Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Farming Systems Intensification in South Asia

WAGENINGEN, Netherlands — Although agriculture in the Indo-Gangetic Plains of South Asia, heartland of the Green Revolution, is essential to the food security and livelihoods of smallholder farmers, it is one of the most vulnerable regions to climate change variability. To cope with climate change variability and impacts, several climate-smart agricultural practices (CSAPs) have proved to increase crop productivity, resilience and adaptive capacity in the region’s agro-ecological zones. However, farmers’ perceptions of climate vulnerability and their response to CSAPs vary with their biophysical and socioeconomic circumstances, which can limit technology targeting and large-scale adoption by a diversity of farmers. Research aimed at understanding farming systems level opportunities and challenges has been conducted in order to promote sustainable agricultural intensification and develop a portfolio of CSAPs adapted to local conditions and diverse farm typologies.

With a similar objective, a workshop on farming systems analysis titled “Quantitative tools to explore future farming systems options and formalize trade-offs and synergies for their sustainable intensification in South Asia” was held at Wageningen University (WUR), The Netherlands, on 5-7 July 2016, under the aegis of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the Indian Council for Agricultural Research (ICAR). Students, scientists and professors from ICAR, WUR, the International Food Policy Research Institute (IFPRI), CIMMYT, the Borlaug Institute for South Asia (BISA), and state agriculture universities India participated in the event, which was jointly coordinated by Santiago López and M.L. Jat, CIMMYT, and Jeroen Groot, WUR.

Santiago Lopez welcomed the participants and mentioned the workshop was aimed at promoting, among other things, an understanding of farming systems modeling and its scope in smallholder systems of South Asia; sharing advances on the parametrization of FarmDesign models; sharing results of research undertaken by WUR students on applying quantitative systems analysis in the Eastern Gangetic Plains (Bihar, India); and promoting the exchange of ideas among participants and experts from advanced research institutes on future research and collaboration opportunities.

Bruno Gerard, Director of CIMMYT’s Sustainable Intensification Program, highlighted the role farm level analysis plays in the program. Adam Komarek, IFPRI, talked about conservation agriculture and its role in increasing farm profits and reducing risks in western China. M.L. Jat provided his insights on how to promote large-scale adoption across Asia, while Gideon Kruseman from CIMMYT, Mexico, made a presentation on bio-economic modeling.

Jeroen Groot (WUR, FSE) gave a quick overview of FarmDesign and Fuzzy Cognitive mapping tools, while J.P. Tetrawal and H. S. Jat described how they applied the FarmDesign tool at two sites: Kota (India) and Karnal (India). A.K. Prusty and Vipin Kumar, ICAR-Indian Institute of Farming Systems Research (ICAR-IIFSR), described activities being undertaken on integrated farming systems by ICAR-IIFSR and presented the results of FarmDesign analyses.

Challenges faced during FarmDesign parameterization and interpretation were presented by the participants and solutions were discussed. A visit to the computer lab of WUR’s Farming Systems Ecology (FSE) provided hands-on experience in applying FarmDesign. At a debugging session, participants were helped by the expertise of resource persons and helped each other learn specific applications of FarmDesign.

At a planning session aimed at exploring project options, it was decided that a FarmDesign user group should be created for exchanging ideas and helping each other address issues related to the application of FarmDesign. A workshop will be held in India in November, 2016, to review the progress of the work being carried out, explore funding opportunities, and establish a faculty exchange program for capacity building and skill development.

Workshop participants. Photo: CIMMYT

Smallholders in Rwanda and Zambia to enhance wheat productivity through new project

A contractor operating his Combine harvester in wheat field Boru Lencha village, Hetosa district in Ethiopia. Photo: P.Lowe/CIMMYT
A contractor operating his combine harvester in a wheat field in Hetosa district, Ethiopia. Photo: P.Lowe/CIMMYT

KIGALI, Rwanda (CIMMYT) – The recent designation of wheat as a strategic crop for Africa by the African Union in 2013 reflects the rising importance of wheat production on the continent. Since then, efforts have intensified to incorporate wheat production into existing farm systems and to help smallholders grow it to meet rising demand and reduce the economic impact of the high cost of imports.

The International Maize and Wheat Improvement Center (CIMMYT) is contributing to these efforts through a project launched this month in Kigali, Rwanda. The four-year Enhancing Smallholder Wheat Productivity through Sustainable Intensification of Wheat-based Farming Systems in Rwanda and Zambia (SWPSI) project aims to enhance the potential of wheat produced by smallholder farmers to bolster food security.

