Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Around El Batán: scientists visit for climate change training

By Brenna Goth/CIMMYT

Indian researchers A.G. Sreenivas and U.K. Shanwad hope their first visit to Mexico will yield the tools they need to address cropping systems and climate change in their home country.

Sreenivas, an associate professor of entomology at the University of Agricultural Sciences Raichur, and Shanwad, an agronomist at the university’s Main Agricultural Research Station, are visiting CIMMYT as trainees. Their university is already collaborating with CIMMYT’s M.L. Jat to spread drill sown rice in India. Coverage reached more than 60,000 acres in the Upper Krishna command area in its first year of introduction.

A.G. Sreenivas (right) and U.K. Shanwad are visiting CIMMYT sites in Mexico for training. Photo: Xochiquezatl Fonseca/CIMMYT
A.G. Sreenivas (right) and U.K. Shanwad are visiting CIMMYT sites in Mexico for training. Photo: Xochiquezatl Fonseca/CIMMYT

The two will spend three months between CIMMYT research stations at El Batán and Ciudad Obregón. The training will first focus on the integrated assessment of cropping systems to determine productivity, resource efficiency and vulnerability and adaptability to climate change. Under Santiago López-Ridaura, the trainees will learn about the trade-offs between performance indicators and constraints to adapting a climatesmart cropping system. Next, in Ciudad Obregón, Sreenivas and Shanwad will learn the methodologies involved in collecting, processing and analyzing greenhouse gases and soil samples under the supervision of Iván Ortiz-Monasterio. “It’s a very rich experience for us,” Shanwad said.

Agricultural production in India faces several challenges, the trainees said. Labor requirements, monsoon gambling, market fluctuations, improved hybrids and pest resistance are some of the themes the two address in their research. New crop insect pests and diseases are consistently emerging while climate change also poses global challenges. The trainings will focus on the analysis of their own cropping systems. The two brought longterm weather data to compare with insect pests, crop production and weather data of the region. “Productivity has to be increased,” Sreenivas said.

Sreenivas and Shanwad said they are enjoying the climate at El Batán as well as the chance to connect with colleagues from India. They are also looking forward to attending The Borlaug Summit on Wheat for Food Security in March and said the opportunity is “like heaven.” CIMMYT packs an enormous amount of research into its headquarters, Sreenivas said. “We are expecting more collaborative research,” he said.

Agronomists learn precision-conservation agriculture

By M.L. Jat and Tripti Agarwal /CIMMYT

Wheat agronomists in India learned about precision-conservation agriculture and received the tools to continue their education at a workshop in November.

Nearly 40 participants attended “Precision-Conservation Agriculture for Improving Wheat Productivity in South Asia,” which was organized by CIMMYT, the Directorate of Wheat Research (DWR) and the International Plant Nutrition Institute – South Asia Program (IPNI), with support from the German Federal Ministry for Economic Cooperation and Development (BMZ). The workshop was held 26 to 27 November at the DWR in Karnal, India.

Agronomists receive GreenSeeker training at a DWR field. Photo: RK Sharma, DWR
Agronomists receive GreenSeeker training at a DWR field. Photo: RK Sharma, DWR

Attendees represented nine of the All India Coordinated Research Centres on Wheat and Barley Improvement (AICRCW&BI) located in different state agricultural universities as well as CIMMYT, IPNI, three Indian Council of Agricultural Research (ICAR) institutes, the State Department of Agriculture in Karnal and the Krishi Vigyan Kendra (KVK). The goal of the workshop was to train scientists in blending precision and conservation agriculture, an important strategic initiative of the CGIAR Research Program on Wheat (WHEAT), said M.L. Jat, senior cropping systems agronomist for CIMMYT.

The event aimed to raise awareness about Nutrient Expert, a software tool that helps determine fertilizer requirements, and GreenSeeker, an optical sensor that measures Normalized Difference Vegetation Index (NDVI), an indicator of crop development and health. In 2009, IPNI and CIMMYT started working with the Nutrient Expert Decision support tool in close collaboration with national agricultural research and extension systems. The tool gained wide acceptance after private organization and corporations began providing it to farmers.

Targeting widespread adoption of both technologies, each coordinated research center received a GreenSeeker tool and Nutrient Expert software. Participants were engaged and motivated to learn about and implement the tools in farmers’ fields. Kaushik Majumdar, director of IPNI in South Asia, applauded the workshop collaboration and continuous efforts on implementing site-specific nutrient management. Etienne Duveiller, director of research for CIMMYT-South Asia, urged a multidisciplinary approach to address yield potential in germplasm and agronomy.

CA-lern-pres2

Partners should expand their innovation and training efforts and construct an action plan to reach farmers, said DWR Project Director Indu Sharma. She also proposed discussion of technology adoption and said training scientists is one way to move forward on agricultural issues. She cited a report on farmers who said they obtained 7 to 9 ton per hectare grain yield with higher nutrient applications.

