed households. The project will also examine the institutional and policy constraints and opportunities that may affect the adoption of 2WT-based technologies in the four countries. Finally, it will create awareness on 2WT-based technologies in the sub-region and share knowledge and information with other regions, thanks to the establishment of a permanent knowledge platform hosted by the African Conservation Tillage network.
Buddhi Kunwar, Informal Seed Production Advisor, Seeds of Life Program, MAF-East Timor (third from right wearing a hat and with sunglasses hanging from shirt) with members of Community Seed Production Group at ‘Sele’ maize harvest ceremony.”
Through five years of on-farm trials supported by the governments of East Timor and Australia using locally-suited crop varieties provided by five centers of the CGIAR-Consortium, small-scale farmers in East Timor learned about and acquired seed of improved varieties of maize and other key food crops, as well as improved cropping practices. The hungry season for the major staple, maize, was significantly reduced among the adopters and, with more recent support from the “Seed of Life” project and East Timor’s Ministry of Agriculture and Fisheries, farming communities are producing improved maize seed to satisfy local demand.
A mountainous nation at the very end of the 4,200 kilometer-long Indonesian Archipelago in the Indian Ocean, East Timor has poor soils and limited irrigation that barely support farming of its staple crops, maize and rice. It has one of the fastest-growing economies in the world, but 80% of East Timor’s working population practices agriculture. The struggles leading up to the country’s independence in 1999 left widespread food insecurity. Rural inhabitantsâparticularly in the uplandsâsuffer a several-month-long hungry season, when annual stocks of the staples and of root crops (cassava, sweet potato, taro, arrowroot) run out.
Launched in 2000 with support from the governments of Australia and East Timor, the Seeds of Life initiative organized more than 3,000 on-farm demonstrations in the initial 5 years of the project to raise awareness among farmers about improved varieties and cropping practices for maize, rice, groundnut, sweet potato, and cassava. Through more than 1,000 on-farm trials during 2006-10, East Timor’s Ministry of Agriculture and Fisheries (MAF) found that an improved open-pollinated maize variety “Sele,” derived from CIMMYT breeding programs, yielded nearly 50% more grain on average than traditional varieties. During 2008-11, nearly 28,000 households obtained seed of Sele and by 2010 more than 70% of those families (up from only 58% in 2006-07) were harvesting enough maize grain for their entire year’s food needs. Overall, Seeds of Life’s efforts to identify, multiply, and distribute seed of higher-yielding, more nutritional varieties of the food crops farmers grow have measurably improved the food security and general welfare of participating households.
“A major bottleneck for maize has been the shortage of quality seed of improved varieties,” says Buddhi Kunwar, Informal Seed Production Advisor of MAF who has been working in Seeds of Life. “Despite intensive efforts, the supply of MAF-released Sele seed was only 32 tons in 2011 and 89 tons in 2012, far below the nation’s total maize seed requirement. To address this, we have included community-based seed production as a key part of the Seeds of Life’s most recent phase, which began in 2011 and runs through 2016.”
In community-based seed production, organized groups of farmers operating close to their homes produce, store, and market maize seed, initially with training and other backstopping from MAF or non-government organizations (see the list below). Each group eventually operates on its own, once members gain experience in producing quality seed and marketing or distributing it within the group and their community.
During 2011, more than 700 community-based seed production groups were facilitated by MAF and non-government organizations. Of these, 320 were growing Sele, using 5 kilograms of certified seed they received to sow a 2,000 m2 seed plot. That year 289 groups produced a total of 46 tons of seed, which was stored in airtight steel drums and used to meet the seed requirements of group members and, with the seed left over, for barter or sale.
One problem encountered was grazing animals: these consumed the entire maize seed crops of 31 groups. “During the 2012-13 maize cropping season, MAF and NGO extension officers have selected seed plots that are well protected by fencing in most locations,” says Kunwar, “and a few communities have introduced âtara banduâ–a traditional social rule to restrain animals–to protect seed plots.”