“Given the increasing opportunities in wheat research, CIMMYT is happy to work with partners to help farmers adopt improved technologies, establish innovation platforms and strengthen wheat value chains in the two countries,” said Bekele Abeyo, Ethiopia country representative and wheat breeder at CIMMYT.

Zambia and Rwanda rank 46th and 59th respectively in the list of wheat-producing nations, topped by China. Production in Zambia, where wheat grows on more than 40,000 hectares (99,000 acres), is largely undertaken by medium and largescale commercial operations in irrigated conditions with very little smallholder production. On the other hand, in Rwanda wheat is grown on about 35,000 hectares in rainfed conditions mainly by smallholder farmers.

“The contrast between the two countries will help generate wider lessons on variations and give an opportunity to test whether wheat is still a potential crop to produce profitably under smallholder systems,” said Moti Jaleta, CIMMYT SWPSI project leader.

The new project will target 4,000 smallholder farmers in the two countries, with a focus on increasing wheat productivity from the current 2.1 tons per hectare to an average of 4.5 tons per hectare.

Smallholders will also benefit from improved technologies, which include rust-resistant and high-yielding wheat varieties, such good agronomic practices as row planting, precise fertilizer application, plant density and planting dates. Additionally, threshing technologies to enhance grain quality and efforts to link farmers with established traders and millers to help them secure markets for their wheat surplus will be undertaken.

The project mandate includes a scoping study on the potential for smallholder wheat production in Madagascar, Mozambique and Tanzania.

Funded by the International Fund for Agricultural Development and the consortium of agricultural researchers, the CGIAR Research Program on WHEAT, SWPSI will be implemented under the leadership of CIMMYT in close collaboration with the Center for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA), the Rwanda Agriculture Board and the Zambia Agricultural Research Institute.

Speaking during the launch, the acting executive director of CCARDESA, Simon Mwale, noted the rising demand for wheat, particularly in southern Africa, which also has a very conducive climate for wheat farming.

“Inclusion of Rwanda in the project is a unique opportunity for CCARDESA, and it will facilitate strong collaboration and new learning opportunities, being a new country to be covered by CCARDESA,” he said.

Experts hope SWPSI will contribute to the broader focus of the strategy to promote African wheat production and markets.

Some 30 key stakeholders met at a side event organized by CIMMYT at the recent 7th Africa Agricultural Science Week (AASW) to discuss how best to implement the region’s wheat strategy. The AASW and FARA General Assembly is the principal forum for all stakeholders in African agriculture science, technology and innovation to share solutions to some of the most pressing challenges the continent faces. CIMMYT’s SWPSI project is key to supporting the wheat for Africa strategy whose goal is to  increase agricultural productivity and food security throughout the region.

New multi-crop zero-till planter boosts yields and farming efficiency in Pakistan

Planting rice with the first locally produced multicrop planter in Sheikhupura, Punjab Province, Pakistan. Photo: Irfan Mughal/Greenland Engineering
Planting rice with the first locally produced multicrop planter in Sheikhupura, Punjab Province, Pakistan. Photo: Irfan Mughal/Greenland Engineering

ISLAMABAD — A new planter that promotes dry seeding of rice, saves water and increases planting efficiency is being used increasingly in Pakistan’s Punjab Province.

Many farmers in Punjab alternately grow rice and wheat in their fields throughout the year, and the province produces more than 50% of Pakistan’s rice and 75% of its wheat.

Traditionally, rice planting involves transplanting 4-6-week old seedlings into puddled fields, a process that requires large amounts of water and labor, both of which are becoming increasingly scarce and expensive. Repeated puddling negatively affects soil physical properties, decreases soil aggregation and results in hardpan formation, which reduces the productivity of the following wheat crop.

Sustainable intensification aims to increase the productivity of labor, land and capital. Conservation agriculture (CA) relies on practices such as minimal soil disturbance, permanent soil cover and the use of crop rotation to maintain and/or boost yields, increase profits and protect the environment. It also helps improve soil function and quality, which can improve resilience to climate variability.

