Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Dr. Sanjaya Rajaram presented with the Pravasi Bharatiya Samman 2015 Award, the highest honor conferred on overseas Indians

Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.
Dr. Sanjaya Rajaram is pictured on the far right, with Prime Minister Mr. Narendra Modi in the center of photo.

On 9 January 2015, Dr. Sanjaya Rajaram, the India-born plant scientist who led wheat breeding research at the International Maize and Wheat Improvement Center (CIMMYT) based in Mexico for more than three decades, received the Pravasi Bharatiya Samman award in Gandhinagar, India. The award, presented by Honorable H.E. Hamid Ansari, Vice President of India, is the highest honor conferred on overseas Indians.

India’s Prime Minister, Mr. Narendra Modi, praised the diaspora for putting India on the global map. “The whole world admires the Indian community not due to the money but the values they live with,” he said.

The event marks the 100th anniversary of Mahatma Gandhi’s return to India from South Africa. Only one other Mexican citizen of Indian ancestry received the award in the past decade: Dr. Rasik Vihari Joshi, who received the award for his contributions to literature in 2013.

The Union Home Minister Mr. Rajnath Singh attended the event. He praised the contributions of the Indian diaspora at the award celebration, saying India is proud of them and they are an example of India’s indomitable spirit.

Last year, Dr. Rajaram received the World Food Prize for his contribution in increasing global wheat production by more than 200 million tons in the years following the Green Revolution. His improved varieties increased the yield potential of wheat by 20 to 25 percent. Today, Rajaram’s wheats are grown on some 58 million hectares worldwide.

Dr. Rajaram is renowned for his generosity in sharing his expertise to support research and the development of technologies that have improved food security in India and globally. His accomplishments include training or mentoring more than 700 scientists from dozens of developing countries. This enabled Indian farmers to grow improved wheat varieties on some 8 million hectares, including India’s most popular wheat variety, PBW 343. He also led CIMMYT efforts to apply the concept of durable resistance to rust–the most damaging wheat disease worldwide

Pakistan marks Borlaug’s 100th birthday with commemorative stamp

Pakistan’s National Philatelic Bureau issued a commemorative postage stamp to honor the 100th birthday, last 25 March, of late wheat scientist and Nobel Peace Laureate, Dr. Norman E. Borlaug.

Pakistani researchers and policymakers were instrumental to the work of Borlaug and the Green Revolution in South Asia, said Imtiaz Muhammad, CIMMYT wheat scientist and country representative in Pakistan, speaking at a 22 December unveiling ceremony.

 Mr. Sikhandar Hayat Khan Bossan, Federal Minister for Food Security and Research, Pakistan, unveils a new stamp to commemorate the 100th birthday in 2014 of late wheat scientist and Nobel Peace Prize Laureate, Dr. Norman E. Borlaug. Photo: Amina Khan/CIMMYT
Mr. Sikhandar Hayat Khan Bossan, Federal Minister for Food Security and Research, Pakistan, unveils a new stamp to commemorate the 100th birthday in 2014 of late wheat scientist and Nobel Peace Prize Laureate, Dr. Norman E. Borlaug. Photo: Amina Khan/CIMMYT

Pakistan breeders have sown and returned data on CIMMYT international maize and wheat trials for more than four decades, and over 150 Pakistani wheat specialists have participated in training courses at CIMMYT.

Held at the National Agricultural Research Center (NARC), Islamabad, the unveiling was organized by CIMMYT, the Pakistan Agriculture Research Council (PARC) and the United States Department of Agriculture (USDA) and drew more than 50 participants, including agricultural scientists, media representatives and staff of Pakistan’s Ministry of National Food Security and Research (MNFSR).

The Federal Minister for Food Security and Research, Mr. Sikhandar Hayat Khan Bossan, formally unveiled the stamp. Speakers included Dr. Iftikhar Ahmed, Chairman of PARC, Dr. Shahid Masood, PARC plant scientist,and Mr. Seerat Asghar, Federal Secretary for National Food Security and Research. Thomas A. Lumpkin, CIMMYT director general, and Ronnie Coffman, vice-chair of the Borlaug Global Rust Initiative (BGRI), addressed the audience through video messages.

Through a personal message read during the ceremony, Jeanie Borlaug Laube, daughter of Norman Borlaug and BGRI chair, thanked the Pakistan government. “I know my father would be very proud to be on a stamp in Pakistan,” she said.

Tottori University students visit CIMMYT

Masahiro Kishii of CIMMYT’s Global Wheat Program gives students a tour of the Wellhousen-Anderson Genetic Resources Center. Photos: Xochiquetzal Fonseca
Masahiro Kishii of CIMMYT’s Global Wheat Program gives students a tour of the Wellhousen-Anderson Genetic Resources Center. Photos: Xochiquetzal Fonseca

A group of 16 undergraduate students and three professors from the University of Tottori, Japan, visited CIMMYT on 26 November. The visit was the last stop of a three-month study visit to Mexico, which also included visits to the Universidad Autonoma de Baja California Sur (UABCS) and the Centro de Investigaciones Biológicas del Noroeste S.C. (CIBNOR).

Jelle Van Loon, leader of smart mechanization for CIMMYT’s conservation agriculture program in Mexico, teaches students about machinery development.

The students began their visit with an overview of CIMMYT from Isabel Peña, Head of Institutional Relations-Latin America, followed by a meeting with Dr. Masahiro Kishii, a Japanese scientist formerly of Tottori University who now works in wheat cytogenetics in CIMMYT’s Global Wheat Program. The group was then given a tour of the Wellhousen-Anderson Genetic Resources Center and the labs of the Biosciences Complex.

The day concluded with a visit to the Global Conservation Agriculture Program’s D5 demonstration plot, where the students learned about developments in machinery and post-harvest technology.

Isabel Peña, Head of Institutional Relations-Latin America, welcomes students to CIMMYT.

Pakistan: maize needed for marginal areas

Farmers in the farthest reaches of Pakistan need access to white- grained maize, according to Dr. Iftikhar Ahmad, chairman of the Pakistan Agricultural Research Council (PARC). “There is a good progress in the productivity of yellow maize varieties in the areas of Punjab and KPK provinces,” Ahmad said, “but we need white maize varieties to reach farmers in the marginal areas of KPK, Sindh, Balochistan and Gilgit Baltistan provinces.”