In 2012-13 Seeds of Life operates in 11 of East Timor’s 13 districts, including 45 sub-districts and 135 villages. There are 680 community-based seed producer groups supported by MAF extension and another 400 groups supported by non-government organizations. According to Kunwar, Phase 3 of Seeds of Life runs from February 2011 through January 2016 and will support more than 1,000 community seed production groups for subsistence seed production and 50 farmer associations for commercial seed production, covering all 13 districts. The groups produce seed of maize as well as seed of improved varieties of rice and peanuts and cuttings of cassava and sweet potato.
Australian funding for Seeds of Life comes through the Australian Agency for International Development (AusAID) and ACIAR; it is managed by ACIAR. The Centre for Legumes in Mediterranean Agriculture (CLIMA) within The University of Western Australia coordinates Australian-funded activities. Adapted lines of food crops for on-farm tests were provided by CIMMYT, IRRI, CIP, ICRISAT, and CIAT. Field work has been led by the Ministry of Agriculture and Fisheries (MAF), with facilitation by non-government organizations such as CARE-International, Mercy Corps, Hivos, USC-Canada, World Vision International (WVI), and Catholic Relief Services (CRS).
CIMMYT fights hunger and poverty in the developing world through smarter agriculture. We are the world’s number one caretaker and developer of maize and wheat, two of humanity’s most vital crops. Maize and wheat are grown on 200 million hectares in developing countries. 84 million of those hectares are planted with varieties of CIMMYT seed. We also maintain the world’s largest maize and wheat seed bank at our headquarters in Mexico.
We are probably best known for prompting the Green Revolution, which saved millions of lives across Asia and led to CIMMYT’s Norman Borlaug receiving the Nobel Peace Prize. Because of population growth, natural resource degradation, and climate change the current challenge is to feed more people, with less resources, and in a more environmentally responsible way than ever before. It can be done.
Pakistan ushered in a new era of agricultural research earlier this month when the Ministry of Food Security and Research, CIMMYT, USAID, the Pakistan Agricultural Research Council (PARC), and key agricultural leaders from throughout Pakistan gathered in Islamabad on 08 March 2013 to announce the Pakistan âAgricultural Innovation Programâ (AIP). This $30 million project seeks to revitalize the contribution of science-supported innovation to the economic growth of Pakistanâs agricultural sector by utilizing the Agricultural Research for Development paradigm.
âPakistanâs agricultural productivity has fallen behind comparable countries with similar agroecologies,â said Thomas Lumpkin, CIMMYT Director General. âThere is a tremendous potential for growth, but we must act now.â Under AIP, commissioned projects and competitive grants will address key objectives to increase productivity within the cereals/cereal systems, livestock, and horticulture sectors. Whilst CIMMYT will manage and take responsibility for the overall AIP portfolio and the cereals/cereal systems component, the program will also draw on the expertise of the International Livestock Research Institute (ILRI), The World Vegetable Center (AVRDC), the International Rice Research Institute (IRRI) and the University of California, Davis. UC Davis will also assist in linking Pakistan research systems to agriculture science and innovation in the USA via the human resources development component of AIP; which will make a particular effort to engage women scientists in Pakistan. PARC is the hosting partner and will also oversee the competitive grants portfolio and ensure that AIP is led and executed by national partners.
The relationship between CIMMYT and Pakistan spans five decades. In 1961, Pakistani FAO trainee Manzoor Bajwa, who was working with Norman Borlaug, selected Mexipak, a high-yielding wheat that went on to become the countryâs most popular variety and one of the original megavarieties of the Green Revolution. After a large import of Mexipak seed from Mexico, Pakistan harvested 7 million tons of wheat in 1968, making it the first country in Asia to become self-sufficient in the crop. Most of Pakistanâs wheat crop (24 million tons in 2012) is produced with varieties derived from the CIMMYT/Pakistan collaboration. During the 1990s-early 2000s, CIMMYT helped Pakistani research to launch conservation agriculture in South Asia.
