Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

For development expert Paula Kantor, gender equality was crucial

1400EL BATAN, Mexico (CIMMYT) – Paula Kantor had an exceptionally sharp, analytical mind and a deep understanding of how change can empower men and women to give them greater control over their own lives, helping them shape their future direction, said a former colleague.

Kantor, a gender and development specialist working with the International Maize and Wheat Improvement Center (CIMMYT), died tragically on May 13 at age 46, in the aftermath of a Taliban attack on the hotel where she was staying in Kabul, Afghanistan.

At the time, she was working on a new CIMMYT research project focused on understanding the role of gender in the livelihoods of people in major wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

The aim of the three-year project, supported by Germany’s Federal Ministry for Economic Cooperation and Development (BMZ), is to find out how wheat research-and-development can contribute to gender equality in conservative contexts so that, in turn, gender equality can contribute more to overall development.

“Paula’s research was targeting a very large populace facing serious threats to both food security and gender equality,” said Lone Badstue, gender specialist at CIMMYT, an international research organization, which works to sustainably increase the productivity of maize and wheat to ensure global food security, improve livelihoods and reduce poverty.

“Paula had vast experience – she spent most of her working life in these contexts – in very patriarchal societies – and had a great love for the people living in these regions. She also had a deep understanding of what she felt needed to change so that both men and women could have a better chance to influence their own lives and choose their own path.”

Kantor, a U.S. citizen, was no stranger to Afghanistan. Several years before joining CIMMYT, she had been based in Kabul where she worked as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency, from 2008 to 2010.

The project Kantor was working on at the time of her death builds on the idea that research and development interventions should be informed by a socio-cultural understanding of context and local experience, Badstue said.

Ultimately, this approach lays the groundwork for a more effective, equitable development process with positive benefits for all, she added.

WHEAT AND GENDER

Globally, wheat is vital to food security, providing 20 percent of calories and protein consumed, research shows. In Afghanistan, wheat provides more than half of the food supply, based on a daily caloric intake of 2,500 calories, while in Pakistan wheat provides more than a third of food supply, and in Ethiopia it provides about 13 percent of calories, according to the U.N. Food and Agriculture Organization (FAO) and the Global Food Security Index. These data do not reflect gender disparity with regard to food access.

In Afghanistan, Ethiopia and Pakistan, the central role of wheat in providing food security makes it an important part of political stability. Overall, gender inequality and social disparities have a negative impact on general economic growth, development, food security and nutrition in much of the developing world, but particularly in these three countries, Badstue said.

Women make up between 32 to 45 percent of economically active people in agriculture in the three countries, which are classified by the U.N. Development Programme’s Gender Inequality Index in the “low human development” category.

Although women play a crucial role in farming and food production, they often face greater constraints in agricultural production than men, Badstue added.

Additionally, rural women are less likely than men to own land or livestock, adopt new technologies, access credit, financial services, or receive education or extension advice, according to the FAO.

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

“Addressing gender disparities between women and men farmers in the developing world offers significant development potential,” Badstue said.

“Improvements in gender equality often lead to enhanced economic efficiency and such other beneficial development outcomes as improved access to food, nutrition, and education in families.”

METICULOUS RESEARCHER

Paula was brilliant,” Badstue said. “She had a clear edge. She was someone who insisted on excellence methodologically and analytically. She was very well equipped to research issues in this context because of her extensive experience in Afghanistan, as well as her considerate and respectful manner.”

Kantor’s involvement in “Gennovate,” a collaborative, comparative research initiative by gender researchers from a series of international agricultural research centers, was also critical, Badstue said.

The group focuses on understanding gender norms and how they influence the ability of people to access, try out, adopt or adapt new agricultural technology. Kantor provided key analytical and theoretical guidance, inspiring the group to take action and ensure that Gennovate took hold.

Kantor’s work went beyond a focus on solving practical problems to explore underlying power differences within the family or at a local level.

“Agricultural technology that makes day-to-day work in the field easier is crucial, but if it doesn’t change your overall position, if it doesn’t give you a voice, then it changes an aspect of your life without addressing underlying power dynamics,” Badstue said.

“Paula was trying to facilitate lasting change – she wasn’t banging a particular agenda, trying to force people into a particular mind-set. She was really interested in finding the space for manoeuver and the agency of every individual to decide what direction to take in their own life. She was a humanist and highly respected throughout the gender-research community.”

Before joining CIMMYT, Kantor served as a senior gender scientist with the CGIAR’s WorldFish organization for three years from 2012. She also worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

A funeral mass will be held for Paula Kantor at 11 a.m. on June 11, 2015 at St Leo the Great Catholic Church in Winston Salem, North Carolina. 

CIMMYT will hold a memorial service for Paula Kantor on Friday, June 12, 2015 at 12:30 p.m. at its El Batan headquarters near Mexico City. 

First international training workshop on farming systems analysis in India

The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.

Workshop participants and facilitators. Photo: CIMMYT
Workshop participants and facilitators. Photo: CIMMYT

Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.

The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago López Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.

“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”

D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.

A book on sustainable intensification was released. Photo: CIMMYT
A book on sustainable intensification was released. Photo: CIMMYT

Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.

The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.