From left to right: Shahid Masood, Md. Imtiaz, Iftikhar Ahmad and AbduRahman Beshir.

Speaking at the first National Maize Workshop-Annual Progress Review of Pakistan, held in Islamabad during 19-20 November, Ahmad also mentioned the importance of public-private partnerships to reduce the cost to farmers of hybrid seed, which is more expensive in Pakistan than elsewhere in South Asia.

There is good progress in the productivity of yellow maize varieties in the areas of Punjab and KPK provinces, but we need white maize varieties to reach farmers in the marginal areas of KPK, Sindh, Balochistan and Gilgit Baltistan provinces.” –Dr. Iftikhar Ahmad Chairman of the Pakistan Agricultural Research Council (PARC).

Dr. Beshir explains the traits of yellow maize at NARC, Islamabad.

Jointly organized by PARC and CIMMYT, the workshop was an activity of the Agricultural Innovation Program (AIP) for Pakistan and its 50 participants represented public and private maize research and development institutions, local and multinational seed companies, higher learning institutions, and departments of extension and food processors from all provinces of Pakistan.

Dr. Md. Imtiaz, project leader of AIP, highlighted the role of CIMMYT in enhancing local capacity and requested the full collaboration of national institutions.

During the concluding session, Dr. Shahid Masood, Member of Plant Science and AIP focal person at PARC, mentioned the importance of deploying biofortified and specialty maize, providing farmers with agronomy training, diversifying maize uses and developing and deploying dual purpose maize for food and feed.

Dr. Iftikhar Ahmad, PARC Chairman, addresses participants.

The workshop was followed by a field visit to the National Agricultural Research Center (NARC), where participants saw the performance of AIP-maize varieties and lines from CIMMYT breeding programs in Colombia, Mexico and Zimbabwe.

AbduRahman Beshir, CIMMYT maize improvement and seed systems specialists, said the event helped to define shared objectives for AIP-maize partners and a common goal to work towards and helped CIMMYT to reactivate maize research and development activities in Pakistan. Finally, partners discussed “seed road maps” that describe and illustrate varietal release pathways and seed production targets.

Reaching out to smallholder farmers in Pakistan

CIMMYT entered an important new partnership with Pakistan’s National Rural Support Program (NRSP) on 7 November 2014 for wheat varietal evaluation, promotion and deployment, as well as on-farm agronomic interventions and community-based seed production enterprises.

A not-for-profit development organization established in 1991 that fosters a countrywide network of more than 200,000 grassroots organizations across 56 districts, NRSP enables rural communities to plan, implement and manage development programs for employment, poverty alleviation and improved quality of life. Through direct linkages with some 400,000 smallholder farming families, the organization will help extend the reach of the CIMMYT- led Agricultural Innovation Program for Pakistan (AIP),  according to Dr. Rashid Bajwa, chief executive officer of NRSP. “We can now jointly scale out to a vast number of smallholders with average daily earnings of less than  two dollars a day,” Bajwa said, mentioning the organization’s activities like microfinance enterprise development.

The work of Pakistan’s National Rural Support Program benefits millions of small-scale farmers and landless families. Photo: Mike Listman/CIMMYT.

Aiming to benefit the disadvantaged

The partnership paves the way for a new and different kind of innovation platform focusing on smallholders, tenants and the landless, female-headed households and vulnerable groups such as flood victims, said Muhammad Imtiaz, CIMMYT liaison officer for Pakistan and AIP Chief of Party: “This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk, not to mention opening avenues for other AIP partners to join hands in testing and promoting appropriate agricultural innovations.”

Taking advantage of NRSP’s gender-responsive approach, the partnership will work directly with and seek to empower women farmers, identifying wheat varieties and technologies that help increase their food security and incomes. Work will identify, test and deploy high-yielding and rust resistant wheat varieties across 23 districts and include improved farming practices for diverse settings from rain-fed to fully-irrigated.

A major focus will be to develop community-based seed enterprises linked with NRSP, small seed companies, farmer associations and seed regulatory bodies, serving remote villages that have heretofore lacked access to improved varieties.

“This will contribute directly to the Center’s mission of improving the food security and resilience of those most at risk” –Muhammad Imtiaz CIMMYT liaison officer for Pakistan and AIP Chief of Party

A group photo was taken at the NRSP inception meeting and staff training. Photo: Raja Zulfiqar Ali.

Getting Off on the Right Foot

A partnership inception meeting and staff training for NRSP were organized on 10 November in Islamabad, with 32 participants from NRSP and 11 from CIMMYT, including senior management from both the organizations, and with Malik Fateh Khan, NRSP Regional Manager, providing a welcome address.

Imtiaz Hussain, CIMMYT cropping systems agronomist, highlighted conservation agriculture technologies and their relevance for the partnership. Krishna Dev Joshi, CIMMYT wheat improvement specialist, discussed various types of varietal testing, including participatory varietal selection, mother-baby trials and on-farm demonstrations, to creating awareness and demand for improved seed among farmers. Three CIMMYT colleagues who also spoke at the event were: Shamim Akhter, AIP project manager; Amina Nasim Khan, communications specialist; and Ghazi Kamal, monitoring and evaluation specialist.

Highlights of the 12th Asian Maize Conference

The 12th Asian Maize Conference and Expert Consultation on “Maize for Food, Feed, Nutrition and Environmental Security” convened in Bangkok, Thailand from 31 October to 1 November 2014.

Organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), CIMMYT, the Food and Agriculture Organization (FAO) of the United Nations and the Thai Department of Agriculture (DoA), the Conference brought together around 350 researchers, policy-makers, service providers, innovative farmers and representatives of various organizations from across the public and private sector.

All photos: APAARI

Maize scientist Dr. Saira Bano from Pakistan is presented an award for best poster by Dr. Hiroyuki Konuma, Assistant Director General of FAO RAP
Maize scientist Dr. Saira Bano from Pakistan is presented an award for best poster by Dr. Hiroyuki Konuma, Assistant Director General of FAO RAP

Dr. B.M. Prasanna, Director of the CIMMYT Global Maize Progam, receives a plaque of appreciation from FAO and APAARI for his contributions to the successful organization of the conference and for strengthening regional maize research and development partnerships.
Dr. B.M. Prasanna, Director of the CIMMYT Global Maize Progam, receives a plaque of appreciation from FAO and APAARI for his contributions to the successful organization of the conference and for strengthening regional maize research and development partnerships.

