Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

AIP-CIMMYT Conducts the Largest Evaluation of Maize Germplasm in Pakistan’s History

While visiting AIP maize trials, Dr. Muhammad Azeem Khan, NARC Director General, discusses NARC’s seed road map. Photo: Salman Saleem/CIMMYT.
While visiting AIP maize trials, Dr. Muhammad Azeem Khan, NARC Director General, discusses NARC’s seed road map. Photo: Salman Saleem/CIMMYT.

ISLAMABAD  Pakistan’s Agricultural Innovation Program (AIP) tested more than 700 diverse maize lines this past year, as part of its efforts to develop more affordable, well-adapted maize varieties. During two cropping seasons, 15 trials consisting of 680 diverse maize lines were conducted across Pakistan. AIP’s maize variety evaluation is the largest in the history of Pakistan, both in the number of varieties and of testing sites.

Compared to wheat, which has had a stronghold in Pakistan since the Green Revolution of the 1970s, maize development and deployment activities are rather recent. Production of maize, Pakistan’s third most important cereal crop, is projected to keep on increasing over the next several years. Despite growth, 85-90 percent of maize seed is imported hybrid seed, which means the seed price in Pakistan is very high compared to seed prices in other South Asian countries.

“The current seed price of US $6-8/kilogram is too expensive for resource-poor farmers to adopt improved varieties. That is why CIMMYT aggressively embarked on testing such a huge quantity of maize varieties. Pakistan is the new frontier for CIMMYT, and development interventions can have a quick impact,” said AbduRahman Beshir, CIMMYT’s Maize Improvement and Seed Systems Specialist.

At its recently held annual meeting (8-9 April 2015), the AIP-Maize Working Group invited public and private partners to share the field performance results of CIMMYT maize varieties introduced from Colombia, Mexico and Zimbabwe. Some of the entries evaluated during the 2014 spring and summer season outyielded the commercial check by more than 50 percent. Sikandar Hayat Khan Bosan, Federal Minister of Food Security and Research, applauded AIP-Maize’s efforts after visiting the maize stall where AIP-Maize displayed a diversity of maize ears at a recent agricultural expo.

“Pakistan’s maize sector is being activated by AIP-Maize. Location testing followed by provision of parental lines for local seed production is the kind of support we need to have sustainable interventions,” said Shahid Masood, member (Plant Sciences) of the Pakistan Agricultural Research Council (PARC) who presided over a maize working group with more than 45 participants.

Based on a seed delivery road map, CIMMYT has started allocating the best performing varieties to partners, with three varieties already included in Pakistan’s maize register. Imtiaz Muhammad, CIMMYT’s country representative in Pakistan and AIP project leader, urged participants in the maize working group meeting to fast-track the deployment of CIMMYT varieties and distribute seed to resource-poor farmers.

According to Beshir, Pakistan’s yearly bill for imported hybrid maize seed reached US $56 million during 2013/14, which makes maize the highest priced imported seed among all the cereals. “The foundation is now being laid to make Pakistan self-sufficient in maize seed,” he said.

AIP-Maize is currently working with nine public and nine private companies representing the diverse ecologies of Pakistan. The AIP-Maize network is a platform for data and knowledge sharing, which helps to create synergies among stakeholders.

Participants in the annual AIP-Maize Working Group meeting. Photo: Amina Nasim Khan/CIMMYT.
Participants in the annual AIP-Maize Working Group meeting. Photo: Amina Nasim Khan/CIMMYT.

Low-cost innovations to benefit smallholder farmers in Nepal

A new investment by the U.S. Agency for International Development (USAID) in the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP) was launched on 10 April, 2015 at a public event in Kathmandu. The investment by USAID India and USAID Washington, totalling US$ 4 million over four years, aims to work with the private and public sectors to benefit smallholder farmers by integrating scale-appropriate mechanization technologies with resource conservation and management best practices.

“For a country where 75 percent of the population makes its livelihoods in agriculture, these partnerships are absolutely important. Agriculture development, as we know, is one of the surest routes out of poverty,” remarked Beth Dunford, Mission Director, USAID Nepal at the launch. Eight million Nepalis still live in extreme poverty and almost 3 million Nepalis live in recurring food insecurity. “We also know that growth tied to gains in agricultural productivity is up to three times more effective at raising the incomes of the poor than growth from any other sector,” Dunford added.

The new phase of CSISA-NP, an initiative led by the International Maize and Wheat Improvement Center (CIMMYT), will build on successes and lessons learned from the ongoing work of CSISA Nepal, currently funded by USAID Nepal, and will continue to focus on districts in the mid-West and far-West regions of Nepal. It will complement USAID’s Feed the Future program, KISAN, which works to improve agricultural productivity and incomes for over one million Nepalis.

Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP new phase launch. Photo: Anuradha Dhar/CIMMYT
Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP
new phase launch. Photo: Anuradha Dhar/CIMMYT

The new workplan will be implemented in close collaboration with the Ministry of Agriculture and Nepal Agricultural Research Council, to strengthen seed value chains for timely access to improved varieties by farmers, promote sustainable intensification of agricultural systems through increasing lentil cultivation and better-bet management, increase wheat productivity using new technologies and better farming practices and facilitate precise and effective use of nutrients to increase crop yield.