In addition, she mentioned the need to bridge the production gaps of 15 to 20 percent in high productive zones and up to 35 percent in low productive zones through best-bet agronomic management practices. Regarding training, she emphasized the dissemination of knowledge. “Learning from the best farmers who are harvesting with higher productivity is required to ensure sustainable development,” she said. Participants said they appreciated the knowledge they gained during the workshop. CIMMYT, DWR and IPNI extended their support to participating institutes for future precision conservation agriculture endeavors.

Genome-assisted project develops climate-resilient wheat

By Ravi Valluru, Arun Joshi and Ravi P. Singh/CIMMYT

Innovative approaches to plant genotyping are helping CIMMYT researchers and partners to develop high-yielding, climate-resilient wheat in South Asia.

Researchers sow wheat trials. Photo: Arun Joshi
Researchers sow wheat trials. Photo: Arun Joshi

The genotyping-by-sequencing (GBS) approach offers significant benefits over traditional plant breeding. Conventional breeding relies on scoring phenotypes, which is often laborious and inexact, to determine the estimated breeding value (EBV). This approach delays the verification of breeding results. Plant selection through genome-wide single nucleotide polymorphisms (GS), however, is a variant of marker-assisted selection (MAS) that enables crop breeders to rank best parents accurately and cost-effectively.

Researchers Jesse Poland, a geneticist with Kansas State University, and Ravi P. Singh, head of CIMMYT’s bread wheat improvement program, are developing GBS-assisted wheat with support from Cornell University. The U.S. Agency for International Development (USAID) is funding the $5 million, five-year project under the Feed the Future initiative. “This genotyping project signifies a new era of big science for international wheat development,” Poland said.

The project builds on the established heat tolerance and yield potential framework established by CIMMYT scientists. About 1,000 advanced wheat lines developed in Mexico by CIMMYT were planted at Borlaug Institute for South Asia (BISA) locations as well as in Faisalabad, Pakistan, and six environments in Ciudad Obregón, Mexico, to characterize them for heat tolerance.

Researchers acquire “greenness” data using a hand-held NDVI sensor. Photo: Ravi Valluru
Researchers acquire “greenness” data using a hand-held NDVI sensor. Photo: Ravi Valluru

Through rigorous testing of wheat lines for various traits – including yield – the GS project will promote the best varietal options for testing and release by national programs and the private sector in South Asia. “Incorporating genomic selection criteria into CIMMYT’s bread wheat breeding pipeline will significantly expedite wheat genetic gains,” Singh said. Wheat varieties developed by the GS project will have enhanced climate resilience. Their heat tolerance and maximized yield potential could reduce heat-induced yield losses by 20 to 30 percent. “Efforts will be initiated to incorporate the genomic selection strategy into conventional breeding programs in South Asia,” said CIMMYT wheat breeder Arun Joshi, adding that genomic information, genomic models and optimized strategies generated through the GS project will benefit cultivar selection worldwide.

Though MAS improves breeding decisions, GS has several additional benefits. “Being a hypothesis-independent approach, the beauty of GS is that it tracks genetic variance for a trait in a population and reduces the breeding cycle significantly,” Singh said. Additionally, the genomic data collected will be useful to manage the genetic diversity and the retention of favorable alleles in the population, safeguarding prospects for long-term genetic gains.

Crucial to implementing the approach are adequate and affordable genotyping platforms, simplified breeding schemes to capture additive genetic effects, models for estimating long-term marker effects and a close collaboration between science and industry.

“If GS-assisted crop breeding, by encompassing other possible biological – for example metabolic – markers, lives up to its promise, it will certainly change the face of crop breeding, productivity and food security,” said CIMMYT wheat physiologist Ravi Valluru, interim coordinator of the GS project at BISA.

China: farmers benefit from knowledge transfer

By Jack McHugh /CIMMYT

Jack McHugh, CIMMYT, and Yuan Hanmin, NAAFS, introduce participants to conservation agriculture in Litong district. The presentation was organized and supported by Bei Bing (in foreground) from the Agricultural Technology Promotions Centre in Wuzhong City.
Jack McHugh, CIMMYT, and Yuan Hanmin, NAAFS, introduce participants to conservation agriculture in Litong district. The presentation was organized and supported by Bei Bing (in foreground) from the Agricultural Technology Promotions Centre in Wuzhong City.