Dr. Tom Lupkin, CIMMYT Director General, with participants Dr. H.S. Gupta, director general of the Borlaug Institute for South Asia (BISA) and Dr. H.S. Sidhu, Senior Research Engineer, CIMMYT India.
Dr. Tom Lupkin, CIMMYT Director General, with participants Dr. H.S. Gupta, director general of the Borlaug Institute for South Asia (BISA) and Dr. H.S. Sidhu, Senior Research Engineer, CIMMYT India.

Participants and poster presenters from India, S.V. Manjunatha, M.G. Mallikarjuna and S. Hooda Karambir.
Participants and poster presenters from India, S.V. Manjunatha, M.G. Mallikarjuna and S. Hooda Karambir.

Dr. Mulugetta Mekuria, SIMLESA Project Leader, presents on sustainable intensification of maize-based systems.
Dr. Mulugetta Mekuria, SIMLESA Project Leader, presents on sustainable intensification of maize-based systems.

Dr. Mark Holderness, the Executive Secretary of the Global Forum on Agricultural Research (GFAR), asks a question.
Dr. Mark Holderness, the Executive Secretary of the Global Forum on Agricultural Research (GFAR), asks a question.

Maize opportunities and challenges for Asia

Compared with other cereals, maize has recorded the fastest annual growth in Asia at around 4 percent, but consumption is rising faster than yields.

When BM Prasanna, CIMMYT’s global maize program director, opened the 12th Asian Maize Conference and Expert Consultation on “Maize for Food, Feed, Nutrition and Environmental Security” in Bangkok last week he said that boosting maize crops would be a key to food security. In China, maize is the number one crop in acreage, covering 35.26 million hectares (87 million acres) in 2013, an area comparable to that of the United States, Prasanna said. The big questions are whether or not China can increase yields before 2020 to avoid being the largest importer of maize and whether Asia can meet the demand for maize “by shortening, widening and improving the breeding funnel,” Prasanna said.

He added that efforts are underway to significantly enhance genetic gain per unit over time: CIMMYT and the University of Hohenheim (Stuttgart, Germany) are utilizing doubled haploid technology; other partnerships are focused on genetic diversity and introgressing transgenic traits under humanitarian license through public-private partnerships.

“Strengthening seed systems is also important for breeding programs to make an impact,” Prasanna said. “The sooner farmers, especially smallholders in unreached areas, have access to improved varieties and a complementary agronomic package of practices, the greater the opportunity to increase productivity.”

Challenges are many. Heat stress and drought stress, among others, are an increasing reality in many maize-growing regions in the tropics. Two promising CIMMYT- Asia heat-tolerant commercial hybrids (31Y45 and DKC9108) are currently being marketed in Asia. Scientists also confirm that a strong pipeline of water stress-resilient, Asia-adapted maize hybrids is ready for deployment in rainfed areas of Asia.

Prasanna concluded by reminding the 350 conference participants that “putting women and children at the center of development will help transform their societies.” Quoting Melinda Gates, he said that by ignoring gender inequities, many development projects fail to achieve their objectives.

As he concluded his remarks with a big smile, Prasanna could not resist sharing, “Nothing looks more beautiful to me than maize.”

Q+A: Young scientist wins award for “Taking it to the Farmer”

Taking-it-to-the-Farmer EL BATAN, Mexico (CIMMYT) — Conservation agriculture, which improves the livelihoods of farmers by sustainably boosting productivity, is becoming a vital part of the rural landscape throughout Mexico and Latin America, leading to a major World Food Prize award for Bram Govaerts.

As associate director of the Global Conservation Agriculture Program at the International Maize and Wheat Improvement Center (CIMMYT), Govaerts works with farmers to help them understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields, increase profits and protect the environment.

Govaerts, winner of the 2014 Borlaug Field Award , played a major role in developing a Mexican initiative known as the Sustainable Modernization of Traditional Agriculture (MasAgro), and in June 2014 the 35-year-old assumed leadership of the project, spearheading the coordination of related initiatives throughout Latin America.

According to Govaerts, there are two choices – “Either agricultural production is going to grow in unsustainable ways, depleting our resources, or we take action now, investing in sustainable agriculture so that it can be a motor for growth as well as a motor for sustainable development.”

MasAgro is a partnership led by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food and CIMMYT involving more than 100 agricultural research organizations. It offers training and technical support for farmers in conservation agriculture and gives them access to high-yielding, conventionally bred seeds.

The overall aims of MasAgro include raising the yield potential of wheat by 50 percent and increasing Mexico’s annual production by 350,000 tons (318,000 metric tons) in 10 years. Goals also include raising the production of maize in rainfed areas.

MasAgro’s “Take It to the Farmer” component was inspired by a statement made by the late CIMMYT scientist Norman Borlaug who won the Nobel Peace Prize in 1970. He believed that scientists should work closely with farmers, an idea central to CIMMYT’s overall approach to agricultural research and practice. Borlaug led the development of semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world. He also founded the World Food Prize .

“Take it to the Farmer” integrates technological innovation with small-scale farming systems for maize and wheat crops, while minimizing harmful impacts on the environment. Farmers on more than 94,000 hectares (232,280 acres) have switched to sustainable systems using MasAgro technologies, while farmers on another 600,000 hectares are receiving training and information to improve their agricultural techniques and practices. Techniques include crop diversification, reducing tilling of the soil and leaving crop residue on the fields.

Govaerts, who has also worked on conservation agriculture projects in Ethiopia and India, discussed his work after winning the award.

Q: What inspired the “Take it to the Farmer” component of the MasAgro project?

A: The strategy stemmed from the fact that there’s a great deal of information out there today for farmers, starting with seed varieties. Farmers have many choices to make about technology to increase productivity, but they need to understand how to integrate it and make it sustainable. We work closely with farmers to develop conservation-based agricultural systems so that they can generate high, stable crop yields over time. Doing this offers farmers the best opportunity for higher incomes, but also lowers environmental impact.