A specific component of the new investment is designed to support and build the capacity of change agents like medium-sized seed companies, agro‐dealers and mechanized service providers. “Building on its success of working with the Indian private sector, CSISA will expand the program in Nepal to facilitate application of specialized, commercially-viable equipment for small and marginal farmers,” highlighted Bahiru Duguma, Director, Food Security Office, USAID India.

“CSISA supports more than 1,600 service providers in eastern Uttar Pradesh and Bihar in India and we want to replicate that success in Nepal of working with local entrepreneurs to help reach farmers with mechanized technologies,” said Andrew McDonald, CSISA Project Leader.

Rajendra Prasad Adhikari, Joint Secretary, Policy and International Cooperation Co-ordination Division, Ministry of Agricultural Development welcomed this initiative and said that this launch is very timely as the agricultural ministry has just developed and endorsed an agricultural mechanization promotion policy and the Nepal Agricultural Development Strategy is in its final shape.

The launch was well attended by representatives from the Nepal Ministry of Agriculture, Nepal Agricultural Research Council, Agriculture and Forestry University and USAID officials and received positive media coverage in Nepal.

Maize workshop sets stage for doubling production in India by 2025

The 58th All India Coordinated Annual Maize Workshop was held at Punjab Agricultural University (PAU) in Ludhiana, India during 4-6 April. The workshop brought together nearly 200 scientists in India working on maize research and development, as well as representatives from seed companies. The All India Coordinated Research Project (AICRP) on Maize was the first crop research project established in India in 1957 and served as a model for all following crop projects in the country.

Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.
Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.

“We need to double maize production and productivity in India through multi-institutional, multi-pronged strategies,” said B.M. Prasanna, director of CIMMYT’s global maize program, during the workshop’s keynote lecture. He went on to explain how “this can be achieved through germplasm enhancement, broadening the phenotyping scale and precision and accelerating breeding through doubled haploid technology, among other improved technologies and management practices.”

“The partnership between the Indian Council of Agricultural Research (ICAR) and CIMMYT over the last several decades has benefited the Indian breeding program immensely, from providing germplasm to receiving support for human resource development,” said O.P. Yadav, Director of the Indian Institute of Maize Research (IIMR). Yadav presented AICRP-Maize’s 2014 achievements, such as the release of 17 new varieties and national maize production reaching its highest level (24 million tons).

A panel discussion co-chaired by Prasanna and J.S. Sandhu, Deputy Director General-Crop Science at ICAR, entitled “Doubling maize production in India by 2025: Opportunities and Challenges” drew representatives from several public and private institutions working on maize. Prasanna and A.S. Khehra, former PAU Vice-Chancellor, were congratulated for their outstanding achievements in maize research, including the release of several improved maize varieties and advances in genetics and molecular breeding.

Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)
Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)

“Genetic gains must also translate to yield gains in farmers’ fields,” Prasanna declared. “We must effectively integrate improved varieties that meet the needs of farming communities with sustainable intensification practices.”

The workshop closed with an overview of achievements and finalization of a 2015 work plan, with scientists from AICRP-Maize Centres and CIMMYT providing input. Also in attendance were Gurbachan Singh, Chairman of India’s Agricultural Service Recruitment Board; BS Dhillon, Vice-Chancellor of PAU; SK Sharma, Chairman of IIMR’s Research and Advisory Committee; IS Solanki, Assistant Director of ICAR’s General-Food Crops; and S.K. Vasal, retired CIMMYT Distinguished Scientist.

New report highlights need for groundwater management solutions in Bangladesh

The recent report “Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities,” published by the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, reveals that water resource policy in Bangladesh has focused largely on development and not enough on management, draining aquifers in intensively irrigated areas and sustaining expensive subsidies for dry-season irrigation pumping.
Groundwater1

Unless water-use-efficient practices and policies are adapted and adopted, these challenges will become a serious threat to sustained agricultural growth in Bangladesh, according to Timothy Krupnik, CIMMYT agronomist and co-author in the study.

“Dry season rice production using irrigation helped Bangladesh to increase its total rice production from 18 million tons in 1991 to 33.8 million tons in 2013,” said Krupnik. “But this dramatic increase in rice production comes with costs – namely the high energy requirements to pump groundwater.”

Diesel pumps consume about 4.6 billion liters of diesel every year to lift groundwater for dry season rice production in Bangladesh, costing US $4 billion, in addition to U.S. $1.4 billion yearly of government energy subsidies for groundwater irrigation. These expenditures are unsustainable in the long-term, the report concludes, and counter to government policies to reduce energy subsidies and shift to cheaper, more energy-wise surface water irrigation.

The report highlights supply- and demand-side options for sustainable groundwater management. “Improving water-use efficiency through resource- conserving crop management practices such as direct-seeded rice and bed planting could help reduce groundwater demand from agriculture,” Krupnik said. “In surface water irrigated areas, farmers can use fuel-efficient axial flow pumps.” The CSISA-MI project is working with the private sector to help promote use of these pumps.
Groundwater2

Water demand can also be reduced by rationalizing cropping patterns; for example, shifting from rice to more profitable crops like maize, according to Krupnik. Involvement of consumers, investment in improved water and agricultural technologies and support for farmers are needed.