A conservation agriculture demonstration site and informal farmer field school opened recently in northern China, raising awareness about useful new technology among farmers and other stakeholders. Organizations in Wuzhong City, Ningxia, – including CIMMYT, the Ningxia Academy of Agricultural and Forestry Sciences, Ningxia Bei Li Feng Zhongye Seed Company, the Wuzhong City and Litong District Agricultural Technology Promotion Centre, the Qingdao Peanut Machinery Manufacturing Company and the villagers of Litong District – are working together to build an innovation platform (IP). The IP will aim to transfer knowledge and technology to improve agronomic practices of the farmers in the district and beyond. “We hope to develop champion farmers who will share their knowledge with others and thus provide valuable feedback to the community of practice associated with the platform,” said Jack McHugh, a CIMMYT cropping systems agronomist based in China.

The 20-hectare conservation agriculture demonstration site and field school are particularly useful for female farmers in Litong District, where many men participate in long-term, off-farm work. The training gives women access to the knowledge, skills and capacity to operate farms more profitably while using less labor. “Our purpose is to introduce affordable technology that makes conservation agriculture possible,” McHugh said. “We have great expectations for its future development because we are developing a community of practice.”

A demonstration site during winter irrigation shows a conservation agriculture (CA) field (left) and conventionally (CK) planted field (right). The CA field was planted on 14 October while the CK field was planted at the end of September.
A demonstration site during winter irrigation shows a conservation agriculture (CA) field (left) and conventionally (CK) planted field (right). The CA field was planted on 14 October while the CK field was planted at the end of September.

This month, CIMMYT agronomists saw the benefits of the Chinese zero-tillage turbo seeder introduced by the Qingdao Peanut Machinery Manufacturing Company. The seeder allows seed to be sown and fertilizer applied directly into unplowed soil. The winter wheat crop was planted late with some concern, but the seeder “did a great job,” McHugh said. The 50-horsepower tractor seeder and 20-horsepower tractor mini-turbo seeder will be refined to enhance crop flexibility, field setup and ease of operation. At the informal field school held last month at the innovation platform demonstration site, McHugh and Professor Yuan Hanmin from the agricultural academy in Ningxia gave a presentation on the basics of conservation agriculture. Participants included 32 farmers – 40 percent female – who raised questions about fertilization with the turbo seeder and the impacts of residue on rice transplanting. “We were able to show – through Professors Yuan’s pictures of his work over the last decade in Ningxia – that these and other concerns held by the farmers are readily addressed,” McHugh said. “We emphasized that this presentation was a generic introduction to conservation agriculture and that the innovation platform would work closely with farmers to address specific issues they may have when introducing the technology into their farming operations.” The projects are receiving attention throughout the region. Recent events have been documented by the Wuzhong daily newspaper and with interviews by local television stations from Yinchuan and Wuzhong cities.

Turkey hosts global plant breeding congress

By Alexey Morgounov/CIMMYT

TurkeyMore than 650 people from 75 countries attended the International Plant Breeding Congress in Antalya, Turkey, from 11 to 14 November. The congress was organized by the Turkish Union of Plant Breeders, with help from CIMMYT and officials of the Ministry of Food, Agriculture and Livestock of Turkey.

Simultaneous translation in English, Russian and Turkish helped expand speaker diversity. The congress included four main sections: cereals, field crops, horticultural crops and genetic resources. B.M. Prasanna, director of CIMMYT’s Global Maize Program, delivered a key-note speech entitled, “Meeting the challenges of global climate change and food security through innovative maize research.”
The International Winter Wheat Improvement Program, a collaboration between CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA), organized a half-day session highlighting its activities and presentations from its collaborators. Alexey Morgounov, winter wheat breeder for CIMMYT, presented on climate change in winter wheat breeding sites and co-authored four additional oral presentations. In the final plenary session, it was announced that the congress will be held once every two years in Turkey. Participants appreciated the quality and organization of the event.

Collaboration to combat a common climate challenge

By Emma Quilligan/CIMMYT

More than 70 experts on maize, millet, rice, sorghum and wheat identified cross-cutting priorities and goals to address climate change, one of the most pressing issues for food security, at a recent meeting in India.
Entitled “Maintaining cereal productivity under climate change through international collaboration,” the meeting took place during 18-20 November at the National Agriculture Science Centre (NASC) Pusa Campus in New Delhi. CIMMYT organized the meeting with co-sponsorship from the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation (BMGF). “We learn a lot by comparing notes among crops,” said Matthew Reynolds, CIMMYT wheat physiologist and organizer of the meeting’s scientific program. “It can help provide new inspirations as well as avoid reinventing the wheel.”

indiaNorman

Following welcome speeches from Etienne Duveiller, CIMMYT Director for South Asia, as well as Saharah Moon Chapotin and Srivalli Krishnan from USAID, Tony Cavalieri from the BMGF and Swapan Kumar Datta from the Indian Centre for Agricultural Research (ICAR), a diverse panel summarized the challenges climate change poses to cereal production. Mark Rosegrant, director of the Environment and Production Technology Division at the International Food Policy Research Institute (IFPRI), highlighted the numerous effects climate change is predicted to have on cereal production and prices. Maize prices are predicted to increase by more than 50 percent and the prices of other crops by 25 to 50 percent by 2050. “This is without accounting for effects of climate change,” he said. “Climate change is a threat multiplier, and significant new expenditures are required to reduce its adverse impacts.”