Now, AIP hopes to foster a demand-driven, results-oriented science research community and enhance linkages between Pakistanâs agricultural research and innovation communities, the wider global community of agricultural scientists, and the private and civil society sectors. Research is one among many contributors to increase food security and economic growth; but by creating a dynamic, responsive, and competitive system of science and innovation partnerships, the Agricultural Innovation Program hopes to rapidly boost agricultural production, productivity, and value.
For additional information contact Interim AIP project leader Rick Ward (r.ward@cgiar.org) or CIMMYT Pakistan Country Liaison Officer Muhammad Imtiaz (m.imtiaz@cgiar.org)
On 13 March 2013, a social learning exercise was organized jointly by Birsa Agricultural University (BAU) and CIMMYT under the aegis of an IFAD supported âSustainable Intensification of Maize-livestock Farming Systems in Hill Areas of South Asiaâ project. Multi-stakeholders gathered at a conservation agriculture (CA) based platform at a BAU research farm. AK Singh (Government of Jharkhand principal agriculture secretary) graced the event as the chief guest, and MP Pandey (BAU vice-chancellor) chaired the meeting. Other key participants included JS Chaudhary (State Agricultural Management and Extension Training Institute (SAMETI) director), Ranjit Singh (Soil Conservation director, Government of Jharkhand), DK Singh Drone (BAU research director), and other officials, scientists, Jharkhand Government development agents, representatives from BAU, Krishi Vigyan Kendras (district level extension and training centers), NGOs, and private sector, seed-fertilizer dealers, and 62 selected innovative farmers from Ranchi, Gumla, and Khunti districts. All participants joined the event to share their experiences with CA-based crop management technologies in rainfed smallholder systems of Jharkhand.
CIMMYT senior cropping system agronomist ML Jat highlighted the key CA-based crop management technologies currently being developed and adapted under the IFAD project. âThese technologies are contributing to sustainable intensification in smallholder rainfed systems of Jharkhand,â explained Jat, as a range of relevant CA machinery was demonstrated to the participants. âCA-based management technologies have shown a tremendous potential for arresting land degradation,â noted Pandey during the field interactions. âIntegrating genotypes and management practices is the way towards sustainable intensification of Jharkhand farming, as the cropping intensity in the state is merely 115%,â he added. Watching the demonstrations and hearing about farmersâ experiences, AK Singh was impressed with the CAbased crop management technologies and their relevance to Jharkhand farmers. He appreciated CIMMYTâs efforts in this area and noted that it is necessary to âestablish more public-private partnerships to disseminate the technologies for the benefit of their end-users.â He then stated that it would be great to âsee the collaborative work between the State Agriculture Department, SAMETI, Agriculture Technology Management Agency (ATMA), and CIMMYT to be replicated in 500 villages of Jharkhand.â
The project aims to conduct farmer participatory trials to eventually achieve mass adoption in the villages of Jharkhand. As the awareness of the projectâs successes increases, so does the demand for CA technology. âLocal machine manufacturers are encouraged to come forward to assemble and fabricate CA machines adapted to local farmersâ needs,â AK Singh reassured the participants. Further assurance on efficient dissemination of the knowledge and technology among farmers was provided by Chaudhary: âSAMETI utilizes a strong grassroots network of ATMA at district and block levels.â Recognizing the potential of CIMMYT and its dedication to the case, Chaudhary expressed his wish to work more closely with CIMMYT: âWith your expertise, we could more efficiently train district and block levels agricultural official s and extension agents, and thus contribute towards state level extension mechanism enrichment.â
The field day, organized and attended by experts on diverse subjects willing to share their expertise, managed to bring about extensive promotion of CA-based methods.
Pusa Krishi Vigyan Mela, a farmersâ fair organized by the Indian Agricultural Research Institute (IARI) annually since 1972, was held during 6-8 March 2013 in New Delhi, India. Every year, agriculture institutes and universities gather at the fair to disseminate their upgraded technology through exhibitions. This year, the focus was on âAgricultural technologies for farmersâ prosperityâ and for the very first time IARI invited CGIAR centers, including CIMMYT, to display their technological innovation and experience.