MasAgro helps the farmers develop an agronomic system – including the technology. In that way it’s not so much taken to the farmers, but it’s developing a system together with the farmer. We innovate with the farmers and connect them to a working value chain and we then combine what we call our hub approach. We’re connecting research platforms with farm innovation modules and from there we develop systems influenced by farmer knowledge.

Q: Is it possible for this to work on any farm in any location?

A: The key is to adapt to the specific locations of each of the farmers. We have to make the strategies work for specific farming and then on top of that we need to include other technologies to make it work. Technology might simply be hand-planting, not necessarily high-tech huge machinery. It is really about establishing basic conservation agriculture principles and working together to make those basic principles work.

Q: Are you trying to help farmers achieve their agricultural goals by helping them save money by not spending on fertilizers?

A: It depends; if you’re in an area where farmers are over-fertilizing it helps to reduce costs if they don’t use fertilizers as much. On the other hand, some farmers are not using fertilizers at all so there we recommend using them in an integrated manner. There might be areas where production costs go up slightly because farmers were not investing in any inputs or technologies, but because productivity is increased in the end they have a higher return on investment.

Q: Can you give an example of a farmer who has changed practices?

A: Some smallholder farmers in Oaxaca, Mexico, are improving their production practices as they raise the local [indigenous] maize landraces. We connected them with a niche maize market in New York City. They are now exporting and selling their specialty maize to chefs in New York who use them in high-end restaurants. So they are not only increasing productivity, they are also connected to markets to sell their extra produce. The challenge now is to take this effort to scale. What we realized is that by only increasing productivity, we’re actually bringing the farmers into a risky situation unless they can find bigger markets.

We helped a novice wheat farmer who is renting land. He’s been adjusting his farming system and is now using conservation agriculture technology. As a result, because he has a slower turnaround time, when he planted his summer crop, instead of planting only 100 hectares, he jumped to 350 hectares. In a strict sense, he was not a smallholder farmer, but we work with big and small farmers.

Another example is the use of mobile phones – farmers can subscribe to a short message service, or SMS text-messaging system. Once subscribed, the farmer receives information on different topics, including technical recommendations or warnings. For example, one of the warnings we sent out during the wheat-growing season was that there was going to be an imminent frost. That led to some of the farmers irrigating their crops because that helped mitigate the damage and saved part of their crops.

Q: What challenges do you face?

We’re working with more than 150 institutions and organizations and we’re connected to more than 200,000 farmers. When Dr. Borlaug was working the world was simpler, we not only have to increase yields but we also have to work in an environmentally friendly manner. We also have to provide environmental services via agriculture and we have to make sure that farmers have sufficient income and this in a complex, institutional.
We can no longer accept that we’re just doing the science and then leave it up to others to apply the science. That’s not how it works – we scientists need to ensure that the technology is actually implemented and that it is expanded by new ideas from farmers, technicians and others along the value chain. We need to take responsibility that our knowledge and science is used and is responding to a real need. Public and private investment in agriculture should increase, especially in Latin America because it’s going to be a motor of transformation.

Q: How do you encourage farmers to change their practices?

A: We do a lot of training. In some areas our first step is bringing new seeds – connecting seed companies with a new variety CIMMYT has developed, making sure the seed system is working. There are some interventions that are rather linear – one-shot interventions. There are methods that from the beginning are going to be complicated and the farmer has to wait five years before changes are seen. That’s quite difficult, but if you can show an intervention where the farmer can store maize better and instead of losing 40 percent he’s only losing 10 percent during storage, that’s an intervention that can then start the dialogue to a more complicated system change. Much of our focus is on knowledge exchange, as well as in training and innovation.

Q: What is the significance of your award for Mexico?

A: The award has a special significance for Mexico. It recognizes Mexico’s bold decision to invest in agricultural innovation and to take responsibility not only for the country but for the region. We are proud of CIMMYT’s achievements within its host country.
Before CIMMYT’s collaboration with the Mexican government there was a real disconnect between agricultural science and the reality of farmers on the ground. As a result, this award is not only a recognition of scientific excellence, but the importance of getting the results out to the farmers. Mexico is a complex country.

Here we have all types of farmers – from large commercial farmers who exploit market opportunities for export to smallholder farmers who do not have access to markets. Mexico also hosts a wide range of unique agro-ecological environments. These circumstances offer CIMMYT scientists a unique laboratory to conduct their research and gives us an opportunity to explore new ways of doing science and connecting with farmers to ensure that science has impact.

Q: This year the World Food Prize Borlaug Dialogue was titled “Can we sustainably feed the 9 billion people on our planet by the year 2050?” What are your thoughts on the topic?

A: This is not just a numbers game. We will need to feed more than 9 billion people while working in a more complicated institutional and political environment and at the same time safeguarding natural resources. These global challenges are moving at a fast pace, so CIMMYT needs to move fast and expand its scientific excellence. We are at a turning point where we have to take advantage of these rapid changes in science and technology, which are becoming increasingly interlinked.

Working to help provide nutritional food for 9.5 billion people will be a collective effort. There won’t be one Norman Borlaug but a consortium of people working together with different expertise to achieve this goal. This will require new collaborations, especially public-private partnerships. CIMMYT is one of the best institutions to create these partnerships but we need to be better equipped for what is needed at this time. Complacency and living in the past is not an option.

Enhancing the nutritional quality of maize

Malnutrition and micronutrient deficiency, which can cause blindness and stunting, increased infant and maternal mortality and lower IQs, are at epidemic levels in some parts of Asia. People across Asia depend on maize, rice and wheat but they do not fulfil daily dietary requirements and are deficient in vitamin A and essential micronutrients such as iron and zinc.

Biofortified maize varieties have been bred to include considerably high concentrations of essential micronutrients. Maize in Asia is largely used for feed, but direct human consumption is increasing. Scientists at the 12th Asian Maize Conference highlighted several collaborative interventions to utilize the genetic variability in maize for the development of biofortified maize. Promoting biofortified maize in rural areas and developing new food products has been part of this research. The nutritional benefits of biofortified maize can come directly from eating the crop itself or indirectly by consuming eggs from hens that are fed with provitamin A ProVA-enriched maize. Biofortified maize use for feed may also represent economic benefits for farmers.