MReynolds

Other presentations included information on temperature thresholds in different crops, efficient phenotyping and breeding approaches and how crop modeling might facilitate the design of climate-ready crops. Leading scientists focusing on each of the five crops gave presentations on recent genetic gains and research achievements in their field, which enabled participants to see the similarities between the crops and learn about discoveries applicable to their own research. Donor representatives emphasized the importance of collaboration and cross-cutting research to improve yield gains in the face of climate change. “With all the expertise we have in this room, and with all the partners you have across the globe, I really think we can make a difference in this area,” Chapotin said. Participants split into multidisciplinary working groups to identify priorities and potential areas for cross-crop collaboration in the following areas: data management and sharing; genotyping platforms; heat and drought adaptive traits; phenotyping in a breeding context; and the minimum dataset required to define target environments.

K.C. Bansal, director of the National Bureau for Plant Genetic Resources in India, questioned whether people are making the most of plant genetic resources in the face of climate change during his session “Biodiversity Act and Germplasm Access in India.” Many participants highlighted their own difficulties in getting germplasm out of India and Bansal outlined the procedure to simplify the process. Participants agreed that more accessible, synchronous and searchable data sharing will be essential for future collaborations. Data sharing will soon become mandatory for all USAID projects, and participants emphasized the need for a common system. Collecting data requires funding. Scott Chapman, crop adaptation scientist for the Commonwealth Scientific and Industrial Research Organization, estimated Australian programs spend several million dollars annually to collect the data from their national trials. Most participants expressed interest in establishing a working group to continue these fruitful, cross-crop interactions. A web portal to facilitate such dialogue will be established as soon as possible.

Dual-purpose maize could reduce fodder shortages in India

Maize stover is dumped in a field for use as a cooking fuel.
Maize stover is dumped in a field for use as a cooking fuel.

By Brenna Goth/CIMMYT

Maize stover – the part of the crop left over after grain harvest – provides a promising option for feeding livestock in India, according to research by CIMMYT and the International Livestock Research Institute (ILRI). Now, the two organizations are working together to select and breed dual-purpose maize varieties optimized for both grain and stover production.

Maize production is rapidly increasing in India, largely due to the growing poultry industry, and is replacing crops such as rice, sorghum, legumes and wheat in some areas, said CIMMYT maize breeder P.H. Zaidi, who is helping lead research on the topic. To be sustainable, the crop must be able to produce a high grain yield and quality stover as fodder for domestic and commercial use. “Dual-purpose maize is needed to meet both the poultry industry demand for grain and the demand for good quality stover to feed cattle,” Zaidi said. In India, maize is largely treated as a single-purpose crop grown for grain, ignoring its potential for stover.

Maize-stover-roughly-chopped-and-spread-in-the-field-as-residue

CIMMYT has been studying the possibility of dual-purpose maize for the past several years. In 2009, a focused study began in collaboration with ILRI under the Cereal System Initiative for South Asia (CSISA) project and continued with support from the CGIAR Research Program MAIZE.  Maize stover is underutilized in India, Zaidi said. Though sorghum stover is more commonly used in the region, steers fed maize stover gained similar amounts of weight, according to recent ILRI research. “Contrary to widespread perceptions among farmer and fodder traders, quality stover from superior dual-purpose maize varieties can replace sorghum stover in dairy production in India,” said Michael Blümmel, operating project leader for ILRI. “It decreases the feeding cost substantially.”

Processed stover can be used as fodder for dairy cattle. Photos: P.H. Zaidi
Processed stover can be used as fodder for dairy cattle. Photos: P.H. Zaidi

CIMMYT and ILRI already know that increasing the use of maize stover as animal fodder in India could “mitigate fodder shortages and halt increasing fodder costs,” according to this September blog post by Zaidi. The study on stover quality in commercial maize hybrids found variability but that “stover from some high-yielding popular (maize) hybrids is on par with or even better than the best sorghum stover traded.” “From a breeding standpoint, the major challenge with dual-purpose maize is to keep high yields,” Zaidi said. “In terms of increasing use, the major challenge is changing the negative perception and assumption that maize fodder is inferior to that of sorghum, which is not true.”