CIMMYT took the opportunity to raise awareness on conservation agriculture technologies and receive feedback from farmers and agricultural scientists. The CIMMYT team consisted of B.R. Kamboj, Dalip Kumar, and Er. Kapil Singla who were accompanied by Anil Bana (Haryana) and supported by scientists and colleagues from CIMMYT-Delhi. They demonstrated conservation agriculture technologies and throughout the three days interacted with thousands of people, mainly farmers (both men and women), researcher, and scientists, but also school children who came to learn from the exhibition.
On inauguration day, Sharad Pawar, Union Minister for Agriculture and Food Processing Industries, Government of India, strongly emphasized the importance and need to develop new farm technologies to ensure food and nutritional security in the country and to enhance farm profitability and overall agricultural development. The visiting farmers showed keen interest in conservation agriculture and asked for conservation agriculture literature published in the local language to be distributed among farmers. According to the farmers, more follow-up sessions with the governmentâs extension workers are needed for better uptake of new technologies.
The socioeconomics team of CIMMYT India (Mamta Mehar and Subash Ghimire) also joined the fair to interact with farmers and learn about their perspectives on new technologies and farming-related constraints. Although the farmers came from different states, they mentioned having several common problems: the unavailability of quality seeds and other input on time, weather uncertainty, unpredictability of rainfall, and temperature variability. Farmers from Haryana and Rajasthan also talked about increasing pollution, degrading soil quality, and emergence of new type of insects and pests for which they would like to seek solutions. They were concerned about limited access to knowledge and low awareness on new technologies, especially those that help to manage climate change related risks. The socioeconomics team also learned that farmers are aware that using more than the advised amount of fertilizers and pesticides may harm the soil, but they do so anyways because they are afraid of the appearance of insects, pests, etc. as a result of unforeseen weather changes.
The interactions with farmers were particularly useful, as they motivated the socioeconomics team to ensure the CCAFS project researches coping mechanisms that would allow farmers to manage climate variability risks. CIMMYT-India hopes to go back to Pusa Krishi Vigyan Mela next year to gain more valuable knowledge directly from Indian farmers.
For over 10 years, CIMMYT has been working assiduously with the national agriculture research system of Afghanistan to contribute to the war-torn countryâs sustainable agricultural growth and research and development. So far, the joint efforts have led to the release of 12 wheat, 4 maize, and 2 barley varieties. As wheat and maize together account for about 84% of cereal acreage and production in Afghanistan, the work continues. During 5-7 March 2013, CIMMYT director general Thomas Lumpkin visited Afghanistan to observe CIMMYT activities and initiate a dialogue on further cooperation.
During a tour of the Kabul-based research station of the Agricultural Research Institute of Afghanistan (ARIA) at Darulaman, station manager Gul Zaman informed Lumpkin that 70-80% of the field experiments carried out at the station were ARIA-CIMMYT wheat trials. Lumpkin observed that the station was in dire need of reconstruction, as it lacked proper infrastructure and all farm machinery was kept outside. Lumpkin also met with Qasem Obaidi (ARIA director), Abdullahjan Ahmadzai (Agricultural Extension and Development director general), Nasrullah Bakhtani (Policy and Planning director general), Haqiqatpal Rabani (Statistics and Marketing director), and S.D. Pakbin (ARIA technical advisor) to assess the needs of Ministry of Agriculture, Irrigation and Livestock (MAIL). Ahmadzai updated Lumpkin on the current involvement of CIMMYT-Afghanistan in drafting a longterm R&D strategy document for the country. âCIMMYT could also bring in the latest technologies, such as conservation agriculture, precision agriculture, and the use of cell phones for extension services,â commented Lumpkin. Other areas requiring assistance, according to Obaidi, include a gene bank, soil and pathological laboratories, technical support in basic research, capacity building, and R&D for agricultural machinery.