Father and son Iqbal Mughal and Irfan Mughal are co-owners of Greenland Engineering, which currently manufactures zero-tillage wheat drills for Pakistan’s farming communities. They worked with CIMMYT from 1994-2003 as part of the the rice-wheat consortium. In response to the interest expressed by farmers, they are also producing the new multicrop planter for rice farmers in Daska, Punjab Province. Photo: Mumtaz Ahmed/Engro Fertilizers
Father and son Iqbal Mughal and Irfan Mughal are co-owners of Greenland Engineering, which currently manufactures zero-tillage wheat drills for Pakistan’s farming communities. They worked with CIMMYT from 1994-2003 as part of the the rice-wheat consortium. In response to the interest expressed by farmers, they are also producing the new multicrop planter for rice farmers in Daska, Punjab Province. Photo: Mumtaz Ahmed/Engro Fertilizers

Dry seeding of rice (DSR), a practice that involves growing rice without puddling the soil, can save up to 25 percent of the water needed for growing the crop and reduces greenhouse gas emissions. However, the old fluted roller drills used for DSR do not guarantee uniform plant-to-plant spacing and break the rice seeds, requiring farmers to purchase more seed than otherwise needed.

In 2014, the International Maize and Wheat Improvement Center (CIMMYT) imported a multicrop, zero-till planter from India that drills the seed and the fertilizer simultaneously while maintaining appropriate spacing between plants without breaking the seeds.

That same year, CIMMYT evaluated locally modified multicrop zero-till planters for dry seeding of Basmati rice at five sites in Punjab. As a result, the plant populations, tillers and grain yields at these sites were 10 percent higher compared to those at the sites where old fluted roller drills were used. During the current 2016 rice season, Greenland Engineering has so far manufactured and sold over 30 multicrop planters to rice growers across Pakistan.

CIMMYT’s initiative to spread the locally adapted, multicrop, zero-till planter throughout Pakistan was made possible through the Agricultural Innovation Program supported by the United States Agency for International Development, in collaboration with Greenland Engineering and Engro Fertilizers. National partners such as the Rice Research Institute Kala Shah Kaku, Adaptive Research Punjab and Engro Fertilizers are also helping to scale out the multicrop planter and other CA technologies throughout Punjab’s rice-wheat areas.

CIMMYT’s initiative to spread the locally adapted, multicrop, zero-till planter throughout Pakistan was made possible through the Agricultural Innovation Program, supported by the United States Agency for International Development, in collaboration with Greenland Engineering and Engro Fertilizers. National partners like the Rice Research Institute Kala Shah Kaku, Adaptive Research Punjab and Engro Fertilizers are also helping to spread the multicrop planter and other CA technologies throughout rice-wheat areas in Punjab.

receive newsletter

Bhutan and Bangladesh join forces to combat threat of rust diseases

A farmer in her wheat field in Bhutan. Photo: Sangay Tshewang/RNRRD

BHUTAN — Yellow and brown rusts are among the most common and damaging challenges to wheat production in Bhutan. Yellow or stripe rust (Puccinia striformis f. sp. tritici), a disease favored by cool weather conditions, is a major threat owing to the prevalence of cool winter conditions during the cropping season in most wheat growing regions. In Bhutan, yellow rust is the first disease to appear in the cropping season and, if left uncontrolled, has the potential to destroy the whole wheat crop. It has occurred every year in most wheat growing areas over the last two decades.

Brown or leaf rust (Puccinia triticina Eriks.), the second most important wheat disease in Bhutan, is also favored by climatic conditions, with severe infection on different advanced wheat lines being recorded over the last ten years. This is an indication that leaf rust could be just as threatening as yellow rust if susceptible cultivars are grown under favorable environmental conditions. Finally, if these rusts are not controlled, it is possible that Bhutan could become a primary source of inoculum, which would then be carried to its neighbors by the wind.

Yellow rust of wheat. Photo: Arun Joshi/CIMMYT
Yellow rust of wheat. Photo: Arun Joshi/CIMMYT

Bangladesh, Bhutan’s southern neighbor, does not have much of a history of rust diseases, but climate change could alter that. And while yellow rust doesn’t occur at all in Bangladesh and leaf rust appears only occasionally (albeit with high intensity), both have the potential to spread in the country.

The absence of high rust pressure in Bangladesh is a serious challenge when it comes to evaluating the rust resistance of wheat lines needed to prepare for uncertain future climates. In contrast, Bhutan is in a strategic position to conduct yellow and leaf rust epidemiological studies and is active in regional and global efforts aimed at studying and managing rust. Therefore, for the first time, Bhutan and Bangladesh are collaborating on evaluating Bangladeshi wheat lines for resistance to yellow and leaf rusts with support from CIMMYT.