Dairy cattle eat processed maize stover in India. Photos: P.H. Zaidi
Dairy cattle eat processed maize stover in India. Photos: P.H. Zaidi

To address these challenges, CIMMYT and ILRI organized a workshop on dual-purpose maize at the International Crops Research. Institute for the Semi-Arid Tropics (ICRISAT) campus in Hyderabad, India, on 22 October. Participants came from the Directorate of Maize Research, the Sehgal Foundation and seed companies, including Godrej AgroTech, Limagrain Bioseed, Pioneer Hi- Bred and VNR Seeds. O.P. Yadav, project director of the Directorate of Maize Research in New Delhi, said he expected to gain “new insights into the needs and opportunities for including maize stover traits into the All India Coordinated Maize Program (AICMP).”

Unprocessd maize stover given to cattle, which is largley wasted. Photos: P.H. Zaidi
Unprocessd maize stover given to cattle, which is largley wasted. Photos: P.H. Zaidi

Presentations covered the available variations of dual-purpose traits in pipeline maize hybrids, targeted genetic enhancement for developing dual-purpose cultivars, association mapping to identify genomic regions related to maize quality and the economic impact of improved maize stover feed. Genomics-assisted breeding could be a useful for breeding dualpurpose maize and ILRI and CIMMYT developed a genomics selection-based 2014 work plan.

As part of the priorities defined in the workshop, CIMMYT, ILRI, AICMP and the private sector will work together to research pipeline hybrids and analyze the most popular released hybrids for feedfood- fodder traits. Participants also said targeted genetic enhancement should continue to generate superior food, feed and fodder traits for hybrids. The organizations will work to determine the importance farmers place on grain and stover traits, Blümmel said. Crop scientists, livestock scientists and key actors in fodder value chains such as farmers, fodder traders and middlemen, feed processors, dairy producers and seed enterprises all need to be involved in crop improvement for dual-purpose maize, he said.

For further reading: Potential for dual-purpose maize varieties to meet changing maize

demands 

Project tests new ways to deliver climate messages to farmers’ cell phones

By Surabhi Mittal/CIMMYT and Dharini Parthasarathy/CCAFS South Asia

Farmers in India are now participating in a new project which aims to tailor phone messages to farmers' real needs with the hope of real impact on their crop yields. Photo: M. DeFreese/CIMMYT
Farmers in India are now participating in a new project which aims to tailor phone messages to farmers’ real needs with the hope of real impact on their crop yields. Photo: M. DeFreese/CIMMYT

This blog post was originally posted by CCAFS here.

What kind of voice-based messaging service will farmers pay for? An eight-month pilot study by CCAFS and CIMMYT is working with farmers in India to find out.
One of the big questions that should be exercising minds at the current Climate Talks in Poland is how smallholder farmers can better manage climate risks. One solution that has been discussed at length – and tried widely – is using mobile phones to deliver climate-related information to farmers; it is seen as being an efficient, cost-effective and quick way to get targeted messages to large audiences such as smallholder farmers.

But are the gains from this type of information dissemination as obvious as they appear?
Does writing or recording a message, punching in a number and pressing send really transform farmers’ abilities to cope with erratic weather events or their willingness to adopt climate-smart agricultural practices?

Read the full post here.

Researchers receive fellowships

By Brenna Goth/CIMMYT

Congratulations to two CIMMYT scientists who received fellowships this month. Wheat physiologist Matthew Reynolds (pictured left) became a fellow of the Crop Science Society of America (CSSA) while wheat breeder Zhonghu He (pictured right) received a fellowship from the American Society of Agronomy (ASA). Both awards were presented earlier this month in Florida. They are based on professional achievements and are only awarded to the top 0.3 percent of each society. He, based in China, was promoted to CIMMYT distinguished scientist last year and received the CSSA fellowship in 2009. Reynolds is based in Mexico and received the ASA fellowship in 2011. “I’m honored to be given this award,” Reynolds said. “It’s nice to be recognized.”

Conservation agriculture machines brought to Afghanistan

CIMMYT is taking the next step in bringing Afghanistan a much-needed intervention to improve wheat research and production, an official for the country said at a meeting last month. With support from the Australian Centre for International Agricultural Research (ACIAR), CIMMYT-Afghanistan held the “Conservation Agriculture: Concept and Application” training event in Kabul from 28 to 29 October.

Photo: Rajiv Sharma/CIMMYT
Photo: Rajiv Sharma/CIMMYT

Thirty-five participants from the Afghanistan Agricultural Extension Project (AAEP), the Agricultural Research Institute of Afghanistan (ARIA), CIMMYT, the Food and Agriculture Organization of the United Nations (FAO), the International Center for Agricultural Research in the Dry Areas (ICARDA), Kabul University and other stakeholder organizations attended the program. Wheat accounts for 60 percent of an average Afghan’s caloric intake, but domestic wheat production falls short of the country’s needs. This happens in part because more than half of Afghanistan’s wheat is rainfed, but rainfall is often scarce and irregular in those areas. Moreover, wheat is often the sole crop for those farmers, making them food-insecure and economically vulnerable.