Breeding efforts in Asia are currently focused on quality protein maize (QPM) and ProVA-enriched varieties. QPM was first developed by former CIMMYT scientists and World Food Prize Laureates Dr. Evangelina Villegas and Dr. Surinder Vasal. CIMMYT QPM inbred lines have been used in several breeding programs in China, India, Vietnam and elsewhere.

Joint efforts between CIMMYT and numerous partner scientists under HarvestPlus have shown that breeding for increased concentrations of ProVA is especially promising because of the genetic variation available in maize germplasm. New hybrids released in 2012 in Zambia showed ProVA levels 400 percent higher than common yellow maize, with the potential to bring widespread health benefits.

Food security successes earn ‘sultan of wheat’ World Food Prize

sultan of wheat
Undated file picture shows the late Nobel Peace Prize laureate Norman Borlaug (L) with 2014 World Food Prize laureate Sanjaya Rajaram.

EL BATAN, Mexico (CIMMYT) — Scientist Sanjaya Rajaram, originally from a small farm in India’s state of Uttar Pradesh, is now widely recognized by the international agriculture sector for his prolific contributions to food security and poverty alleviation.

He is credited with producing a remarkable 480 wheat varieties, which have boosted worldwide yields by more than 180 million metric tons (200 million tons). These increased yields provide food to more than 1 billion people each year.

The varieties Rajaram developed during his 40-year career have been released in 51 countries on six continents.

They are used by farmers with both large and small land holdings who rely on disease-resistant wheat adaptable to a range of climate conditions.

For those feats and more Rajaram is the 2014 World Food Prize laureate, an honor awarded each year to the person who does the most to advance human development by improving the quality, quantity or availability of food in the world. Rajaram received the award at the World Food Prize ceremony on October 16 in Des Moines, Iowa.

“Rajaram has made a massive contribution to food security – I doubt that one person will ever again be involved in the development of as many widely grown wheat varieties,” said Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), where Rajaram worked for 33 years.

“As a former colleague once said: ‘It’s amazing what happens, when the ‘Sultan of Wheat’ puts his magic hands on a wheat line’,” he added.

INTERESTS FLOURISH

Rajaram was born in 1943 on the 5-hectare (12 acre) farm in Raipur where his family eked out a living by producing wheat, rice, maize, sugarcane and millet.

His parents recognized Rajaram’s intellectual potential and sent him to school 5 kilometers (3 miles) from home, which at the time was unusual in an area where 96 percent of people had no formal education.

Rajaram excelled scholastically and became the top-ranked student in his district. A state scholarship gave him the opportunity to attend high school, which led to his acceptance at the College of Jaunpur in the University of Gorakhpur, where he earned a Bachelor of Science in agriculture in 1962.

Afterwards Rajaram attended the Indian Agricultural Research Institute in New Delhi, graduating with a Master of Science in 1964.

Subsequently, he earned a doctorate in plant breeding at Australia’s University of Sydney where he first made contact with the superstars of what became known as the “Green Revolution” – Norman Borlaug and Glenn Anderson, who were leading scientists at CIMMYT.

CIMMYT VARIETIES

Borlaug, who was from the United States, died in 2009 at age 95. He is known as the “Father of the Green Revolution” and he was awarded the Nobel Peace Prize in 1970. Borlaug is credited with saving 1 billion lives in the developing world — particularly in South Asia — as a result of the disease-resistant, high-yield semi-dwarf wheat varieties he developed.

Borlaug had also introduced similar innovations throughout Mexico – where CIMMYT is headquartered – leading to the country’s self-sufficiency in wheat.

Anderson, a Canadian who died in 1981 at 57, was recruited by Borlaug to lead the major “Green Revolution” wheat improvement project in India. In 1971, Anderson became deputy director of the CIMMYT Wheat Program and then its director after Borlaug retired in 1979.

The two recruited Rajaram, who joined CIMMYT in 1969. He was appointed head of the wheat breeding team by Borlaug three years later. He set to work cross breeding select plant varieties, and the yield potential of his cultivars increased 20 to 25 percent.

“His technique was to cross winter and spring wheat varieties, which were distinct gene pools, leading to the development of higher yield plants that can be grown in a wide range of environments around the world,” Braun said, adding that Rajaram’s varieties were disease- and stress-resistant.

“The varieties he developed were eventually grown on a larger area than those developed by Borlaug.”

His varieties could be planted in areas previously uninhabitable for wheat in China, India and in Brazil’s acidic soils, for which he developed aluminum-tolerant wheat. Rajaram also developed wheat cultivars now grown on millions of hectares worldwide with durable resistance to rust diseases, which can devastate crops.

Rajaram spent eight years working for the International Center for Agricultural Research in the Dry Areas (ICARDA). At ICARDA, first as director of the Integrated Gene Management Program, then as special scientific advisor, he oversaw the promotion of new technologies to help farmers in the Central and West Asia and North Africa (CWANA) region.

He developed wheat improvement strategies to tackle some of the challenges facing wheat in dry areas, including stripe rust disease, which can spread quickly and have a devastating effect on wheat.

MENTOR TO MANY

“Rajaram’s research not only led to enhanced productivity, but farmers also saw big increases in profits due to higher yields and disease resistance – they no longer had to buy expensive fungicides to protect their plots,” said Ravi Singh, current head of wheat breeding at CIMMYT, one among many breeders Rajaram mentored.

Now a Mexican citizen and still a firm believer in the value of education, Rajaram continues his affiliation with CIMMYT, recently attending a “trainee wheat boot camp” for students from major wheat-growing nations.

“We know we need to double food production to feed the more than 9 billion people we’re expecting by 2050,” Rajaram said.

“Global objectives for food security can most definitely be met. However, we must be able to rely on guaranteed research funding from both the public and private sectors to address the many challenges we face, including decreasing land availability and erratic environmental changes related to climate change.”

Wheat currently provides 20 percent of overall daily protein and calories consumed throughout the world. Production must grow 70 percent over the current amount by 2050, according to the international Wheat Initiative – an achievable goal if annual wheat yields are increased from a current level of below 1 percent to at least 1.7 percent.