WPEP strengthens farmer knowledge of wheat seed production in Pakistan

Seed certification officer introducing certified seed production, Swabi District, KP Province. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province
Seed certification officer introducing certified seed production, Swabi District, KP Province. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province

The Wheat Productivity Enhancement Program (WPEP), led by CIMMYT and funded by the United States Department of Agriculture (USDA), held technical training sessions on wheat seed production from March to May 2015 for farmer enterprise groups (FEGs) in Pakistan’s Khyber Pakhtunkhwa (KP) Province. The training was held in collaboration with the Outreach Programme of the Agriculture Research System in KP Province, which formed the FEGs, each comprising 30-35 persons including farmers, seed dealers and seed company representatives.

Wheat ranks first among the food crops of KP Province and is grown mainly on a rainfed area covering 0.729 to 0.776 million hectares. Compared to the rest of Pakistan, KP Province has low yields due to water scarcity, weak extension services and low adoption of recommended technologies, including improved varieties. The public seed sector produces only 5-8 percent of all wheat seed planted in the province, leaving a large gap for private sector investment in wheat seed production and improvement.

More than 92 percent of farmers plant their own wheat seed, which is of inferior quality. Farmers need to be trained to produce quality seed to plant in their own fields and share with neighboring farmers. In response, WPEP has engaged all wheat breeders at KP partner institutes and seed regulatory agencies to enhance production of early generation seed of both advanced lines and released varieties. WPEP also carries out seed demonstrations and variety popularization trials in farmers’ fields to create awareness about new varieties and production technologies.

Training participants at the Agriculture Research Institute Tarnab, Peshawar. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province
Training participants at the Agriculture Research Institute Tarnab, Peshawar. Photo: Bashir Ahmed/Programme of Agriculture Research System in KP Province

Five training courses were held at the Cereal Crops Research Institute (CCRI), Pirsabak, the Agriculture Research Stations at Buner and Mansehra, and Bamkhail-Swabi and Tarnab-Peshawar Research Institutes. The training enabled FEGs to learn of quality seed and update their knowledge on seed production, seed laws, seed storage, the most recent high-yielding varieties, available seed sources and varietal identification. They also learned about wheat stem rust disease and rust resistant varieties that have been planted in KP by public and private seed companies and also on farmers’ fields. Other subjects included varietal testing and evaluation, the release, registration and approval system, variety maintenance, and production of pre-basic and basic certified seed.

Trained FEGs are expected to become registered private or public sector seed growers in the future. Building the capacity of FEGs will strengthen farming communities, improve farmers’ incomes and increase wheat productivity throughout the KP region.

UAVs provide researchers in NW China with a new view of agriculture

The DJI Spreading Wings S900 Hexo-copter fitted with an MKII Canon SLR Visual Camera flying over winter wheat near Wuzhong City, China. Photo: Jack McHugh/CIMMYT
The DJI Spreading Wings S900 Hexo-copter fitted with an
MKII Canon SLR Visual Camera flying over winter wheat
near Wuzhong City, China. Photo: Jack McHugh/CIMMYT

We have come a long way when it comes to obtaining aerial images of our research sites. My colleagues and I once used helium-filled balloons and twin cameras to obtain infrared and color images in an all-day operation; now we use unmanned aerial vehicles (UAVs) fitted with high-resolution lenses and multispectral cameras to take dozens of images over large areas in a matter of minutes.

Farmers and researchers need to know every square meter of their fields, to determine spatial variability, take remedial action and implement adaptive controls and responses. UAVs can achieve this without anyone setting foot in the field. In an era where we are time- and resource-poor, we can accurately assess the health of entire fields in mere minutes, which could have an enormous impact on agriculture.

However, in Northwestern China, the notion of using UAVs to take aerial pictures in an agricultural setting evokes suspicion, elicits numerous questions and is extremely novel.

The way it was in 2007. Troy Jensen and Amjed Hussain of the University of Southern Queensland, utilizing a helium-filled balloon for aerial imagery of a cabbage research trial in SE Queensland. Photo: Troy Jensen
The way it was in 2007. Troy Jensen and
Amjed Hussain of the University of Southern
Queensland, utilizing a helium-filled balloon
for aerial imagery of a cabbage research trial
in SE Queensland. Photo: Troy Jensen

As a result, we have to provide detailed explanations and gain permission from a number of local authorities before we can undertake what is a simple non-invasive task that would normally go unnoticed on a farm in Australia or Mexico.

CIMMYT-China’s Global Conservation Agriculture Program (GCAP) and the Ningxia Academy of Agricultural Sciences obtained permission from the Wuzhong City Agricultural Mechanization Bureau to fly a UAV. Earlier this month, my colleague Mr. Zhang Xuejian, Director of the Information Research Institute, enlisted a local UAV operator to take images of conservation agriculture, relay cropping and wheat variety trials at a demonstration site near Wuzhong City in Ningxia Hui Autonomous Region.

Although the Information Research Institute has a fixed-wing UAV with sophisticated imagery equipment, the system is somewhat dated and requires extensive documentation, a landing strip and up to six operators. However, the GCAP-Ningxia Academy of Agricultural Sciences collaboration recently demonstrated the flexibility, capability and efficiency of a modern, multi-rotary wing UAV that rapidly produces imagery and readily displays agronomic traits, farm management and genetic responses not easily appreciated or identified at ground level. Given the success of this demonstration, we will seek funding to buy a new aircraft and develop proximal sensing and imagery within the region.