“Conservation agriculture is a set of practices that includes reducing or eliminating traditional tillage, keeping crop residues on the soil and using intercropping or crop rotations,” said Rajiv Sharma, senior scientist and country liaison officer for CIMMYT-Afghanistan. “Its benefits include saving resources like time, labor and fuel, as well as reducing farmers’ risk, promoting diversified cropping and more effectively capturing and retaining rainfall in the soil.”

In his inaugural speech, Mir Aminullah Haidari, deputy minister for technical affairs for Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL), congratulated CIMMYT for its work in support of the country’s wheat research and production. Mohammad Qasem Obaidi, director of ARIA, welcomed the participants and thanked CIMMYT for organizing the training. Sharma said he hoped ARIACIMMYT would use the 2013-14 season to experiment with conservation agriculture interventions throughout Afghanistan.

Harminder Singh Sidhu, senior research engineer for CIMMYT, introduced the participants to different types of conservation machines available and used globally, which were imported by CIMMYT for the event. Attendees watched field demonstrations of two- and four-wheel zero tillage seed drills, raised bed planters and two-wheel tractors. H.S. Jat, CIMMYT agronomist, introduced conservation agriculture concepts, principles and procedures. He later helped wheat agronomists from six ARIA stations plan conservation agriculture experiments relevant to their local conditions. Participants expressed satisfaction and were excited to try new machines and new ways of conserving resources at their experiment stations and in farmers’ fields.

Borlaug through the ages

Charanjit-Singh-Gill-with-photoBy Patrick Wall/CIMMYT
Those who worked with Dr. Norman Borlaug are proud to show their photos with him. In Punjab, India, farmer Charanjit Singh Gill shows a photo of his father with Borlaug during a visit in the 1960s.

Below, the second photo shows a group in the Bajío, Mexico, in 1953. José Luis Huerta Torres brought the picture to a farmers’ field day organized by Hub Bajío in January 2013. Huerta was extremely happy to see CIMMYT’s presence grow in the area and wanted to show off his picture with Borlaug. The photo shows, from left to right, John Gibler, Borlaug, José Huerta Sr., John Pitner and José Huerta Jr. – all important figures in CIMMYT’s history.
Charanjit-Singh-Gill-with-photo-ByNJohn Gibler, like Norman Borlaug, studied under E.C. Stakman at the University of Minnesota. When he graduated with his Ph.D. in 1951, he joined Borlaug in Mexico until 1955. He then became a Rockefeller consultant and headed cereal research in Colombia and Ecuador before returning to CIMMYT as Director of Agricultural Programs in 1969. John Pitner worked with the Office of Special Studies from 1947 to 1954. CIMMYT is collecting photos of Borlaug for Borlaug100, the upcoming wheat and food security summit in March.

Photos submitted by Patrick Wall
Photos submitted by Patrick Wall

See the photo blog or check out the Flickr album. Submit your own photos by emailing them to Ariel Saffer (a.saffer@cgiar.org) with the subject line “Photos of Dr. Borlaug.”

Soil works as ecosystem service provider

By Jack McHugh/CIMMYT

Soil’s role in the ecosystem is the basis of food security and sustainable farming, scientists learned at a conference in China last month. More than 40 researchers from the Ningxia Academy of Agriculture and Forestry Sciences Research Institutes of Desertification Control, Agricultural Resources and Environment and Crop Research were trained on mechanization and soil health in northwest China.

The two-day course was developed and presented by Jack McHugh, cropping system agronomist for CIMMYT’s Global Conservation Agriculture Program based in China. The training provided participants with the theory behind conservation agriculture, controlled traffic farming and soil as a forgotten provider of ecosystem services. McHugh – with language support from research scientists Ma Fan and Wie Jinyin – spoke about fostering healthy soils in modern mechanized farming systems. The course was aimed to facilitate and develop a culture of conservation agriculture at the academy and raise awareness about the importance of soil for food security.
Class_research-trg
The presentations on salinity and sodicity raised the most interest among researchers because the issues are widespread in the desert farming conditions in Ningxia. The training highlighted salinity and sodicity management approaches that could be used in conjunction with current solutions common in the region. “

Thank you for giving us a wonderful training class on soil health science,” said course participant Zhao Ying, soil research scientist for the Institute of Agricultural Resources and Environment. “It’s very useful for improving my theoretical knowledge of soil science, and I look forward to soil improvement methods next time.”

Student reflection: my visit to CIMMYT-Hyderabad, India

Alex-RenaudAlex Renaud is a third-year graduate student pursuing a doctorate degree in plant breeding and genetics from Purdue University in West Lafayette, Indiana, USA.