Since the concept of “more water-more yield” is still prevalent among farmers, the report also emphasizes the need for policy and educational programs aimed at wise water use and volumetric water pricing. In addition to technical solutions, strong linkages and improved communications among organizations involved in groundwater management will be required.

Climate-smart agriculture achievements inspire support for BISA-CIMMYT in Bihar, India

The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT
The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT

The Borlaug Institute for South Asia (BISA), CIMMYT and stakeholders are developing, adapting and spreading climate-smart agriculture technologies throughout Bihar, India. During the 2014-2015 winter season, BISA hosted visits for national and international stakeholders to view the progress of participatory technology adaption modules and climate-smart villages throughout the region.

“It is very encouraging to see the [BISA-CIMMYT’s] trials of new upcoming technology…We will be ready to support this,” wrote Dharmendra Singh, Bihar’s Director of Agriculture, in the visitor book during a state agriculture department visit to one of BISA’s research farms and climate-smart villages in Pusa. BISA, CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), in collaboration with local stakeholders and farmer groups, established 15 Borlaug climate-smart villages in Samastipur district and 20 in Vaishali district, as part of a 2012 research initiative to test various climate-smart tools, approaches and techniques.

Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT
Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT

“I could understand conservation agriculture better than ever after seeing the crop and crop geometry in the field today,” wrote Mangla Rai, former Director General of the Indian Council of Agricultural Research (ICAR) & Agriculture Advisor to the Chief Minister of Bihar. Raj Kumar Jat and M.L. Jat, CIMMYT cropping system agronomist and senior cropping system agronomist, respectively, showcased research trials on zero-tillage potato and maize, early-planted dual-purpose wheat, precision nutrient management in maize-wheat systems under conservation agriculture, genotype -by- environment interaction in wheat and crop intensification in rice-wheat systems through introduction of inter-cropping practices. Raj Kumar Jat also gave a presentation on how to increase cropping intensity in Bihar by 300% through timely planting and direct seeding techniques.

“Technologies like direct-seeded rice and zero-till wheat, which save both time and labor, should be adapted and transferred to Bihar’s farmers,” said Thomas A. Lumpkin, CIMMYT director general, at a meeting of the CIMMYT Board of Trustees with the Chief Minister of Bihar and other government representatives. “BISA is a key partner in building farmer and extension worker capacity, in addition to testing and promoting innovative agriculture technologies.”

The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT
The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT

“State agriculture officials should support BISA to hold trainings on direct-seeded rice for fast dissemination across Bihar,” agreed Vijay Chaudhary, Agriculture Minister of Bihar, at a BISA field day. Chaudhary along with 600 farmers and officials visited a climate-smart village where farmers plant wheat using zero tillage. Zero-till wheat is sown directly into soil and residues from previous crops, allowing farmers to plant seed early and to avoid losing yields due to pre-monsoon heat later in the season. Direct-seeded rice is sown and sprouted directly in the field, eliminating labor- and water-intensive seedling nurseries.

During the Bihar Festival, 22-24 March, BISA-CIMMYT showcased conservation agriculture practices and live demonstrations of quality protein maize-based food products, with over 10,000 famers and visitors participating. Vijoy Prakash, Agriculture Production Commissioner of Bihar, and other Bihar government officials discussed with farmers about new BISA-CIMMYT agriculture practices and emphasized the need to “introduce conservation agriculture in the state government’s agricultural technology dissemination program.” Prakash, along with government representatives, has approved two BISA proposals for a training hostel and research.

CIMMYT welcomes new board members

CIMMYT Board of Trustees April 2015
Photo credit: CIMMYT

How are New Board Members Appointed?

CIMMYT’s Board of Trustees is composed of 13 experts appointed in their individual capacity and not as a representative of any outside entity.

The process to appoint new members to the Board is conducted by the Nominations Committee, whose sole duty is to ensure a mix of skills on the Board at any one time, based on a skills matrix of CIMMYT’s required expertise. As a result, the Board will represent expertise in science (CIMMYT’s key areas of research), finance, audit, risk management, governance, international partnerships and gender and diversity. Board members are also appointed with consideration of their geographical origins. Each member is appointed for a three-year term, with a maximum limit of two terms.

The chair of the Nominations Committee leads the search for new Board members. This is done through a referencing system, rather than a formal and advertised search. Prospective candidates are approached formally and then interviewed by the Board. Newly-appointed Board members undergo an induction program conducted by CIMMYT and the CGIAR and attend their first meeting as an observer.

Dr. Feng Feng

Dr. Feng Feng
Photo credit: CIMMYT

Dr. Feng is currently the director of the Chinese Bureau of International Cooperation, NSFC. He is responsible for developing international cooperation channels with foreign partners, making policy for international research cooperation in NSFC, and setting the budget for the different research areas for international cooperation. He received his B.Sc. in plant genetics and breeding, and M.Sc. and Ph.D. in plant pathology from the Agricultural University of China.