Smallholder farmers need accurate, inexpensive, readily-available data to increase production, but have traditionally not had access to precise spatial information due to time, money and labor constraints. UAVs can collect visual, thermal and hyperspectral data, which when analyzed provide a broad range of information that would otherwise be unavailable. UAV imagery can also focus on specific biotic and abiotic issues such as diseases, crop stress and farm management. UAV technology would provide breeders and agronomists in NW China not only a new view of agriculture, but also a new path to achieving increased production and food security, while conserving natural and human resources.

View-sky

HTMA offers stress-resilient maize hybrids to meet Bangladesh’s growing demand

CIMMYT’s Heat Stress Tolerant Maize for Asia (HTMA) project held a hybrid maize field day during 21-22 April  at the Bangladesh Agricultural Research Institute’s (BARI) Regional Agricultural Research Stations (RARS) in Khoirtola, Jessore and Gazipur. The event was attended by over 60 participants, including local maize farmers, Bangladeshi seed company representatives, agricultural input dealers, Bangladesh government seed system officers and BARI maize researchers.

Rafiqul Islam Mondal, BARI Director General, addressing the participants in HTMA’s hybrid field day held in Jessore, Bangladesh. Photo: BARI.
Rafiqul Islam Mondal, BARI Director General, addressing the participants
in HTMA’s hybrid field day held in Jessore, Bangladesh. Photo: BARI.

Maize is the third most important food crop in Bangladesh after rice and wheat, covering from 3,000 hectares (ha) in 1990 to over 300,000 ha at present. This growth is largely demand driven, as maize is used both as feed (poultry, fish and cattle) and food. Annual maize demand in the country is approximately two million tons, with domestic production meeting only about 14% of that. Almost all maize grown is hybrid maize, and about 6,500 metric tons of hybrid seed are required annually. However, only about 15% of annual seed demand is met by domestic seed production; the rest is imported, mainly from India. Bangladesh must enhance domestic sources of hybrid seed to meet demand more reliably and at a lower cost.

To accelerate hybrid maize production and address climate-change effects, BARI joined HTMA in developing and deploying high-yielding, climate-resilient hybrids for stress-prone ecologies across the region. Under the project, which is funded by the United States Agency for International Development (USAID), every two years a new wave of products is available for on-farm testing and deployment. The most recent hybrids were planted at four locations in Bangladesh, including BARI research stations.

HTMA project details and progress were shared with participants during a pre-field visit session by Sirajul Islam, Chief Scientific Officer and Head of BARI-RARS, Jessore. CIMMYT maize breeder P.H. Zaidi discussed HTMA’s potential impact and importance in addressing climate change effects, especially in Bangladesh. Salahuddin Ahmad, BARI’s Principal Scientific Officer, gave an overview of the 24 HTMA hybrids, plus four popular commercial hybrids and two BARI hybrids that were planted in the field. Participants then visited the field sites and evaluated the HTMA hybrids, scoring each one by preference. Of the 30 hybrids, the top 8 were from HTMA. Many participants, including Nurul Hoque, Additional General Manager of the Bangladesh Agricultural Development Corporation (BADC), Nasir Uddin Khan, DAE Additional Director, Jessore Region, and Jalal Uddin, BARI Director of Research, expressed the need to increase domestic maize production to minimize imports and maintain food security and self-sufficiency.

Sadananda explained the importance of public and private sector partnerships for successful development and deployment of the HTMA hybrids. T.P. Tiwari also stressed the need for maize diversification to achieve sustainable production and the need to develop salt tolerant varieties. B.R. Banik, BARI Training and Coordination Director, said the newly developed HTMA hybrids will help Bangladesh deal with climate change effects currently and in the future.

Rafiqul Islam Mondal, BARI Director General, highlighted HTMA’s progress and the need to explore the potential for cultivating maize in unutilized areas to boost production.

“It is truly exciting to see the enthusiasm of stakeholders,” said Mohammad Amiruzzaman, Chief Scientific Officer of BARI’s Plant Breeding Division, in his concluding remarks. “We will work on finalizing the best-bet products, officially register and then deploy them in collaboration with our seed company partners.”

Other participants included representatives from Lal Teer Seed Ltd., Supreme Seed Company Ltd., ACI Ltd., Krishi-bid Group, Monsanto Bangladesh Ltd., Syngenta, Petrochem Ltd., the Bangladesh Rural Advancement Committee (BRAC), Christian Commission for Development in Bangladesh (CCDB), Katalyst, BADC and the Department of Agricultural Extension (DAE). CIMMYT representatives included T. P. Tiwari, CIMMYT-Bangladesh Country Liaison Officer, P.H. Zaidi, Senior Maize Physiologist and HTMA Project Leader, and A.R. Sadananda, Seed System Specialist.

Local innovations help meet farmers’ needs in Bihar

During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar nearly 350 women farmers were trained on operating the Diesel Engine Powered Open Drum Thresher. In this picture, Suryakanta Khandai (center), postharvest specialist, IRRI, is conducting a demonstration for two of the women’s self-help groups (SHGs) that have expressed interest in purchasing four machines next season.

In India, farmers with large landholdings from prosperous agricultural states like Punjab can buy expensive and sophisticated machines for farm operations. However, resource-poor farmers with smaller landholdings from states such as Bihar may not have funds to buy these machines. “A huge bottleneck exists in terms of time wasted in harvesting and threshing that is preventing timely sowing of crops,” said Scott Justice, agriculture mechanization specialist, CIMMYT.