Advanced wheat lines from Bangladesh are evaluated for rust resistance in Bhutan. Photo: Sangay Tshewang/RNRRD
Advanced wheat lines from Bangladesh are evaluated for rust resistance in Bhutan.
Photo: Sangay Tshewang/RNRRD

During the 2015–2016 cropping season, Bangladesh sent 50 advanced wheat lines identified as having potential rust resistance to Bhutan for screening. The evaluation was done under natural conditions at the Renewable Natural Resources Research and Development Center (RNRRD) in Bajo, about 70 kilometers east of Thimphu, Bhutan’s capital. The results are promising, with 30 lines showing resistance to the rusts. The data were shared with Bangladeshi partners, who will use them to inform their breeding decisions.

Bhutan has been collaborating with CIMMYT’s Global Wheat Program since 2011 and has released three rust resistant varieties from CIMMYT in the past two years. Although there has been regional collaboration on wheat research in South Asia mainly through CIMMYT, testing wheat lines from Bangladesh for rust resistance in Bhutan is a first.

 

receive newsletter

Launch of new geo-informatics tool

Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT
Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT

NEW DELHI — The International Maize and Wheat Improvement Center (CIMMYT) has launched the beta version of the Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies. Using geo-informatics, the Cereal Systems Initiative for South Asia (CSISA), for example, was able to identify districts in the state of Odisha most prone to flooding and categorize them as areas ill-suited for direct seeded rice. LCAT will provide a platform for extension professionals, policymakers and research scientists to leverage geo-informatics for better decision-making. The tool was developed for South Asia but can be used globally.

“In the eastern Indo-Gangetic Plains, we promote early sowing of wheat, which is one of the most important adaptations to climate change. But we haven’t been able to accurately monitor and measure where it is being implemented and when,” explained Andrew McDonald, CIMMYT principal scientist and CSISA project leader. “In our line of work, it is crucial to understand where you’re making progress. While the data exists, it is often not integrated at the spatial level.”

Considerable environmental and man-made landscape diversity exists across South Asia. LCAT will help to analyze these landscapes and characterize large areas of land based on remote sensing data. It will serve two main purposes – to facilitate technology targeting and provide information such as crop status, phenology and yield goals to support crop management decisions.

LCAT Screenshot
Screenshot of the new Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies.

“The first version of the tool uses datasets from CSISA sites in Bangladesh and India to characterize the existing cropland. However, the algorithms on which it is based are generic and can hence be applied to describe any dominant agricultural landscape across the globe,” said Balwinder Singh, CIMMYT crop simulation modeler. “Within CSISA, the tool will be used for specific applications extending to crop yield forecasting and monitoring, learning and evaluation.”

However, critical knowledge gaps between landscape-scale processes and technology targeting remain a challenge. To ensure policymakers and scientists are able to effectively collaborate in using this tool, a team of scientists from Oak Ridge National Laboratories (ORNL) visited New Delhi in May to conduct a training session on LCAT for CSISA staff and government partners from India and Bangladesh. The training not only demonstrated the tool’s beta version but also created greater understanding of its practical applications.

“If you’re a user of data, you spend 60 percent of your time just assembling data before analyzing it. We want to reduce that to 5 percent,” said Suresh Vannan, director of the ORNL Distributed Active Archive Center for Biogeochemical Dynamics and CCSI data theme leader.

LCAT is being developed in collaboration with ORNL and the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative. It is funded by CIMMYT as part of a five-year agreement with ORNL signed in 2014.

receive newsletter

Scientists trained on breeding program management, statistical data analysis

Rabia Akram receiving her certificate for successfully attending the training course. Photo: Awais Yaqub/CIMMYT
Rabia Akram receiving her certificate for successfully attending the training course. Photo: Awais Yaqub/CIMMYT

ISLAMABAD — CIMMYT in collaboration with Pakistan’s National Agricultural Research Center conducted a training course on maize breeding program management and statistical data analysis from 23-27 May 2016 in Islamabad, Pakistan. The training was attended by nearly 40 participants nominated from agricultural universities, public and private institutions across the country. It was the first in its kind to address breeding program management and introduce current software to analyze various phenotypic and genotypic data. This hands-on training will help scientists select varieties suitable for use by Pakistani farmers based on multi-environment datasets.

“Today, crop improvement techniques are getting advanced in each passing day and countries that are investing in cutting-edge science and state-of-the-art technologies not only are self-sufficient, but are leading exporters of their surplus products,” said Chairman of Pakistan’s Agricultural Research Council, Nadeem Amjad.