Dr. Luis Fernando Flores Lui

Flores Lui
Photo credit: INIFAP

Dr. Flores Lui is General Director of the Mexican Institute of Forestry, Agriculture, and Livestock (INIFAP). Over the last 25 years he has held numerous positions within the organization. At an international level he has coordinated the biotechnology group at the Asia-Pacific Council (APEC); worked with the Japan International Cooperation Agency (JICA); and has taught undergraduate and graduate courses in different universities. He received his B.Sc. in Agricultural Engineering from the Antonio Narro Agrarian Autonomous University, his M.Sc. from Irrigation Water Use and Management in 1974 from the Monterrey Institute of Technology and Higher Education and his Ph.D in Soil Sciences from the University of California, Davis.

Dr. Raul Obando Rodriguez
Photo credit: INIFAP

Dr. Raúl Gerardo Obando Rodríguez
Dr. Rodriguez is the Coordinator for Research and Innovation at the National Institute of Forestry, Agriculture and Livestock (INIFAP). He is an Agricultural Engineer by trade with a PhD in Plant Nutrition at the University of California, Davis. He has held various positions in in INIA, INIFAP, the National Coordinator of the Produce Foundation (COFUPRO), the National System for Research and Technology Transfer (SNITT) and the Graduate College (COLPOS), to name a few.

Bongiwe Nomandi Njobe

Bongiwe Nomandi
Photo credit: CIMMYT

Bongiwe Njobe is Executive Director (founder and sole proprietor) of ZA NAC Consulting and Investments. Over the past 20 years she has held numerous positions in the Fast Moving Consumer Goods Sector (FMCG) sector and the Agricultural Public Sector including Group Executive: Corporate Sustainability at Tiger Brands Limited, Corporate Affairs Director at South African Breweries Limited and Director General at the South African National Department of Agriculture. She currently serves as a Director on the Vumelana Advisory Fund, Independent Board Member on the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM) and as a Trustee at the Kagiso Trust. She is also a member of the High Level Advocacy Panel for the Forum for Agricultural Research in Africa (FARA) and a member of the Institute of Directors (Southern Africa) Sustainability Development Forum.

Developing hybrids across the board at CIMMYT

Photo credit: CIMMYT
Photo credit: CIMMYT

When a CIMMYT scientist discusses developing hybrids, the first thought that comes to mind is probably new variety of drought tolerant maize.

However, CIMMYT engineers in the global conservation agriculture program are producing a whole different set of hybrids in the fields of El Batán, Mexico. At CIMMYT Day, Jelle Van Loon, Leader of Smart Mechanization and Machinery Innovation, explained the importance of creating “hybrids” of already existing machinery to meet the demands of farmers regionally.

Taking into consideration a varying range of crops, soils and climates, farmers not only need the correct seed, but also the proper technologies to work in their prospective environments. Looking at existing and functional machinery from different parts of the world, like China, Brazil, USA and India, Van Loon and his team are able to convert the machines to make them suitable for use in Mexico, for Mexican farmers.

“It is all a learning experience,” explained Van Loon to his CIMMYT colleagues. “We have to go into the fields and see what is working for these farmers. We have to meet their needs.” This is the very basis for the CIMMYT’s Take it to the Farmer initiative, which is designed to offer advice on a personal level and make innovations readily available to Mexican farmers.

Innovation key to wheat yield potential advances, says in-coming CIMMYT DG

Photos: Alfredo Sáenz/CIMMYT
Outgoing CIMMYT Director General Thomas Lumpkin, incoming CIMMYT Director General Martin Kropff, Nynke Nammensma and Jeannie Laube Borlaug (L to R) chat during Visitors’ Week in Obregon, Mexico. CIMMYT/Alfredo Sáenz

CIUDAD OBREGON, Mexico (CIMMYT) — Martin Kropff, who will take the helm as director general of the International Maize and Wheat Improvement Center (CIMMYT) in June, joined scientists, and other members of the global wheat community at the CIMMYT experimental research station near the town of Ciudad Obregon in Mexico’s northern state of Sonora for annual Visitors’ Week.

Following a tour of a wide range of research projects underway in the wheat fields of the Yaqui Valley made famous around the world by the work of the late Nobel Peace Prize winner Norman Borlaug, who died in 2009 at age 95, Kropff shared his views.

Borlaug led efforts to develop high-yielding, disease-resistant, semi-dwarf wheat varieties in the mid-20th century that are estimated to have helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

“I’m very impressed by what I’ve seen in Obregon,” said Kropff, who is currently chancellor and vice chairman of the executive board of Wageningen University and Research Center in the Netherlands.

“From the gene bank in El Batan, the breeding and pre-breeding and the work with farmers on a huge scale, it’s extremely high quality and innovative,” added Kropff, who with his wife Nynke Nammensma also visited CIMMYT’s El Batan headquarters near Mexico City earlier in the week.

“The MasAgro program is very impressive because it takes the step of integrating scientific knowledge with farmers’ knowledge – it’s a novel way to aid farmers by getting new technology working on farms at a large scale. It is a co-innovation approach,” Kropff said.

The Sustainable Modernization of Traditional Agriculture, led by country’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and known locally as MasAgro, helps farmers understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields and sustainably increase profits.