The Cereal Systems Initiative for South Asia (CSISA) is working to ensure that farmers all along the spectrum of landholdings have access to differently priced and scale-appropriate machinery based on their specific requirements. One of the ways CSISA does this is by improving existing designs of harvest and postharvest machinery to better meet local needs.

For shelling maize, farmers in Bihar could either purchase a very large, highly productive machine that costs approximately US$ 786 or use a handheld maize sheller that is cheap but can only shell 15 – 20 kg per hour. A medium-sized mechanized single cob maize sheller brought to Bihar from Nepal broke the cobs because the sheller had been optimized for Nepal’s hybrid varieties that had longer and thinner cobs. Farmers in Bihar need their cobs to remain intact so they can be used as fuel for their stoves. According to Justice, “These lightweight and affordable shellers are relatively new entrants on the scene. Their simple designs mean that they can be made easily by local manufacturers.” More importantly, they can also be modified as required.

CSISA worked with a local fabricator to modify the existing design and created an electric motor powered double cob maize sheller, which can shell 150 kg maize per hour and consumes only 2 – 4 units of electricity. Priced at US$ 126, the machine is also fairly affordable. “In fact, half the cost of the machine is that of the electric motor alone. For farmers who already own one, the machine would merely cost US$ 63,” said Suryakanta Khandai, postharvest specialist, IRRI, who works for CSISA in Bihar.

Similarly, until recently, farmers in Bihar only had two options for mechanized rice threshing – the very large axial flow thresher that can cost up to US$ 2,700 after subsidy or the compact pedal-powered open drum thresher that has very low capacity and is difficult to operate for extended periods of time.

“Farmers clearly needed a medium-sized, affordable, efficient and portable mechanical rice thresher,” said Khandai. But to build a truly relevant product understanding the shortcomings of the existing options was critical. “The existing models also lacked winnowing or bagging functions, which were included in the new design. Besides giving it wheels, we also decided to use a diesel engine to power the machine to allow for threshing in the field immediately upon cutting, which would help reduce losses.” The result was the diesel engine powered open drum thresher.

It costs US$ 23.96 to hire one person to manually thresh 1 acre of rice in 7 days. Using the diesel engine powered open drum thresher, however, the same area can now be covered in just over four hours at a total cost of US$ 10.54.

Since modifying these medium-sized machines does not offer sufficient profit margin for larger manufacturers and retailers, CSISA approached local fabricators to fill this gap. The maize sheller was customized in cooperation with Dashmesh Engineering, which sells the machine at a profit of US$ 11–13. “Profits help ensure that the fabricators put in efforts on their own to scale out the machines. Other dealers have also expressed interest in the maize sheller, which is great because having multiple fabricators involved ensures that the pricing remains competitive,” said Khandai.

Justice added, “Equipment like powered open drum threshers for rice are very simple but they have not spread very widely. I feel these should now also be promoted with owners of two-wheel tractors and mini tillers in India and Nepal.” Since the thresher can easily be adapted again to be powered by those engines, the cost of the machine can be brought down even further.

Durum wheat production in Pakistan: keeping up with changing demands

 Two wheat breeders evaluating durum wheat lines in National Uniform Yield Trial at Barani Agricultural Research Institute, Chakwal, Pakistan. Photo: Attiq Ur Rehman/Cimmyt.
Two wheat breeders evaluating durum wheat lines in National Uniform Yield Trial at Barani Agricultural Research Institute, Chakwal, Pakistan.
Photo: Attiq Ur Rehman/Cimmyt.

In response to rapidly-changing food preferences in Pakistan, including a latent unmet demand for pasta products, CIMMYT-Pakistan has been working to develop the country’s durum wheat market and varieties that satisfy the required grain quality attributes, in addition to high yields and disease resistance.

According a 2014 study by the Woodrow Wilson International Center for Scholars, Pakistan is urbanizing at an annual rate of 3 percent—the fastest pace in South Asia. “More Pakistanis are living in cities than ever before,” said Krishna Dev Joshi, CIMMYT wheat improvement specialist. “As a result, demand for durum wheat products like macaroni or spaghetti is rising. But farmers are not growing durum wheat because there is no a clear price advantage or assured markets. At the same time, private investors will not develop new milling facilities or markets without guarantees of durum wheat grain supplies from farmers.”

To help break the impasse, CIMMYT has been testing and evaluating 925 durum wheat lines in Pakistan since 2011, and identified 40 durum wheat lines as having appropriate combinations of high yield, protein, yellowness and sedimentation. The yield stability of lines across locations and years indicates that durum wheat could be grown in environments similar to those of the trial sites, increasing the chances for uptake of this new crop. “One challenge, though,” said Joshi, “is that durum yields were only slightly higher than those of bread wheat, posing a challenge for the uptake by farmers of durum wheat.”

Activating Durum Markets from the Ground Up

The Center also led a 2014 durum value chain study involving 85 respondents including farmers, millers, the processing industry, restaurants, seed companies, grain dealers and consumers across five locations. They were queried regarding their awareness of durum wheat, as well its production, usage and future prospects in Pakistan. “A complete lack of durum milling technology is the main obstacle to commercializing this crop,”  Joshi said.

Value chain actors themselves were only marginally aware of durum wheat and associated technologies. However, 60% of millers stated they would be willing to invest in durum wheat if it became an openly-traded commodity, policies fostered market price premiums, durum milling machinery could be acquired at subsidized rates and local and foreign manufacturers were linked.