Participants of maize breeding program management and statistical data analysis training held in Islamabad from 23-27 May 2016. Photo: Amina Nasim Khan/CIMMYT
Participants of maize breeding program management and statistical data analysis training held in Islamabad from 23-27 May 2016. Photo: Amina Nasim Khan/CIMMYT

Amjad emphasized the need to build the capacity of scientists dedicated to fields such as crop modeling, bioinformatics and advanced agricultural statistical software to modernize and enhance agricultural productivity in Pakistan. He thanked CIMMYT for addressing the need that can help maize and wheat researchers to grow in these fields and improve their work.

“Thanks to this training I have analyzed all my data in just two hours. Before this it would have taken me months as I was using less efficient, less user friendly and very old software. This is a real support from CIMMYT and my tasks are greatly simplified,” said Rashad Rashid, a representative from Rafhan Maize Products private company.

Together with CIMMYT Pakistan scientists, the training was conducted by Mateo Vargas Hernandez and Alvarado Beltran Gregorio, consultant and senior data analyst from CIMMYT’s Biometry and Statistical Unit respectively, who are part of the team that developed the software used during the training.

“Sharing statistical software and training of  researchers by the very people who were involved in developing the software makes this training unique,” according to  Muhammad Azeem Khan, Director General of National Agricultural Research Center, who closed the ceremony.

Pakistan maize stakeholders discuss progress

NARC’s maize team receiving a certificate of appreciation. Photo: M. Waheed Anwar/CIMMYT
NARC’s maize team receiving a certificate of appreciation from AIP. Photo: M. Waheed Anwar/CIMMYT

ISLAMABAD — CIMMYT’s Agricultural Innovation Program (AIP) held its annual maize working group meeting on 10-11 May with over 20 representatives from public and private seed companies and higher learning institutions in attendance. The working group evaluated AIP partners’ progress in deploying CIMMYT-derived maize hybrids and varieties to farmers.

Maize productivity in Pakistan has increased almost 75 percent since the early 1990s thanks to the adoption and expansion of hybrid maize varieties. However, the seed that spurred this growth is largely imported at an annual cost of $50 million. Since AIP’s launch in 2013, however, more than 80 CIMMYT-derived maize hybrids and open-pollinated varieties have been adapted to Pakistan’s diverse ecologies. Currently, 21 public- and private-sector companies are testing and deploying these locally-adapted cultivars to smallholder farmers across the country.

In his opening statement, Pakistan Agricultural Research Council (PARC) Chairman Nadeem Amjad cited AIP as the best example of sustainable development projects and said that one of its invaluable contributions is “sharing of valuable parental lines and breeder seeds.” He added that CIMMYT hybrids can help “resource-poor maize farmers have affordable maize seeds at their doorstep.”

Participants in AIP’s annual maize working group meeting, 10-11 May 2016, Islamabad, Pakistan. Photo: Amina Nasim Khan/CIMMYT
Participants in AIP’s annual maize working group meeting, 10-11 May 2016, Islamabad, Pakistan. Photo: Amina Nasim Khan/CIMMYT

At the meeting, partners reported on their progress producing parental seed and described how they planned to deliver quality seeds to farmers. They also identified key challenges in Pakistan’s maize seed value chain and recommended potential solutions during the group discussion.

In his concluding remarks, Pakistan’s National Agricultural Research Center (NARC) Director General Muhammad Azeem Khan said that it was only thanks to AIP innovations and interventions that NARC was able to start producing seed of biofortified hybrid maize, a first in the history of Pakistan.

Certificates of appreciation were presented by AIP to NARC for jump-starting hybrid seed production in Pakistan and hosting various national maize events in 2015, as well as to Tara Crop Sciences (Pvt.) Ltd. for conducting the best maize trials evaluated by AIP maize partners during the 2015 traveling maize seminar.

Read about AIP in the media below:

 

receive newsletter

CIMMYT expands registered maize hybrids to western Nepal

CIMMYT is collaborating with national partners in Nepal to support the expansion of registered hybrid maize and to help increase the crop’s productivity throughout the country. Photo: Ashok Rai/CIMMYT
CIMMYT is collaborating with national partners in Nepal to support the expansion of registered hybrid maize and to help increase the crop’s productivity throughout the country. Photo: Ashok Rai/CIMMYT

Maize is the second most important food crop in Nepal, after rice. It contributes approximately 25 percent of Nepal’s food basket and occupies around 26 percent of the total cropped area. Maize productivity (2.3 tons per hectare) in Nepal is still quite low compared to the global average of 5.5 tons per hectare (t/ha).