When given the opportunity to travel to India to work on heat tolerance in maize, I leaped at the prospect. I was excited by the potential for professional development and the chance to experience a different culture. My visit was part of the Heat Tolerant Maize for Asia (HTMA) collaborative project, funded by the United States Agency for International Development Feed the Future Initiative. The project supports graduate students in plant breeding to learn about and contribute to completing initiative objectives. HTMA is a public-private partnership (PPP) led by CIMMYT-Asia. Partners include Purdue University, Pioneer Hi-Bred and other seed companies and public sector maize programs in South Asia.

CIMMYT-Asia in Hyderabad, India, provides an ideal environment to evaluate or phenotype maize genotypes for heat stress tolerance. Temperatures regularly reach 40°C or higher and the relative humidity is usually below 30 percent during the reproductive development of maize planted during spring season. Additionally, the CIMMYT facilities in Hyderabad provided an excellent laboratory environment for testing hypotheses concerning the basis of heat stress tolerance in maize.

Having never been to India, I really enjoyed my stay in Hyderabad, from both research and cultural standpoints. I enjoyed getting to know the research scientists and technicians involved in the research project and had ample opportunities to learn in workshops, trainings, field visits and over dinner. My stay, which was longer than two months, provided me with the opportunity to build both personal and professional relationships. Anyone who has visited Hyderabad in May will understand just how hot it can be. It took time for me to adapt to the heat. As I was leaving the U.S. for India, my hometown received 300 millimeters of snow in 24 hours. During my first week in Hyderabad, the temperatures exceeded 40°C. It was quite a change.

Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud
Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud

In addition to taking advantage of research opportunities, I visited several interesting cultural sites, including the Taj Mahal. My favorite memories include sampling many different types of food, from Hyderabadi biryani to India’s version of Kentucky Fried Chicken; I never tried anything I did not like! As an aspiring plant breeder, this was a great experience, and I hope to continue my involvement with the PPP as it develops heat-stress-tolerant maize for South Asia.

I would like to sincerely thank Mitch Tuinstra, professor of plant breeding at Purdue University for providing me with this opportunity as well as P.H. Zaidi, senior maize physiologist at CIMMYT-Hyderabad and project leader of HTMA, and his wonderful team for everything that made my two-month stay professionally productive and personally memorable.

Scientists identify sustainable agriculture research themes in India

Photo: Tripti Agarwal/CIMMYT
Photo: Tripti Agarwal/CIMMYT

Scientists need to capture and refine farmers’ conservation agriculture innovations. This recommendation came from the National Travelling Seminar on Conservation Agriculture held at the Indian Agricultural Research Institute (IARI) from 16 to 25 September. The event was jointly organized by the Natural Resource Management division of the Indian Council of Agricultural Research (ICAR), CIMMYT and the Borlaug Institute for South Asia (BISA).

The seminar evaluated existing conservation agriculture research in India to link different institutions, identify research gaps and decide on future priorities of conservation agriculture research for development. “Since the conservation agriculture principles are sitespecific, this travelling seminar gave the opportunity to various scientists from multiple disciplines and institutes to come together to discuss them onsite and harmonize the results,” said M.L. Jat, CIMMYT senior cropping systems agronomist and coordinator of the seminar. An ICAR grant for conservation agriculture research supported the event.

M. Dadlani, joint director of research for IARI, talked about the crucial role IARI —India’s premier agricultural research institute— played in starting conservation agriculture practices. They began experimenting with conservation agriculture in 2005, and, in 2010, “conservation agriculture trials were started at its research farms under a challenge program involving many multidisciplinary scientists,” Dadlani said. H.S. Gupta, director of IARI, highlighted the need for a common, neutral platform for policy makers, researchers, private sector representatives, non-governmental organizations, CGIAR institutions and farmers to assess local and regional needs, exchange information, and define priorities for the implementation of conservation agriculture, especially for resource-poor smallholder farmers. “Mining nutrients from the soil is a major concern,” he said. “At Pusa, there has been an increase in system productivity and the length of the cropping season due to conservation agriculture adoption. These factors prompt the idea of making conservation agriculture a flagship program at IARI.”

More than 25 senior researchers from 11 ICAR institutions, state agricultural universities and CIMMYT visited conservation agriculture research platforms in different cropping systems and ecologies (irrigated, mixed and rain-fed systems) at New Delhi, Karnal, Ludhiana, Jabalpur and Patna. The scientists and farmers participated in interactive discussions. Farmers should receive a clear message from all institutions, participants said, and therefore need the convergence of investments and research. Farm innovations also need to be aligned with the latest scientific developments. “The breeders have to come out with new materials for a specific challenge,” said Alok K. Sikka, ICAR deputy director general. “Conservation agriculture goes far beyond zero-tilling and resource conservation technologies. Conservation agriculture is a package that has to be followed in a systems approach.”