For durum wheat production to take hold in Pakistan, milling technology would have to be adapted or farmers would have to find a niche in the international market. Government support is necessary in either case.

Despite these challenges, the durum wheat market is slowly being developed. The first national durum wheat workshop in Pakistan last September brought together farmers, millers, processing industries, dealers, seed companies, extension professionals, researchers and policy makers to share knowledge, experiences and ideas for a durum wheat value chain. The 10 best durum wheat lines are being evaluated in wheat trials across 9 locations right now.

CIMMYT representatives including Joshi will take part during 31 May-2 June in the international conference “From Seed to Pasta and Beyond: a Sustainable Durum Wheat Chain for Food Security and Healthy Lives,” with experts from around the world.

Australian visit to CIMMYT-Turkey strengthens decades-long collaboration

The CIMMYT Australia ICARDA Germplasm Evaluation Project (CAIGE) organized a visit for Australian breeders to Turkey during 19 April-3 May. Participants learned about the germplasm evaluation and selection activities by the International Winter Wheat Improvement Program (IWWIP, a joint enterprise of CIMMYT and the Government of Turkey), the CIMMYT-Turkey Soil Borne Pathogen (SBP) program and the Regional Rust Research Center.

Crown rot trials in Konya field. From left to right: Drs. Morgounov, Dababat, Dieters, Trethowan, Ed-wards, Kan, Mullan, and Moody.
Photo: SBP-CIMMYT-Turkey.

The CIMMYT-Turkey collaboration has helped farmers throughout Central and West Asia. It all began in 1965, when a farmer in southern Turkey planted a high-yielding variety from Mexico that yielded five tons per hectare– several times more than the Turkish varieties then being planted. Wheat varieties from Mexico and new agronomic practices allowed Turkey to double its wheat production in just a decade, marking the start of a Turkish “Green Revolution.”

Turkey has since become a leader in wheat research. Turkish scientists with IWWIP have led groundbreaking research on zinc deficiency in soils and developed varieties that not only perform well in such conditions but also contain enhanced levels of zinc in the grain. Turkey is also a focal point for collaborative research on the effect of soil-borne pathogens and pests on wheat, as well as developing resistant varieties.

The five Australian breeders experienced first-hand Turkey’s rich history and innovations in wheat research and development. The group first visited the Bahri Dagdas International Agricultural Research Institute-National Drought Center in Konya, where Mustafa Kan, Institute Director and IWWIP Coordinator, welcomed them and gave an overview of the Institute. Alexei Morgounov, IWWIP Leader, and Mesut Keser, ICARDA’s Office Coordinator in Turkey, also gave presentations. The group then visited the labs and greenhouse facilities, crown rot yield trials and IWWIP breeding programs.

The next day, the group visited the Transitional Zone Agricultural Research Institute in Eskisehir. Director Sabri Cakir gave an overview of the Institute, while Savas Pelin, Head of the Institute’s breeding program in Eskisehir, gave a general presentation of its programs and activities. Participants also attended an overview of SBP’s activities, including screening for nematodes and crown rot in growth rooms, greenhouses and fields.

On the third day, attendees visited the Agricultural Research Institute in Izmir and Turkey’s National Gene Bank. They were introduced to IWWIP’s breeding activities, including germplasm evaluation, synthetic winter wheat development, spring x winter crossing and soil borne pathogen screening. The group also visited the Regional Rust Research Center, led by ICARDA scientist Nazari Kumarzi, where they observed the stripe, leaf and stem rust evaluation nurseries and afterwards visited the national barley breeding program.

In Izmir, visitors reviewed the soil-borne pathogen research, screening methodologies and facilities at CIMMYT-Turkey. CAIGE Project Leader Richard Trethowan inspected the germplasm provided by Australia to CIMMYT-Turkey as part of the crown rot initiative, a sub-grant project with the University of Sydney funded through the Grains Research and Development Corporation (GRDC) aimed at transferring resistant genes into key elite varieties for rapid adoption by breeding programs. Visitors were also briefed about the intensive SBP-IWWIP collaboration, particularly on incorporating resistant sources into high-yielding winter and spring wheats.

The Australian breeders included Richard Trethowan, Professor at the University of Sydney; Daniel Mullan and David Moody, Wheat and Barley Breeders from Intergrain; Mark Dieters, Senior Lecturer at the University of Queensland and Ian Edwards, CEO of Edstar Genetics. CIMMYT participants included Alexei Morgounov, CIMMYT-Turkey Country Representative; Amer Dababat, Soil Borne Disease Pathologist and Gul Erginbas-Orakci, Senior Research Associate.

CSISA mechanization meets farmers’ needs in Bihar, India

“A huge bottleneck exists in terms of time wasted in harvesting and threshing that is preventing timely sowing of crops,” said Scott Justice, agriculture mechanization specialist, CIMMYT. The Cereal Systems Initiative for South Asia (CSISA) is working to ensure smallholder farmers have access to machinery based on their specific requirements by improving existing designs to meet local needs.”

For shelling maize, farmers in Bihar can either purchase a very large, efficient machine that costs approximately US $786 or use a cheap handheld sheller that can shell only 15-20 kilograms per hour. According to Justice, “these lightweight, affordable shellers are relatively new on the scene. Their simple design means that they can easily be made by local manufacturers and can also be modified as required.”