Abdul Ghani Ghuriani, deputy minister for technical affairs at MAIL, then hosted a dinner reception for Lumpkin and representatives from ICARDA, FAO, USDA, USAID, JICA, private seed enterprises, MAIL officials, and other partners. During the lively dinner discussion, the deputy minister suggested that CIMMYT submits a proposal to establish a permanent facility to provide long term R&D support to the national agriculture research system and other stakeholders in the country. Mir Dad Panjsheri, MAIL chief advisor, then highlighted the issue of sustainability of any intervention brought by development agencies, acknowledged the continued support from CIMMYT, and suggested new collaboration areas: âIt is important to carry out multi-crop, interdisciplinary research. We would appreciate CIMMYTâs assistance with diversification of the cropping sequence in farmersâ fields, genetic resource conservation, and support of home-grown breeding programs.â
Prior to his departure, Lumpkin held a series of discussions with Kabul-based USAID, USDA, AusAID, and ACIAR officials. Both USAID and AusAID welcomed the idea of a BISA-type facility in Afghanistan, as it could act as a platform for other CG centers, in-country partners, and foreign universities to address Afghanistanâs R&D gaps programmatically and sustainably.
Kazakhstan’s 2012 drought and high temperatures cut the country’s wheat harvests by more than half from 2011 output, but wheat under zero-tillage practices gave up to three times more grain than conventionally cultivated crops. Two million hectares are currently under zero tillage, making Kazakhstan one of the top-ten countries for conservation agriculture and helping to avoid severe wheat shortages.
“If no-till practices had not been used this period of drought, we would have gotten nothing. It would have been an absolute catastrophe,” says Valentin Dvurechenskii, Director General of the Kostanay Agricultural Research Institute in Kazakhstan, giving his verdict on the 2012 wheat crop.
After farmers planted their wheat in April, Kostanayâthe country’s main wheat growing regionâwent two months without rain. Making matters worse, daily temperatures were several degrees above normal. At the time, farmer and Director General of the Agrofirm Dievskaya, Oleg Danilenko, echoed the view of peers: “I’ve been a farmer for 35 years, and I’ve never seen anything like this.” Danilenko said the harsh conditions pointed up the advantages of conservation agriculture, which involves reduced or zero tillage, keeping crop residues on the soil, and rotating crops. “No other results have been nearly as successful.”
Wheat on Kazakhstani farms using conventional agriculture has been severely affected by 2012’s drought and high temperatures. According to farmer Idris Kozhebayev, wheat crops in Akmola Region normally average 42 grains per spike, but this year are producing only 2-4 grains per spike.
Lack of rain darkens crop outlook
In the village of Tonkeris, 45 km from the capital Astana in the Akmola region, farmers’ fields had received no rainfall between May and September. According to farmers in the area, drought conditions used to be rare but are becoming more frequent. “I’ve been a farmer for 30 years,” said Idris Kozhabayev. “There was drought like this in 2000 and 2010. In recent years, it’s getting worse.”
Cultivated using conventional practices, the fields of Akmola were expected to produce only enough wheat for next year’s seed. “The farmers’ fields I work with all look like this. Some are worse,” said Daniyar Andibayev, an agronomist in the region.
Meanwhile, in Kostanay, many farmers had adopted conservation agriculture techniques that protected them from drought’s worst effects. With these, farmers reported yields of 2 tons per hectare, while some farmers using conventional practices lost their entire crop.
Wheat grown under conservation agriculture in the Kostanay region of Kazakhstan has stayed healthy and is set to give a good yield despite the year’s severe drought and high temperatures.
Conserving where it counts
Kazakhstan is the world’s sixth largest wheat exporter. More than 14 million of the country’s 15 million hectares of wheat is rainfed, meaning the crop relies on precipitation and is thus vulnerable to dry weather. Reports in January 2013 said the 2012 drought had shrunk the wheat crop 57% from 2011’s record harvests.
Farmers are initially attracted to zero tillage and conservation agriculture because the approaches dramatically cut costs: farming this way requires less labor, machinery use, fuel, water, or fertilizers. In rainfed cropping, conservation agriculture can also boost yields.