“The program is an example of how farmers, scientists and other stakeholders can think about and create innovations through appropriate fertilizer applications, seed technologies and also through such instruments as the post-harvesting machines,” Kropff said.

“This is fantastic. That’s what the CGIAR is all about.”

Left to right: Tom Lumpkin, John Snape and Martin Kropff.
Thomas Lumpkin, John Snape and Martin Kropff (L to R). CIMMYT/Alfredo Sáenz

“The HarvestPlus program, which adds more zinc and iron into the crop through breeding, also plays a key role in CIMMYT’s research portfolio,” Kropff said.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization. Enhancing the micronutrient content in wheat through biofortification is seen as an important tool to help improve the diets of the most vulnerable sectors of society.

The climate change adaptation work he observed, which is focused on drought and heat stress resilience is of paramount importance, Kropff said.

Findings in a report released last year by the Intergovernmental Panel on Climate Change state it is very likely that heat waves will occur more often and last longer throughout the 21st Century and that rainfall will be more unpredictable.

Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the   report said.

“To safeguard food security for the 9 billion people we’re expecting will populate the planet by 2050, we need innovations based on breeding, and solid agronomy based on precision farming,” Kropff said.

“There’s no other organization in the world that is so well designed as the CGIAR to do this type of work. CIMMYT is the crown jewel of the CGIAR together with the gene banks. No other organization can do this.”

“We’ve done a lot of work in getting higher yields, but not much through increased yield potential, and that’s what we have to work on now,” he added.

“If you raise the yield through agronomy, you still need to enhance yield potential and there’s very good fundamental work going on here.”

“The partnerships here are excellent – scientists that are here from universities are as proud as CIMMYT itself about all the work that is being done. I’m really honored that from 1 June, I have the opportunity to be the director general of this institution. I cannot wait to get started working with the team at CIMMYT and I’m extremely grateful for the warm welcome I’ve received – a smooth transition is already underway.”

Follow Martin Kropff on Twitter @KropffMartin

CIMMYT joins global move to adopt climate-smart agriculture

Photo: Marcelo Ortiz/CIMMYT
Photo: Marcelo Ortiz/CIMMYT

Climate-smart agriculture can be “an effective tool to address climate change and climate variability,” according to Kai Sonder, head of CIMMYT’s geographic information systems (GIS) unit, who was one of 754 participants from 75 countries, including 39 CIMMYT representatives, at the third annual Global Science Conference on Climate-Smart Agriculture, held in Montpellier, France, during 16-18 March.

“Challenges are different for developing and developed countries, but climate change is affecting all of us,” said Sonder. Millions of smallholder farmers in developing countries have less than one hectare of land, earn less than USD $1 per day and are highly vulnerable to extreme climatic events. Many farmers in developed countries struggle to make a living, are dependent on subsidies and insurance payouts and are also highly vulnerable to extreme climatic events.

Modern agriculture, food production and distribution are major contributors of greenhouse gases, generating about one-quarter of global emissions. Climate-smart agriculture addresses the interlinked challenges of food security and climate change by sustainably increasing agricultural productivity, building resilience in food-production systems and reducing greenhouse gas emissions in agriculture.

Challenges and areas where climate-smart agriculture has yet to take hold were addressed at the conference. “California has not practiced it for 50 years and is now dealing with the consequences of poor groundwater management,” said Sonder. “Likewise, Ciudad Obregón and Sinaloa in Mexico are fully-irrigated areas in the middle of a desert where climate-smart practices need to be implemented on a larger scale based on CIMMYT’s activities with local partners.”

Progress and exhibitions on climate-smart agriculture projects were also showcased. “This is becoming an integral part of CIMMYT work, as climate conditions increasingly disrupt growing seasons,” Sonder said. “MasAgro is looking at water and nutrient efficiency in Mexico, and CIMMYT is developing maize and wheat varieties that are tolerant to stresses like heat and drought and their combinations,” said Sonder. In collaboration with the CGIAR Research Program on Climate Change, Food Security and Agriculture (CCAFS), CIMMYT has also piloted 27 climate-smart villages in Haryana, India, which will disseminate key climate-smart agricultural interventions.

The conference also allowed potential partners to meet and identify areas for future cooperation. Sonder mentioned interactions with Jacob van Etten, Senior Scientist at Bioversity International, who works on climate change and climate-smart agriculture in Costa Rica and uses iButton sensors to measure climate data in the field. “Such cheap and effective devices can allow us to reach more places, and I’d like to use them to monitor storage and humidity conditions in metal silos for CIMMYT’s Effective Grain Storage Project in eastern and southern Africa, as well as in the postharvest activities of MasAgro in Mexico,” said Sonder

Global partnership propels wheat productivity in China

Benefits of three decades of international collaboration in wheat research have added as much as 10.7 million tons of grain – worth US $3.4 billion – to China’s national wheat output, according to a study by the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Science.

Described in a report published on 30 March by the CGIAR Research Program on Wheat, the research examined China’s partnership with CIMMYT and the free use of CIMMYT improved wheat lines and other genetic resources during 1982-2011. The conclusions are based on a comprehensive dataset that included planted area, pedigree, and agronomic traits by variety for 17 major wheat-growing provinces in China.