Areas identified for in-depth strategic research include the study of water-nutrient and crop-livestock interactions under conservation agriculture, design and development of conservation agriculture machinery suited to different farming systems and a better understanding of weed, disease and pests in conservation agriculture conditions to hasten the development of integrated pest management strategies.

CIMMYT rebuilds partnerships in Pakistan

CIMMYT Faisalabad Office (left-right): Dr, Imtiaz Muhammed, Country Liaison Officer, CIMMYT Pakistan; Dr. Etienne Duveiller, South Asia Regional Director, CIMMYT; Dr. Thomas Lumpkin, Director General, CIMMYT; Dr. Javed Ahmad, Wheat Botanist, Wheat Research Institute WRI Faisalabad; Dr. Makhdoom Hussain, Director, Wheat Research Institute WRI Faisalabad; Mr. Abdul Hamid, CIMMYT Faisalabad; Mr. Muhammad Noor, CIMMYT Faisalabad. Photo by Miriam Shindler.
CIMMYT Faisalabad Office (left-right): Dr, Imtiaz Muhammed, Country Liaison Officer, CIMMYT Pakistan;
Dr. Etienne Duveiller, South Asia Regional Director, CIMMYT; Dr. Thomas Lumpkin, Director General,
CIMMYT; Dr. Javed Ahmad, Wheat Botanist, Wheat Research Institute WRI Faisalabad; Dr. Makhdoom
Hussain, Director, Wheat Research Institute WRI Faisalabad; Mr. Abdul Hamid, CIMMYT Faisalabad; Mr.
Muhammad Noor, CIMMYT Faisalabad. Photo by Miriam Shindler.

By Imtiaz Muhammad/CIMMYT

CIMMYT has a long history with Pakistan. The majority of wheat grown in the country is a result of their collaboration. Dr. Norman Borlaug’s principles of free germplasm exchange still support Pakistan’s national program. 

In 1961, Manzoor A. Bajwa, a young Pakistani wheat scientist, arrived in Mexico to receive training in improved wheat production. While working alongside Borlaug and his team in Ciudad Obregón, Bajwa identified a medium-to-hard white grain line with a high-gluten content ideal for making good chapattis. The new variety also showed promising resistance to rust and powdery mildew. To mark this momentous collaboration, the line was named MexiPak –meaning line selection in Mexico by a Pakistani researcher.

In Pakistan, the name MexiPak is synonymous with the successes of the Green Revolution. In a recent meeting between CIMMYT and Sikandar Hayat Khan Bosan, the Minister for Food Security and Research, he recalled experiences in rural Punjab when he was 7 or 8 years old. One year, his father had record wheat harvests. The reason? “MexiPak,” he said. This is just one example of CIMMYT-Pakistani collaboration. The Pak-81 line, which has been released in more countries than any other wheat variety in history, was selected by a Pakistani breeder while training at CIMMYT.

Today, Pakistan faces daunting challenges due to climate change, changing diets, increasing population, groundwater depletion and growing food security concerns. The new Prime Minister and cabinet have indicated an increased interest in developing Pakistan’s agriculture sector and the country’s agricultural research abilities. In a related development, the University of Agriculture, Faisalabad, recently became the top-ranked university for agricultural sciences in South Asia (NTU Rankings, 2013). CIMMYT and the Pakistan Agricultural Research Council (PARC) are reigniting agricultural research for development across Pakistan.

Wheat Productivity Enhancement Program (WPEP) Farm Machinery Shed at the Wheat Research Institute, Faisalabad. Photo by Miriam Shindler.
Wheat Productivity Enhancement Program (WPEP) Farm Machinery Shed at the Wheat Research Institute, Faisalabad. Photo by Miriam Shindler.

Since 2010, PARC and CIMMYT have worked closely to improve agronomic practices through projects such as the Wheat Productivity Enhancement Program (W-PEP) and the new Agricultural Innovation Program for Pakistan (AIP), a $30 million program funded by the United States Agency for International Development. The PARC complex in Islamabad houses CIMMYT offices where agronomists, breeders and socio-economic experts work to improve maize and wheat yields.

In a recent visit to Pakistan by CIMMYT Director General Thomas Lumpkin, PARC and the Pakistani government reaffirmed their commitment to establishing the Borlaug Institute for South Asia (BISA) in Pakistan. PARC donated land on its Islamabad campus to erect the BISA-CIMMYT headquarters in Pakistan, as well as land that will be converted into an experimental farm. The Pakistani government also asked BISA to build an experimental farm in every province. BISA will provide Pakistani researchers with the opportunity to collaborate with South Asian counterparts to increase wheat yields and develop more nutritious and heat-resistant maize. BISA is following in the steps of Borlaug in starting a second productive and sustainable Green Revolution.