Research has shown that conservation agriculture increases soil moisture by as much as 24% on most fields. In Kazakhstan the practices capture snow on the surface and improve water retention under heavy snowfall and subzero temperatures. Zero tillage also augments soil organic matter and cuts erosion by 75-100%. All this has helped to nearly double average wheat yields, from 1.4 to 2.6 tons per hectare, according to Dvurechenskii. In December 2011 Dvurechenskii was awarded the “Gold Star” medal and the rank “Hero of Labor of Kazakhstan” by the country’s President, in recognition of his work to promote conservation agriculture.
The findings of a 2012 FAO-Investment Centre mission to Kazakhstan1 suggest that adoption of zero tillage and conservation agriculture had raised domestic wheat production by almost 2 million tons. According to the mission report, this represents some US$ 0.58 billion more income over 2010-12, enough grain to satisfy the annual cereal requirements of almost 5 million people, and the sequestering of about 1.8 million additional tons of CO2 per year.
Pushing out with better practices
With the support of CIMMYT, FAO, ICARDA, the World Bank, the Ministry of Agriculture of Kazakhstan, and other international organizations and donors, Kazakhstan went from practically nothing under conservation agriculture in 2000 to 0.5 million hectares in 2007. In 2012, as a result of ongoing farmer engagement through demonstration plots, field days, and close work with farmer unions, conservation agriculture is now practiced on 2.0 million hectaresâ13% of the country’s wheat-growing area.”This amazing adoption is thanks to a few scientists who saw the potential, but more importantly to the pioneer farmers who perfected the techniques and put them into practice; farmers believe farmers,” says conservation agriculture expert Pat Wall, who, together with CIMMYT colleagues Alexei Morgounov and Muratbek Karabayev, initiated field trials with Kazakhstani scientists in the country’s northern steppes in 2000.
“The main achievement of CIMMYT in Kazakhstan has been the changing of the minds of farmers and scientists,” observes Bayan Alimgazinova, head of the Crop Production Department of KazAgroInnovation, a specialized organization created by the Ministry of Agriculture to increase the competitiveness of the country’s agricultural sector. Based on the positive results of research trials and tests in farmers’ fields, Kazakhstan’s current state policy calls for every province to pursue zero tillage.
“Kazakhstan has a wheat growing area of 15 million hectares presently and can increase it up to 20 million hectares,” added Murat Karabayev, CIMMYT representative in Kazakhstan. “This is extremely important for the food security of the country, the Central Asian region, and globally. There is a real opportunity to double yields using new advanced technologies and improved varieties. We’ve already seen this through conservation agriculture.”
For more information: Muratbek Karabayev, CIMMYT Representative in Kazakhstan (m.karabayev@cgiar.org)
CIMMYT’s conservation agriculture activities in Kazakhstan have been funded by the different sources, including from CIMMYT’s own resources and the comprehensive World Bank Agriculture Competitiveness Project (ACP). CIMMYT received two grants between 2008 and 2010 from the World Bank’s ACP to promote conservation agriculture practices in Kazakhstan.
Muratbek Karabayev, CIMMYT Representative in Kazakhstan (left) and Auyezkhan K. Darinov, PresidentâChairman, Republic Public Union of Farmers of Kazakhstan.
Interview: Auyezkhan K. Darinov, 2012
Auyezkhan K. Darinov has been a farmer since 1993, and represents two million of his fellows as President-Chairman of the”Kazakhstan Farmers Union”. He works to unite and provide a voice to small and medium-scale farmers in Kazakhstan and to promote pro-farmer policies with the Ministry of Agriculture.
What are the main activities of the Kazakhstan Farmers Union?
We work with farmers to influence the government and to push for policies that can benefit farmers. The government sometimes doesn’t understand the issues farmers are facing. We meet with the Prime Minister, ministers, other officials every week to push for ideas for farmers. We organize events, meetings, and seminars and this has been our best strategy for getting conservation agriculture to farmers.
What strategies do you use to introduce conservation agriculture to farmers?
The Farmers Union was established in 2000. Since 2002, we have been working with farmers to introduce them to the merits of conservation agriculture. Now, we are working with farmers in all of the provinces and districts. Through our representatives, we have established a network of farmers who work on spreading the technology of conservation agriculture throughout the country. We are the largest NGO in Kazakhstan and we represent the interests of farmers in all levels of the social-economic and political spheres of the country. We are working with the government to develop policies for next year and to draft programs.