“Chinese wheat breeders acquired disease resistant, semi-dwarf wheat varieties from CIMMYT in the late 1960s and incorporated desirable traits from that germplasm into their own varieties,” said Dr. Jikun Huang, Director of CCAP and first author of the new study. “As of the 1990s, it would be difficult to find anything other than improved semi-dwarf varieties in China. Due to this and to investments in irrigation, agricultural research and extension, farmers’ wheat yields nearly doubled during 1980-95, rising from an average 1.9 to 3.5 tons per hectare.”

The new study also documents increasing use of CIMMYT germplasm by wheat breeders in China. “CIMMYT contributions are present in more than 26 percent of all major wheat varieties in China after 2000,” said Huang. “But our research clearly shows that, far from representing a bottleneck in diversity, genetic resources from CIMMYT’s global wheat program have significantly enhanced China varieties’ performance for critical traits like yield potential, grain processing quality, disease resistance and early maturity.”

WILL CHINA WHEAT FARMING RISE TO RESOURCE AND CLIMATE CHALLENGES?

Photo: Mike Listman/CIMMYT
Photo: Mike Listman/CIMMYT

The world’s number-one wheat producer, China harvests more than 120 million tons of wheat grain yearly, mainly for use in products like noodles and steamed bread. China is more or less self-sufficient in wheat production, but wheat farmers face serious challenges. For example, wheat area has decreased by more than one-fifth in the past three decades, due to competing land use.

“This trend is expected to continue,” said Huang, “and climate change and the increasing scarcity of water will further challenge wheat production. Farmers urgently need varieties and cropping systems that offer resilience under drought, more effective use of water and fertilizer, and resistance to evolving crop diseases. Global research partnerships like that with CIMMYT will be vital to achieve this.”

Dr. Qiaosheng Zhuang, Research Professor of Chinese Academy of Agricultural Science (CAAS) and a Fellow of Chinese Academy of Science, called the new report “…an excellent, detailed analysis and very useful for scientists and policy makers. CIMMYT germplasm and training have made a momentous contribution to Chinese wheat.”

Tribute to Dr. Norman E. Borlaug on his 101st birth anniversary

BISA director general garlanding
Dr. Borlaug’s statue. Photo: Meenakshi Chandiramani

Borlaug Institute for South Asia (BISA) and CIMMYT India staff members gathered together at NASC Complex, New Delhi to pay tribute to the late Dr. Norman E. Borlaug on what would have been his 101st Birth Anniversary on 25 March. HS Gupta, director general, BISA, garlanded Borlaug’s statue, in front of the office block at NASC Complex. Staff members offered flowers in respect to the Nobel Laureate. Gupta apprised the staff members about Borlaug’s great contributions, including high-yielding wheat varieties which helped solve hunger around the world and particularly in South Asia. BISA and CIMMYT staff members resolved to work hard and follow Borlaug’s footsteps.

BISA and CIMMYT staff pay tribute to Norman Borlaug, in the shadow of his statue and accomplishments. Photo: Meenakshi Chandiramani
BISA and CIMMYT staff pay tribute to Norman Borlaug, in the shadow of his statue and accomplishments. Photo: Meenakshi Chandiramani

Mobile app will power GreenSeeker use in South Asia

On-field App launch. Photo: CIMMYT-BISA
On-field App launch. Photo: CIMMYT-BISA

CIMMYT and the Borlaug Institute for South Asia (BISA) have jointly developed and launched an application for Android called “N Calculator,” to support smallholder farmers using the GreenSeeker, a compact sensor to quickly assess crop vigour and calculate optimal fertilizer dosages. Held in the CIMMYT-CCAFS climate-smart village (CSV) Noorpur Bet of Ludhiana, Punjab, India, the launch was led by John Snape, CIMMYT Board Chair.

The Greenseeker ensures accurate and balanced nitrogen fertilizer applications, cutting farmers’ costs, reducing nitrification and nitrogen runoff into groundwater and water systems, and raising crop yields. But smallholder farmers often lack the training to interpret the raw data from the GreenSeeker. N Calculator automatically calculates the best nitrogen and urea rate using normalized difference vegetation index (NDVI) values from GreenSeeker, and right on a mobile handset.

“The application will help scale out GreenSeeker technology and precision nitrogen management in wheat-based systems in South Asia, among other things reducing emissions of nitrous oxide, a potent greenhouse gas,” said M.L. Jat, CIMMYT cropping systems agronomist. “It will also be critical for extension agents to scale out climate-smart agriculture practices across the region.”

Delegates including the BISA Executive Committee and national scientists interacted with farmers and members of farmer cooperatives who are actively disseminating climate-smart agriculture practices.

Participants included S. Ayyapan, DG (ICAR); Thomas A Lumpkin, director general, CIMMYT; Marianne Bänziger, deputy director general for research and partnerships, CIMMYT; Nicole Birrel, CIMMYT board member; Anthony De Sa IAS, Chief Secretary of Madhya Pradesh; B.S. Dhillon, Vice Chair of Punjab Agricultural University (PAU); Suresh Kumar, Additional Chief Secretary of Punjab; B.S. Sidhu, Agriculture Commissioner of Punjab; and H.S. Gupta, Director General, BISA.