CSISA worked with a local manufacturer to modify the design of a medium-sized sheller and created a double cob maize sheller powered by an electric motor, which can shell 150 kg of maize per hour and consumes only 2-4 units of electricity. Priced at US $126, the machine is fairly affordable. “In fact, half the cost of the machine is that of the electric motor alone. For farmers who already own one, the machine would only cost US $63,” said Suryakanta Khandai, Postharvest Specialist at the International Rice Research Institute (IRRI), who works for CSISA in Bihar.

During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar, nearly 350 women farmers were trained to operate the diesel engine-powered, open-drum thresher. In this picture, Suryakanta Khandai (center), IRRI postharvest specialist, conducts a demonstration for two women’s self-help groups interested in purchasing four machines next season. Photo: CSISA
During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar, nearly 350 women farmers were trained to operate the diesel engine-powered, open-drum thresher. In this picture, Suryakanta Khandai (center), IRRI postharvest specialist, conducts a demonstration for two women’s self-help groups interested in purchasing four machines next season.
Photo: CSISA

Until recently, farmers in Bihar only had two options for mechanized rice threshing –a very large axial flow thresher that can cost up to US $2,700 with subsidies, or a pedal-powered, open-drum thresher that has very low capacity and is difficult to operate for extended periods.

“Farmers clearly needed a medium-sized, affordable, efficient and portable mechanical rice thresher,” said Khandai. “The existing models lacked grain-separating or bagging functions, which we included in the new design. In addition to giving it wheels, we also decided to use a diesel engine to power the machine to allow for threshing in the field immediately upon cutting, which helps reduce losses.” The result was a diesel-powered, open-drum thresher.

It costs US $23.96 to hire one person to manually thresh one acre of rice and it takes seven days. However, the diesel-powered, open-drum thresher covers the same area in just over four hours, at a total cost of US $10.54.

Since the modified machines do not offer an attractive profit for larger manufacturers and retailers, CSISA approached local companies to fill the gap. The maize sheller was customized in cooperation with Dashmesh Engineering, which sells the machine at a profit of US $11–13. “Profits help ensure that the manufacturers are motivated to scale out the machines,” said Khandai.

Justice added, “Equipment like the diesel-powered, open-drum rice thresher is very simple but has not spread very widely. I feel these should now also be promoted to the owners of two-wheel tractors and mini tillers in India and Nepal.”

Well-positioned for next phase, CSISA India plans for monsoon cropping season

As Phase II of the Cereal Systems Initiative for South Asia (CSISA) draws to a close in India, it is well positioned for a Phase III, according to Andrew McDonald, CIMMYT Cropping Systems Agronomist and CSISA Project Leader speaking at the Objective 1 planning and evaluation meeting for the 2015 monsoon cropping season held in Kathmandu, Nepal, on 22-24 April. The meeting was attended by CSISA’s Objective 1 teams from the Bihar, eastern Uttar Pradesh, Odisha and Tamil Nadu hubs, comprising diverse disciplinary experts from CIMMYT, the International Food Policy Research Institute (IFPRI), the International Livestock Research Institute (ILRI) and the International Rice Research Institute (IRRI).

Phase II began in October 2012 and will be completed in October of this year. The external evaluation report, commissioned by the United States Agency for International Development (USAID), commended the uniqueness of CSISA’s work with service providers and farmers, its staff’s dedication and the strong collaboration among CSISA partners. CSISA was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems, and operates rural “innovation hubs” throughout Bangladesh, India and Nepal.

The teams took a critical view of activities from the previous monsoon cropping season and highlighted priority areas for this year. “Sustainable intensification of cropping systems should be the centerpiece of our growth strategy. Rice followed by mustard followed by spring maize or green gram is a great system that can help us achieve 300% cropping intensity,” said R.K. Malik, CIMMYT Senior Agronomist and CSISA Objective 1 Leader. “We need to focus not only on how to create new service providers but also on how existing ones can be used as master trainers. This will help fill the gap of field technicians and further strengthen delivery,” Malik explained, regarding CSISA’s network of more than 1,800 service providers.

Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee
Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee

Leading discussions on the Odisha hub, Sudhir Yadav, IRRI Irrigated Systems Agronomist, emphasized the importance of identifying the non-negotiable steps for successful technology implementation. “The performance of zero tillage, for example, depends on soil type, date of seeding and whether the crop is rainfed or receives supplementary irrigation,” said Yadav. CSISA successfully introduced zero tillage in Odisha’s Mayurbhanj District, where it has enabled crop intensification thanks to the retention of residual soil moisture.

The meeting served as a platform for representatives from Catholic Relief Services’ (CRS) Improved Rice-based Rainfed Agricultural Systems project to showcase lessons in managing rainfed rice systems in northern Bihar.

CSISA is currently in discussions with USAID and the Bill & Melinda Gates Foundation (BMGF) to design the technical program, and determine the scope, geography, duration and budget of Phase III.

SUPER WOMAN: Asriani Anie Annisa Hasan protects local Indonesian maize varieties

AWARENESS-RAISING ON ISSUES AFFECTING AGRICULTURE, FOOD AND CULINARY ARTS

Anie1International Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Amanda Niode writes about her Super Woman of Maize, Asriani Anie Annisa Hasan of the Gorontalo Corn Information Center and Food Security Agency.

Asriani Anie Annisa Hasan is my maize superwoman.

Anie is a beautiful and warm-hearted woman, who is currently head of the Dissemination and Information Division at the Gorontalo Corn Information Center and Food Security Agency.