What does this year’s drought mean for farmers?
There are estimates of expected yields for this year which are being reported. However since we know the stories of farmers and the real situation of farmers’ fields, we know that the official estimates are higher than the reality. We’re expecting up to 2 million tons of grain less than official estimates. This year, many farmers are in crucial situations and need assistance from the government.
Do you think more farmers will be convinced to start using conservation agriculture following the drought?
Conservation agriculture is still a challenge in some areas, like Southern Kazakhstan. However, on the whole, farmers are already convinced of the merits of conservation agriculture, but it’s a problem of resources. There have to be changes in the agriculture system to equip small and medium-sized farmers with equipment that they can’t afford. It’s an expensive venture to make the shift from traditional practices to new technologies. That’s why we’re working with farmers to form cooperatives so equipment can be shared and lent to farmers.
What role has CIMMYT played in Kazakhstan?
Kazakhstan is now the most experienced in conservation agriculture in Central Asia. We worked with pioneers of conservation agriculture technologies such as Ken Sayre and Pat Wall. CIMMYT was one of the first and the best in conservation agriculture. In all large projects, CIMMYT invites the Farmers’ Union and similarly, the Farmers’ Union invites CIMMYT.
What are some of the main challenges you see for agriculture in Kazakhstan in the future?
All irrigation water is coming from neighboring countries. We need to change the agriculture system to use less water and produce higher yields. There is also a need to develop new varieties which are drought tolerant. That’s where the work of CIMMYT comes in. That’s why the work of CIMMYT in Kazakhstan is so important.
Wheat seems to have a special importance to farmers here. Why is that?
Wheat⊠it is our money. Basically, if farmers have wheat, they have money. We are a wheat and meat country. Other crops have importance, but not like wheat. Changing the volume of wheat changes the national economy. Farmers cannot imagine how they would survive without wheat. Farmers knew that this year would be dry. But nevertheless, they planted wheat. That’s how important wheat is in Kazakhstan.
Many scientists begin exploring at a young age; they try to figure out the things they donât know, ask questions of others, and see how this information might be useful to them in creating new knowledge. The very lucky ones might have a mentor, or at the very least, a place where they are encouraged to cultivate their curiosity and use what they find out to help others.
This is one of the many reasons why CIMMYT participates in hosting Borlaug-Ruan Interns. Since 1998, over 180 Borlaug-Ruan Interns have traveled to Bangladesh, Brazil, China, Costa Rica, Egypt, Ethiopia, India, Indonesia, Kenya, Malaysia, Mexico, Peru, Philippines, Taiwan, Tanzania, Thailand, Trinidad, and Turkey; CIMMYT has proudly hosted 19 of these intelligent, ambitious individuals. One such student, Elizabeth Roche, visited CIMMYT-Mexico during the summer of 2011. âI loved every minute of my two month internship at CIMMYT,â she said. âWorking in the wheat pathology lab enabled me to learn so much about agriculture and global food security.â Elizabeth is now majoring in Plant Pathology at Ohio State University. According to Hans Braun, Director of CIMMYTâs Global Wheat Program, by actively working alongside senior scientists, in the lab and the field, interns âreally experience what science is. This is not sitting in a classroom reading from a textbook; it is about discovering a potential career and being inspired to further their scientific knowledge.â
Last summer, Tessa Ries left her hometown of Hastings, Minnesota, to conduct an internship at CIMMYT-Turkey. Based mainly at the field station in Eskisehir, Tessa worked alongside wheat pathologists screening wheat for resistance to crown rot and cereal cyst nematodes, two of the most serious constraints to wheat production in the region. Tessa is now studying at the University of Minnesota and has written a blog for the Global Agricultural Development Initiative about her time at CIMMYT. In 2013, CIMMYT hopes to welcome two more interns to its centers in Mexico and Turkey, continuing Norman Borlaugâs mission in inspiring young people worldwide to join the fight against hunger.
For more information on the Borlaug-Ruan International Internship click here.