“First Lady of Wheat” in Mexico to celebrate her father, Norman Borlaug

The late wheat breeder Norman Borlaug was so dedicated to his work that he was away from home 80 percent of the time, either travelling or in the field, recalls his daughter, Jeanie Borlaug Laube.

Photo: Alfredo Sáenz/CIMMYT

Scientist Borlaug, who died in 2009 at age 95, led efforts in the mid-20th century to develop high-yielding, disease resistant, semi-dwarf wheat varieties that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

Wheat breeders, scientists and members of the global food security community celebrated his birthday at a week-long meeting hosted by CIMMYT in the vast wheat fields of the Yaqui Valley near the town of Ciudad Obregón in Mexico’s northern state of Sonora.

Each year, CIMMYT Visitors’ Week serves as an opportunity to brainstorm, exchange ideas and celebrate Borlaug’s legacy on the anniversary of his birthday.

Borlaug, who would have been 101 this year, started work on wheat improvement in the mid-1940s near CIMMYT headquarters outside Mexico City.

He was awarded the Nobel Peace Prize in 1970 partly for his experimental work, much of which took place in the hot, dry conditions of Obregón, which resemble conditions in many developing countries where CIMMYT works.

This year, his daughter, who is co-chair of the Borlaug Global Rust Initiative, a partnership to study and and control devastating stem, yellow and leaf wheat rust disease, spoke on women and agriculture at the event. She is also involved with the Jeanie Borlaug Laube Women in Triticum Mentor Award, which honors mentors of both genders who aid women working in Triticum species and near relatives. Additionally, she sits on the board of directors of the Borlaug Training Foundation, established to provide agricultural education and guidance to scientists from developing nations.

She shared her views in the following interview.

Q: What is your current involvement in agriculture?

I’m not officially in agriculture – I’m a Spanish teacher. I taught for 40 years in high school until I retired three years ago. In the last 25 years of my career I had started a community service program at two different schools in Dallas and ran it. This involves 750 kids a year out doing community service. I still taught one Spanish class but my basic job was community service director. I haven’t been involved in agriculture directly. Indirectly, I have been because I was Norman Borlaug’s daughter so I’ve been around it, but I wasn’t raised on a farm, never lived on a farm, didn’t study agriculture or science in school.

What is your current involvement with wheat?

I’m co-chair of the Borlaug Global Rust Initiative – I go to the conferences once a year where all the wheat scientists of the world get together. I go to all the conferences and sit and listen and try to learn and follow what is going on with rust and the different problems they are having with wheat. I’m involved with the Women in Triticum Award. I visit and follow up with them and they are the ones who are out in the field learning how to become scientists and continue the profession. That’s how I’m involved in wheat.

Q: What are your views on women in agriculture?

I was in Pakistan last year and the U.S. Department of Agriculture set up a meeting with women who were all scientists working on their doctoral degrees – or already had a Ph.D. in agriculture. The discussions were very interesting as far as the difficulties that women find in this field and the pluses and minuses that are involved with that. It was interesting to hear different aspects of what they were feeling. The academic studies were not a difficult thing for them, but the reality of raising a family and keeping a profession going and taking care of a husband or children at the same time as being away from home presented problems.

No matter what profession women are in, challenges confront them because we have to multi-task. It doesn’t matter whether you are an accountant, a geneticist or a teacher – as a mother or trying to run a family and a profession, I think it’s challenging for a lot of women.

Q: What impresses you about women in agriculture?

I’m always amazed at the women scientists who are out there working at these wheat conferences and out in the in the field and taking care of their families from afar or even before they get married or have children, just the dedication they have to helping feed the world.

Q: What are your views on food security?

I don’t think the general population has any clue as to what goes on with agriculture. As my dad used to say, everybody just thinks the food comes from the grocery store and that’s where it is – it just pops in there. The average person doesn’t have a clue about that.

Q: What has changed since your father’s time?

I imagine he’d be facing the same challenges. I think it would be really interesting if he were still around because he’d be going crazy right now with all of this fighting about gluten-free and over genetically modified plants. He was so dedicated. His mission was to feed the world.

I think it is still the same mission. I think it is probably just a little harder because you have more public opinion and lack of info for what you need. He was changing genes and they are still doing that and they need to because they need to find plants that require less fertilizer and less water and provide more protein. What is amazing to me is to think about how they are working with computers now and he did all this in his head with notebooks.

He’d leave home at five in the morning and get home at eight at night. When he was in town he was gone about 80 percent of the time. When he first started this shuttle breeding program he’d come to Sonora. That was in the 40s – he had to go up through Arizona and back down at first because there were no roads. He’d be up here for three months, then he’d go back down, then he’d go to Toluca and South America, then he started going to India and Pakistan. In later years he was going Africa, so he was never home.

Q: Where did you grow up?

I was raised in Mexico City. My brother was born in Mexico and I came here when I was 14 months old. I lived here until I went to college. I did my schooling down here.

 

Q: Did your father try and encourage women in science and agriculture?

Yes he did. Back then there weren’t very many women in agriculture and scence. I think he’d be very pleased to see the turn with what’s happening with women in agriculture.