Researchers at CIMMYT are aiming to develop resilient wheat varieties tolerant to the drought, heat, extreme wet and cold conditions anticipated by scientists to grow more extreme as mean annual temperatures continue to increase and weather patterns become more volatile.

Rajaram’s great legacy was to give opportunities to newly graduated doctoral students, Singh said.

“He put us in charge of different parts of the breeding program each season, so we had to learn all aspects of the process for ourselves – we worked many long hours with him in the field developing confidence, which was very important for our professional careers.”

Rajaram intends to put a portion of his World Food Prize winnings, valued at $250,000, into training and education programs.

Scientists ship 2 tons of wheat seed samples around the world

Wheat Seed Samples Around the World
Juan Hernandez Caballero (L) and Victor Cano Valencia, prepare to load wheat samples onto a van at CIMMYT headquarters in El Batan, Mexico, for shipment overseas. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Wheat farmers can boost yields and protect crops from pests and disease by using improved seed varieties, but in the developing world more than 80 percent of farmers use poor quality varieties, losing potential earnings and putting food security at risk, according to research.

Farmers often sell and trade wheat seed among themselves without having much knowledge about the size of the yield they can expect and how a particular variety fares with regard to climate, soil type or disease resistance.

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) are continuously developing improved varieties and each year seed samples — known as International Wheat Nurseries — are sent out to government and university research institutions and national agricultural research systems around the world.

“Wheat plays a vital role in food security,” said Tom Payne, head of CIMMYT’s Wheat Germplasm Bank, which stores almost 145,000 wheat varieties collected over the past 60 years. “We’ve been sending out wheat samples each year since 1974, so if you do the math that’s 367 tons over the years.”

In October, 1,720 kilograms (3,790 pounds) of experimental seeds were shipped to India, one of 75 current recipient countries.

Overall, the 2014 international shipment of seeds delivered in 351,990 sample envelopes weighed 9,230 kilograms. Recent recipient countries included Algeria, Pakistan, Turkey, Ukraine and Sudan.

SORTING SEEDS

Over the past 24 years, Efren Rodriguez, head of CIMMYT’s Seed Distribution Unit has overseen the five-month process of preparing, packaging and shipping of wheat seed samples.

“This year the seed requests we received filled 94 boxes,” Rodriguez said. “Seeds are requested at the end of summer prior to planting season. Each box is filled with envelopes of wheat seed and weighs up to 10 kilograms (22 pounds).”

Seeds arrive at CIMMYT’s headquarters near Mexico City in June in bags weighing from 10 to 35 kilograms from CIMMYT’s research station in Mexicali in northeastern Mexico accompanied with paperwork naming the varieties for inclusion in the shipment.

The seed is sorted according to instructions from the wheat breeders, cleaned with chlorine, rinsed in an industrial restaurant-style dishwasher, doused in protective fungicide, dried, placed in small envelopes by machine, then boxed.

“Research institutions plant the seeds, which have different characteristics designed to solve particular problems – for example, they may be heat, drought- or disease-resistant – and then recommend varieties for general release and sale to farmers,” Rodriguez said, explaining that the seeds tested and selected by the international research programs are incorporated into national wheat breeding or growing programs.

CIMMYT also distributes wheat nurseries as part of a partnership with Turkey and the International Center for Agricultural Research in the Dry Areas (ICARDA).

Globally, wheat provides 20 percent of the world’s daily protein and calories.

Research on climate-resilient wheat keeps Green Revolution on track

hans-braun

EL BATAN, Mexico (CIMMYT) — Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), gestures toward an expansive field of green wheat shimmering in the hot sunlight outside his office.

“If we don’t prepare crops resilient to heat and drought, the effects of climate change will increase the risk of worldwide famine and conflict,” he explained. “That’s why CIMMYT is part of an international research program to develop new climate change-resistant varieties.”

As the global population grows from a current 7 billion to a projected 9.6 billion by 2050, wheat breeders involved in the battle to ensure food security face many challenges.
Already, U.N. food agencies estimate that at least 805 million people do not get enough food and that more than 2 billion suffer from micronutrient deficiency, or “hidden hunger.”

Globally, wheat provides 20 percent of the world’s daily protein and calories, according to the Wheat Initiative. Wheat production must grow 60 percent over the next 35 years to keep pace with demand, statistics from the Food and Agriculture Organization of the United Nations show – an achievable goal only if wheat yields increase from the current level of below 1 percent annually to at least 1.7 percent per year.

The scientists that Braun leads are on the front lines – tackling the climate change threat in laboratories and at wheat research stations throughout Mexico and in 13 other countries.

LIFE-SAVING GRAIN

Wheat is vital to global food security. In particular, since CIMMYT scientist Norman Borlaug, who died in 2009 at age 95, led efforts to develop semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

Borlaug started work on wheat improvement in the mid-1940s in Mexico – where CIMMYT is headquartered near Mexico City. The country became self-sufficient in wheat production in the early 1960s.

Borlaug was awarded the Nobel Peace Prize in 1970 for his work, and in his acceptance speech paid tribute to the “army of hunger fighters” with whom he had worked.
However, in contemporary times, some critics have cast a shadow over his work, questioning the altruistic aims of the project that became widely known as the Green Revolution.

They argue that the modern high-yielding crop varieties did not help poor farmers, but caused environmental damage through overuse of fertilizers, water resources and the degradation of soils.

Other condemnations include claims that food scarcity is a mere political construct, that food provision has helped governments suppress disgruntled masses and that vast wheat mono-croplands compromise agricultural and wild biodiversity.
However, a 2003 report in “Science” magazine analyzed the overall impact of the Green Revolution in the 20th Century. The authors, economists from Yale University and Williams College, found that without the long-term increase in food crop productivity and lower food prices resulting from the Green Revolution, the world would have experienced “a human welfare crisis.”

“Caloric intake per capita in the developing world would have been 13.3 to 14.4 percent lower and the proportion of children malnourished would have been from 6.1 to 7.9 percent higher,” authors Robert Evanson and Douglas Gollen wrote.

“Put in perspective, this suggests that the Green Revolution succeeded in raising the health status of 32 to 42 million preschool children. Infant and child mortality would have been considerably higher in developing countries as well.”