Gorontalo is a province located on the island of Sulawesi in Indonesia on the Wallacea, borderline islands situated between the Asian and Australian bio-geographical regions characterized by great biodiversity of flora and fauna.

Anie is not known as an official who works behind her desk. She is very much involved in the cornfields and the livelihoods of farmers, taking pictures of newly harvested cornfields, driving a truck, or sitting on the floor chatting with corn farmers.

She informs farmers about native corn varieties found in Gorontalo, including those on the brink of extinction such as momala, motorokiki, bonia/badia and pulut (binthe pulo).

Additionally, Anie is very active on social media networks and always explains her corn-related activities in a fun way, One of her Facebook posts features two decorated corn cobs saying: “Corns fall in love today. Love maize.”

In another post, she wrote: “Sunday morning is usually laundry time, but now I should be chummy with the corn field.”

She is always on the forefront on any major corn-related activity, including the International Maize Conference, which was held in Gorontalo in 2012, and attended by corn experts from all over the world.

She works very hard to assist the Omar Niode Foundation, an organization working to raise public awareness about issues affecting agriculture, food and culinary arts. This work included attending an exhibition of Gorontalo local corns in Jakarta, Indonesia’s capital.

Anie Annisa, is a passionate maize superwoman.

 

SUPER WOMAN: Chhavi Tiwari aids women farmers with zinc-fortified wheat

ZINC DEFICIENCY IS ATTRIBUTED TO 800,000 DEATHS EACH YEAR

ChhaviInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, scientist Velu Govindan writes about his Super Woman of Wheat, Chhavi Tiwari, a senior research associate at Banaras Hindu University.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization (WHO).

It can lead to short stature, hypogonadism, impaired immune function, skin disorders, cognitive dysfunction and anorexia. Additionally, it causes approximately 16 percent of lower respiratory tract infections, 18 percent of malaria cases and 10 percent of diarrheal disease cases worldwide, WHO statistics show.

Enhancing the micronutrient content in wheat through biofortification is increasingly seen as an important tool to help improve the livelihoods of the most vulnerable, poorest and least educated sectors of society.

That is why Dr. Chhavi Tiwari, senior research associate from Banaras Hindu University in Varanasi, India, is my super woman of wheat.

She has been working with the HarvestPlus program with active collaboration and support from the International Maize and Wheat Improvement Center (CIMMYT) to empower women farmers by making them aware of the value of micronutrient-rich wheat.

Her on-farm training programs increase their understanding of crop and soil management techniques, aiding in the improved production of wheat varieties high in zinc content.

Working closely with women’s self-help groups, she demonstrates the importance of wheat varieties high in zinc content through a participatory variety-selection approach, increasing the potential agronomic and nutritional benefit of these varieties for fast-track adoption.

Through her inclusive approach, a great deal of interest in high zinc wheat varieties has been generated among women farmers. Her efforts have contributed to the adoption of nutritious wheat varieties the eastern part of India’s state of Uttar Pradesh, leading to the potential for technology dissemination in neighboring states.

Engaging with rural women farmers is a core interest of Chhavi’s. She consults women farmers on their views and gives them the opportunity to participate in a decision-making process that increases their investment in agriculture and nutrition.

Her activities play a crucial role in uplifting women by alleviating malnutrition and hunger through nutritious wheat.

Chhavi is the recipient of the 2010 CIMMYT- Cereal System Initiative of South Asia (CSISA) research fellowship and the Jeanie Borlaug Laube Women in Triticum Award from the Borlaug Global Rust Initiative in 2014.

Any views expressed are those of the author and not of the International Maize and Wheat Improvement Center

SUPER WOMAN: Jeanie Borlaug Laube unites global wheat community

jeanieborlaugInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, Linda McCandless writes about her Super Woman of Wheat, Jeanie Borlaug Laube, chair of the Borlaug Global Rust Initiative.

Jeanie Borlaug Laube has served as the chair of the Borlaug Global Rust Initiative (BGRI) since 2009, a year after it was first launched.

She is an enthusiastic proponent of wheat research and enjoins all scientists to “take it to the farmer.”

She has helped build a community of wheat researchers and amplified their collective voice among politicians, policymakers, farmers, scientists and donors.

She is an influential advocate for wheat research and science. To mark the 100th anniversary of her father Norman Borlaug’s birth, in 2013 and 2014 she visited Ethiopia, Kenya, India, Pakistan, Turkey, Mexico, Washington, D.C, and Minnesota, speaking at various political events as an ambassador for wheat, food security, and global cooperation. Additionally, she met with scientists, farmers and other leaders.

The late Borlaug, known as “the father of the Green Revolution” for the high-yielding, disease-resistant, semi-dwarf wheat varieties he developed, won the Nobel Peace Prize in 1970.

In 2009, she initiated the Jeanie Borlaug Laube Women in Triticum Award for young career scientists, and there are now 25 awardees who are changing the face of wheat research.

In 2010, she initiated the Jeanie Borlaug Laube Mentor Award for those scientists, male or female, who are valuable mentors of young wheat scientists.

For her enthusiastic, persistent and persuasive advocacy of wheat as one of the most important crops for global food security, I nominate Jeanie Borlaug Laube as a Wheat Super Woman.

Any views expressed in this article are those of the author and not of the International Maize and Wheat Improvement Center

SUPER WOMAN: Suchismita Mondal develops climate change resilient wheat

Mondal
Wheat breeders Suchismita Mondal (L) and Ravi Singh, also distinguished scientist, at CIMMYT’s Toluca, Mexico, research station in 2014. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Suchismita Mondal was inspired by the humble flour tortilla to take up a career as an international wheat breeder.