Q: What is it like celebrating your father?

It’s really neat. When my dad realized that he was going to die he asked me to bring ashes back to Mexico so I did. The last two years we came before he died, we came in a private jet because he couldn’t travel. It was so hard to get here. I remember I looked at his face as we were approaching Obregón. His face was just pure relief. He loved this place and he’d see the wheat fields and it was magical for him. Coming back is kind of bittersweet, realizing how much he loved the farmers too as they loved him.

Research highlights solutions for groundwater management in Bangladesh

Groundwater-report

A recent research report ‘Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities’, published by the USAID Feed the Future Funded Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, highlights that the policy focus in Bangladesh so far has been largely on ‘resource development’ and not sufficiently on ‘resource management.’ This has resulted in drawdown of aquifers in intensively irrigated areas and high expenditure on subsidies to support the energy costs of pumping water for dry season irrigation. Unless water use efficiency practices and policies are adapted and adopted, these challenges in groundwater irrigation can become a serious threat to sustain agricultural growth in Bangladesh.

“Dry season rice production using irrigation helped Bangladesh to increase its total rice production from 18 million tons in 1991 to 33.8 million tons in 2013. However, this dramatic increase in rice production comes with costs – namely the high energy requirements needed to extract groundwater by pumps, which is a concern giving mounting fuel and electricity prices in South Asia” said Timothy Krupnik, CIMMYT Agronomist and co-author in this study.

Diesel pumps consume about 4.6 billion litres of diesel every year to pump groundwater for dry season rice production, costing USD 4.0 billion. This cost is in addition to USD 1.4 billion of yearly energy subsidies supplied by the Government of Bangladesh (GoB) to maintain groundwater irrigation. Such considerable investments add to the energy cost burden, and may not be financially sustainable in the long-term, the report says. This conclusion is underscored by the GoB’s interest to reduce energy subsidies and shift from ground to surface water irrigation, which is energy-wise less expensive.

The report highlights several supply- and demand-side solutions for sustainable groundwater management. Improving water use efficiencies through the adoption of resource conserving crop management practices such as direct-seeded rice and bed planting could help in reducing groundwater demand for agriculture. In surface water irrigated areas, use of more fuel efficient axial flow pumps that the CSISA-MI project is working with the private sector to scale out, is also crucial.

Water demand for irrigation can also be reduced by rationalizing cropping patterns – specifically by shifting from rice to more profitable crops like maize, and to other food security cereals like rice, in areas where groundwater is a concern. Involvement of water users, investments in improved water and agricultural technologies, and providing extra support for farmers making transition to less water demanding crops is needed.

Since the concept of ‘more water-more yield’ is still prevalent among farmers, the report also highlights the need for policy to focus more on awareness raising through educational programs aimed at wise water use and volumetric water pricing. In addition to technical solutions, strong linkages and improved communications between different organizations involved in the management of groundwater resources will also be required to shift to a more water productive, and less costly, agricultural production system in Bangladesh.

 

Happy Seeder, happy farmers: tillage in a single pass

Gulshad Nabi (Chand) is a progressive farmer from Chak Dahir, Tehsil Muridke in the Sheikhupura District of Punjab Province, Pakistan. He cultivates wheat and basmati rice, which constitute his family’s only source of livelihood. Heavy tillage and burning of rice residues are the common practices for growing wheat in the region, resulting in the loss of soil nutrients, air pollution and poor food security and livelihoods for farmers like Gulshad.

Farmer Chand sharing his experience with Sikandar Hayat Bosan (left), Pakistan’s Federal Minister of Food Security & Research.Photo: Amina Nasim Khan
Farmer Chand sharing his experience with Sikandar Hayat Bosan (left), Pakistan’s Federal Minister of Food Security & Research.
Photo: Amina Nasim Khan

The Agricultural Innovation Program (AIP), led by CIMMYT and funded by USAID, has begun testing with Punjab farmers the Zero-Tillage Happy Seeder, which sows wheat seed with fertilizer directly into the residues of the preceding rice crop in one pass and without tillage. “This practice offers a more sustainable and productive way to manage rice residues and raise wheat yields,” said Imtiaz Hussain, CIMMYT cropping systems agronomist. “It allows earlier sowing of wheat, which increases yields, and dramatically cuts the time, labor and fuel needed to plant wheat, which normally requires as many as seven tractor passes. Because the rice residues decompose on the soil rather than being burned, there is less pollution.”

In Sheikhupura District and in partnership with Engro EXIMP AgriProducts Private Limited, CIMMYT has promoted the seeder with 13 progressive farmers, including Nabi, who also received technical training in its use and in conservation agriculture practices and benefits.

After the training, Nabi used the seeder to sow wheat on just over three hectares without burning rice residues and saving more than 260 liters of diesel. At the Pakistan Agriculture Conference and Expo in Islamabad, Nabi described his experience to Mr. Sikandar Hayat Bosan, Federal Minister of Food Security & Research. “CIMMYT helped me improve my farming practices. The crop growth is great. Planting wheat with the Zero Tillage Happy Seeder is a new experience – a very modern practice that saves my time and resources,” said Nabi.