Braun acknowledges certain points made by critics of the Green Revolution, but asks how else developing countries would have met the food demands of their rapidly-expanding populations with less environmental impact.

“It’s very easy to look back 50 years and criticize,” Braun said. “People forget that at the time, new farm technologies were an incredible success. We have to put it into context – saving hundreds of millions of lives from starvation was the priority and the Green Revolution did just that.”

CLIMATE-RESILIENT WHEAT

Fast-forward and today much of CIMMYT’s current work remains steadily focused on improving wheat yields, but now with an emphasis on ensuring sustainable productivity and reducing agriculture’s environmental footprint.

Scientists are engaged in an international five-year project to develop climate-resilient wheat. They estimate that in tropical and sub-tropical regions, wheat yields will decrease by 10 percent for each 1-degree rise in minimum night-time temperature, which means that production levels could decline by 30 percent in South Asia. About 20 percent of the world’s wheat is produced in the region.

CIMMYT is collaborating with Kansas State University, Cornell University and the U.S. Department of Agriculture on the project, which is funded by the U.S. Agency for International Development (USAID) as part of Feed the Future, the U.S. government’s global hunger and food security initiative.

Field evaluations are conducted in Mexico, Pakistan and at the Borlaug Institute for South Asia (BISA) in India.

BOOSTING INFRASTRUCTURE

According to Braun, one of the biggest challenges over the next 30 years is to develop better production systems in addition to resource-efficient crops.

For example, a great deal of water is used in food production and demand can and should be cut in half, he said. “We need to focus on sustainable intensification in ways that won’t overuse natural resources.”

To aid in these efforts, CIMMYT has developed international research programs on conservation and precision agriculture.

In conservation agriculture, farmers reduce or stop tilling the soil, leaving crop residues on the surface of the field and rotate crops to sustainably increase productivity. Precision agriculture involves such technologies as light sensors to determine crop vigor and gauge nitrogen fertilizer dosages to determine exactly what plants need.

“This reduces nitrate runoff into waterways and greenhouse gas emissions,” Braun explained. CIMMYT and its partners are also breeding wheat lines that are better at taking up and using fertilizer.

“Wheat in developing countries currently uses only 30 percent of the fertilizer applied,” he said. “There are promising options to double that rate, but developing and deploying them require significant investments.”

“I’m very optimistic that we can produce 60 to 70 percent more wheat to meet demand – society is beginning to recognize that food production is one of humanity’s biggest challenges – today and in the future,” Braun summarized.

“We have or can develop the technologies needed, but politicians must recognize that investment in agriculture is not a problem, it’s a solution – the longer we wait the bigger the potential problems and challenges we face.”

Braun continued, “We also need policymakers to reach agreement that global climate change is a big problem that absolutely must be addressed so that we can gain access to sufficient resources and more fully develop appropriate technologies.”

Strengthening maize policies and public-private partnerships in Asia

Policies designed to promote maize industry growth require data and information, which is often difficult to obtain in Asian countries. This was discussed during the technical session on improving maize seed systems in Asia at the 12th Asian Maize Conference. David Spielman, senior research fellow at the International Food Policy Research Institute (IFPRI), highlighted that policy-makers often face difficult challenges in promoting seed industry growth – especially in Asian countries that have more smallholder and resource-poor farmers.

Spielman said, “Innovation policies require data on firm-level research and development spending; product pipeline and competition policies require data on market structure and firm behavior.”

Firms often do not share proprietary revenue data and governments may not monitor firm-level activity on a regular basis. One of the factors could be that policy-makers are not sufficiently informed about the opportunities and trade-offs associated with designing laws and regulations that enable the effective governance of seed industry development. Spielman emphasized that a better designed dataset with a finite set of indicators to measure competition and innovation in a country’s seed industry can better inform policy-makers.

The conference highlighted the need for the public and private sectors to work together to provide affordable new seed varieties and deliver new technologies to smallholder farmers. An eminent group of panelists – Arvind Kumar, Rasi Seeds; Shilpa Divekar Nirula, Monsanto; Fan Xingming, Yunnan Academy of Agricultural Sciences, China; John McMurdy, U.S. Agency for International Development; and Bijendra Pal, Bioseed, discussed the opportunities and challenges to ensure a vibrant Asian maize seed sector through public-private partnerships (PPPs).

The panel noted that decision-makers should not look at public vs. private; rather they should learn from models and best practices where the two sectors have worked together successfully.

As a best practice on PPPs, Ian Barker, head of agricultural partnerships at the Syngenta Foundation for Sustainable Agriculture (SFSA), talked about its Seeds2B program in Africa that builds linkages between breeders and seed companies to make more improved seed varieties available to farmers at the right time and price.

He also highlighted that SFSA is now aiming to kick- start the Seed2B concept in Asia – bringing together breeders, seed companies, farmer associations and other relevant players in the Asian maize value chain – to improve access to seed in marginal maize areas. Barker said, “Public-private breeding partnerships can efficiently deliver new affordable and accessible hybrids – correctly positioned and targeted at proven smallholder demand.”

12th Asian Maize Conference

(From left to right) Anan Suwannarat (Director General, Thai Department of Agriculture), Hiroyuki Konuma (Assistant Director General, FAO-RAP), Raj Paroda (Executive Secretary, APAARI) and Thomas Lumpkin (Director General, CIMMYT) open the 12th Asian Maize Conference by revealing the accompanying Books of Extended Summaries and Abstracts.

The 12th Asian Maize Conference is taking place in Bangkok from 30 October to 1 November, bringing together more than 350 leading agricultural researchers, policy-makers, farmers and service providers from across the public and private sectors. The conference, “Maize for Food, Feed, Nutrition and Environmental Security,” was organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization (FAO) of the United Nations and the Thai Department of Agriculture, and will culminate in 10 major recommendations to set in place a roadmap for a sustainable intensification strategy for maize in Asia.

The objectives of the conference are to assess specific priorities to enhance maize production and productivity in the region, share the latest knowledge on cutting-edge maize technologies and generate awareness among institutions and stakeholders of better uses of maize as food, feed, fodder and as an industrial crop in Asia.