Mondal’s original intention was to focus on plant genetics, so she moved from India, where she earned her undergraduate degree at Banaras Hindu University, to the United States to attend Texas A&M University.

Once there, her studies were focused on the application of genetics in breeding for wheat germplasm that would lead to improved tortilla quality, under the guidance of Dr. Dirk Hays, her master’s degree advisor.

“Being involved in the project, developing crosses and evaluating germplasm was my initial point of interest in breeding,” Mondal said, adding that she was also inspired by a conversation she had with Nobel Peace Prize laureate Norman Borlaug, who was teaching at the university.

Borlaug is known as the father of the Green Revolution due to the semi-dwarf wheat varieties he developed at the International Maize and Wheat Improvement Center (CIMMYT), which are credited with saving more than 1 billion lives in India, Pakistan and other parts of the developing world.

“Learning about the direct impact of a breeder’s work in the farmers’ fields and lives of millions of people was also a significant motivation, not only to become a breeder, but also to work at CIMMYT,” said Mondal.

Later, for her doctoral degree, she went on to research the function of genetic controls for heat-stress resilience in winter wheat.

Following her graduation in 2011, she realized her ambition and began working at CIMMYT. Since then, Mondal has developed her career at CIMMYT — working with distinguished scientist Ravi Singh — where she is now an associate scientist in the bread wheat breeding program and develops high-yielding heat and drought tolerant germplasm.

Her work in the Cereal Systems Initiative for South Asia (CSISA) project has led to the identification of early-maturing, high-yielding, heat-tolerant lines with 10- to 15-percent superior yields in the heat-stressed environments of South Asia, two of which were released in India while various others are at different stages of testing.

“Strive hard, stay motivated,” she advises her successors, the upcoming generation of women scientists.

CIMMYT remembers vital legacy of gender specialist Paula Kantor

Paula Kantor.
Paula Kantor.

EL BATAN, Mexico (CIMMYT) CIMMYT is sad to announce the tragic death of our friend and respected colleague, gender and development specialist Paula Kantor.

Paula died on May 13, in the aftermath of an attack on the hotel where she was staying in Kabul, Afghanistan.

“We extend our deepest condolences to her family, friends and colleagues,” said Thomas Lumpkin, CIMMYT’s director general.

“Paula’s desire to help people and make lasting change in their lives often led her into challenging settings. Her dedication and bravery was much admired by those who knew her and she leaves a lasting legacy upon which future research on gender and food security should build.”

Paula joined CIMMYT as a senior scientist (gender and development specialist) in February 2015 to lead an ambitious new project aimed at empowering and improving the livelihoods of women, men and youth in important wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

“We’re shocked and left speechless by the tragic loss,” said Olaf Erenstein, director of socio-economics at CIMMYT. “Paula was such a caring, committed, energetic and talented colleague. She inspired everyone she worked with – and it’s so sad that her life and career were prematurely ended. She will be sorely missed – our deepest sympathies to her family, friends and colleagues throughout the world.”

At the time of her death at age 46, Paula had many years of experience in the area of gender and social development. She was an established and respected professional and prolific writer, having published more than a dozen peer-reviewed academic publications, some 10 peer-reviewed monographs and briefs, 15 other publications and 10 conference papers during her lifetime.

Dynamic Career

Before joining CIMMYT, Paula served as a senior gender scientist with CGIAR sister organization WorldFish for three years from 2012.

At WorldFish, working in Bangladesh, Malaysia and Egypt, Paula contributed significantly to the design and development of gender-transformative approaches for the CGIAR Research Programs (CRP) on Aquatic Agricultural Systems (AAS) and Livestock and Fish.

She coached many of her colleagues in a range of pursuits, and among many noteworthy achievements, she mentored an international non-governmental organization in its efforts to deliver gender programming to women fish retailers in Egypt.

“It is such a tragic, shocking waste of a remarkable talent,” said Patrick Dugan, WorldFish deputy director general and CRP AAS Director.

“Her commitment to gender, and wider social equality inspired the people she worked with. She’ll be sorely missed by us all.”

For two years previously, Paula worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

From 2008 to 2010, Paula was based in Kabul, working as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency.

After earning a doctoral degree focused on international economic development and gender from the University of North Carolina at Chapel Hill in 2000, she taught in the Departments of Consumer Science and Women’s Studies at the University of Wisconsin-Madison.

An American citizen from North Carolina, after earning a Bachelor of Science in Economics from the Wharton School of the University of Pennsylvania in 1990, Paula earned a master’s degree in Gender and Development from Britain’s Institute of Development Studies at the University of Sussex.

“Paula was a key pillar in our gender work and a dear friend to many of us,” said Lone Badstue, CIMMYT gender specialist.

“It was a privilege to work with her. She had a strong passion for ensuring that her work made a difference. It’s hard to imagine how to move forward, but I am convinced that Paula would want us to do that and to make the difference for which she strived.”

Paula is survived by her mother and father, Barbara and Anthony Kantor, her brother Anthony John, her sister Laura Styrlund (Charles), her niece Lindsay and her nephew Christopher.

If you would like to offer your condolences you can send us a message to cimmyt@cgiar.org. CIMMYT will deliver all messages received to Paula’s family. Thank you for your thoughts and support.