“This forum provides us with a platform to create synergies among institutions and stakeholders, all of whom recognize the enormous value of maize as a food and feed crop,” said guest of honor Anan Suwannarat, Director General of the Thai Department of Agriculture.

The area, production and yield of maize have increased several-fold over the last 50 years; much of that growth has occurred in the developing world. Compared to other cereals, maize has recorded the fastest annual growth in Asia (around 4 percent). The demand for maize in Asia has been growing in response to changing consumer interests and to feed the growing livestock sector.

“Among cereals, maize offers immense opportunities to address both food and nutrition security in Asia,” said Dr. Raj Paroda, APAARI executive secretary and conference co-chair. “Exciting scientific achievements in the recent past have led to higher annual growth in maize than all other cereals in the region. We now need to effectively harness the existing potential by out-scaling innovations in maize to have greater impact on the livelihoods of smallholder farmers.”

At the same time, maize production and productivity in several Asian countries is severely constrained by an array of factors, including lack of access to improved seeds and other critical production-related inputs, lack of training and knowledge transfer for resource-poor farmers, and abiotic and biotic stresses, the magnitude and dynamics of which are rapidly increasing due to climate change. However, there remains great scope to increase the production area of maize in the region, as well as tremendous opportunities for productivity increases and innovations in crop improvement, management and diversification.

According to Dr. Thomas A. Lumpkin, CIMMYT director general and the other conference co-chair, “Sustainably increasing yields and stabilizing prices requires a concerted effort at the policy level, deployment of new technologies and long-term research investments to ensure that Asian farmers are prepared to respond to the enormous challenges facing agriculture.”

China’s wheat production critical to global food security

Zhonghu He is country representative in China for the International Maize and Wheat Improvement
Center (CIMMYT), and Qiaosheng Zhuang is a professor at the Chinese Academy of Agricultural Science (CAAS).

China’s domestic agricultural activities are vital to ensuring food security for its 1.4 billion people and – as the world’s largest wheat producer – the country plays a major role in shaping international markets.

China produces about 120 million metric tons (265 million pounds) of wheat each year – on approximately 24 million hectares (59 million acres) of land, an area similar to the size of Algeria, according to statistics from the Food and Agriculture Organization of the United Nations (FAO).

Wheat makes up 40 percent of grain consumption in China and about 60 percent of the country’s population eats the grain daily.

Cultivated wheat, which was likely introduced to China in the late 6th to early 5th millennium B.C., is the second most important food crop in China after rice. It is the dominant staple food in the northern part of the country where it is used mainly to produce noodles and steamed bread.

In present-day China, more than 95 percent of wheat is sown in the autumn. A double cropping system is used in the Yellow River and Huai River valleys in which wheat is rotated with maize. In the Yangtze Valley it is rotated with rice.

Chinese wheat matures early, so two crops can be harvested each year.

Wheat in China is also exceptionally resistant to high temperatures during the grain filling stage, during which kernel size is determined, as well as such diseases as head scab, septoria and karnal bunt. The wheat cultivar Sumai 3, a plant selected by breeders for its desirable characteristics, is used globally as a source for improving scab resistance.

Current Challenges

Demand for wheat in China is growing due to population increase and rising living standards, but production is challenged by water scarcity, environmental contamination, rising temperatures, droughts, labor shortages and land-use shifts from grain production to cash crops.

Researchers anticipate that in the near future the consumption of homemade steamed bread and raw noodles will decrease in favor of western-style breads and pastries.

Breeding for high-yield potential remains the first priority, as the available planting area for wheat is unlikely to increase.

Overall breeding goals include increasing grain yield, while maintaining genetic gains already made by scientists in grain yield and improving the processing quality without increasing needed inputs to grow healthy crops.

Conventional breeding – in which wheat plants with desirable, or “elite” traits are selected and used as “parents” for subsequent generations – has been in use for more than a hundred years. The technique, combined with an increased application of biotechnology, will continue to play a leading role in wheat variety development.

In addition to powdery mildew and yellow rust, Fusarium head blight has migrated to the main wheat regions in northern China due to climate change and the continuous practice of wheat and maize rotation, posing a major threat to wheat production. Other diseases, such as sharp eyespot and take-all, are also becoming increasingly troublesome as scientists try to increase grain yields. Wheat in the area has a very low resistance to scab, which is creating another challenge.

Scientific Innovation

It is important that foreign germplasm – the genetic resources of an organism – from international research centers and alien genes from wild relative species be explored as potential sources of multiple-disease resistance.

In order to reduce inputs for wheat production, it is essential to breed varieties with higher water, nitrogen (N) and phosphorus (N) fertilizer use efficiencies, but this must be combined with high-yielding potential.

Drought tolerance for wheat grown in rain-fed areas must be strengthened, because varieties with drought tolerance and better water-use efficiency are already urgently needed.

Interested in this subject? Find out more information here:Zhonghu He and Alain P.A. Bonjean, 2010. Cereals in China, Mexico, D.F.: CIMMYT.

Zhonghu He, Xianchun Xia a, Shaobing Peng, Thomas Adam Lumpkin, 2014. Meeting demands for increased cereal production in China, Journal of Cereal Science, 59: 235-244.

Fahong Wang,Zhonghu He, Ken Sayre, Shengdong Li, Jisheng Si, Bo Feng, Lingan Kong,2009. Wheat cropping systems and technologies in China, Field Crop Research, 111: 181-188.

Under altered conditions driven by climate change, planting dates have been delayed by 10 days over the last 20 years, but maturity has remained basically unchanged. Climate-resilient varieties are needed.

New genes and genetic resources must be explored with novel tools to realize higher genetic gains. Gene-specific markers will play an important role in facilitating the genes for disease resistance and quality. Genetically modified wheat could offer potential tools in reducing damage from head scab and aphids.

Crop management must play an important role in increasing wheat production. Low-cost farming practices are needed so that wheat can be more competitive in the financial markets and new cropping systems must be suited to machinery operation. International collaboration has contributed significantly to improving Chinese wheat research and development capacity.

The government of China considers the International Maize and Wheat Improvement Center (CIMMYT) an important strategic partner in wheat research and continues to work closely with CIMMYT and other international partners to meet future wheat demands.