Growing demand from Nepal’s poultry industry cannot be met by growing only open-pollinated varieties. Because of their high productivity, quality and profitability, higher-yielding hybrids have become increasingly popular among farmers. However, most maize hybrids are only approved for sale and cultivation in the central and eastern Terai, east of the Narayani River. To meet market demand, farmers in many areas, especially in western Nepal, sometimes purchase non-approved hybrid seeds. These hybrid seeds are not registered at Nepal’s Seed Quality Control Centre and are traded through informal channels.

Not wishing to risk a government penalty for violating the seed policy, traders have not distributed many high-performing hybrids, thereby restricting their local production, fair distribution and widespread availability, which could benefit many farmers in Nepal. Of the estimated 2,500 tons of hybrid maize grown in Nepal annually, only 1,000 tons are registered hybrids.

In 2014 and 2015, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) and Nepal’s National Maize Research Program (NMRP) partnered to evaluate maize hybrids in six additional districts (Banke, Bardiya, Kailali, Kanchanpur, Surkhet and Dadeldhura) in western Nepal. Trials were conducted in spring in the Terai and in summer in the mid-hills; they were monitored by a team of NMRP stakeholders. Performance data for variety release and registration were shared with Nepal’s National Seed Board (NSB).

Of the ten hybrids evaluated, four (TX 369, Bioseed 9220, Rajkumar and Nutan) were found to be agronomically superior, producing more than 6 t/ha. They also had tight husk cover, which provides moderate resistance to northern leaf blight and grey leaf spot. Based on the evaluation results, the NSB has registered and approved the four hybrid varieties for sale in western Nepal.

Highlighting the need to increase farmers’ access to registered hybrids, Dilaram Bhandari, NSB member and Director of the Crop Development Directorate of Nepal’s Department of Agriculture, said, “We have to adopt this modality for other hybrids as well, since new hybrids expand outside the recommendation domains quite frequently.”

 

receive newsletter

Sustainable agriculture takes root in Karnataka, India

H.S. Sidhu, senior research engineer, BISA, demonstrating laser land leveler technology. Photo: Yogehs Kumar/CIMMYT
H.S. Sidhu, senior research engineer, BISA, demonstrating laser land leveler technology.
Photo: Yogehs Kumar/CIMMYT

DHARWAD, INDIA — Nearly 150 scientists, researchers and extension agents from universities and agricultural departments across the state of Karnataka, India, attended a field training 12-13 April on conservation agriculture and farm mechanization for sustainable intensification. The training was hosted by the University of Agricultural Sciences (UAS), Dharwad, Karnataka, and jointly organized by CIMMYT, UAS and Karnataka’s Department of Agriculture.

South Asia is one of the most vulnerable regions to climate change. Flooding and drought coupled with seasonal rainfall changes are predicted to devastate agriculture, with extreme heat already disrupting the growing season in India and other countries. Wheat production in India’s Indo-Gangetic Plains may decrease by up to 50 percent by 2100, harming the hundreds of millions who rely on the region for food security. India also extracts more groundwater than any other country in the world to support agriculture, with northern India’s groundwater declining one meter every three years.

Karnataka faces these and other challenges, including production system constraints, mono-cropping and lack of access to markets, storage facilities, processing units and real-time information. Other constraints include large post-harvest losses, labor and energy shortages, poor mechanization and fodder scarcity.

J.V. Goud, Ex Vice Chancellor, UAS, Dharwad, described these challenges in his inaugural address and emphasized the need for sustainable agriculture practices to achieve food security in India.

“Courses like this help combat climate anomalies and make agriculture practices drought-proof,” said Goud. Sustainable practices have proven successful in addressing water shortages in agriculture. For example, trainees were introduced to precision land leveling, which can raise India’s wheat yields more than 16% and increase water productivity by 130%.

Training attendees. Photo: UAS-Dharwad
Training attendees. Photo: UAS-Dharwad

According to M.L. Jat, CIMMYT senior cropping systems agronomist and an expert in conservation agriculture (CA), “Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, This is backed up by ample data on conservation agriculture management practices throughout the region.”

Conservation agriculture is sustainable and profitable agriculture based on minimal soil disturbance, permanent soil cover and crop rotations. It is improving farmers’ livelihoods throughout South Asia and has led to policy-level impacts through the implementation of CA practices covered in the training, such as precision land leveling, zero tillage, direct seeding and crop residue management.

Trainees were taught how to operate a variety of CA machines, including multi-crop zero-tillage machines that can calibrate the amount of seed and fertilizer and control speed for seeding different crops. They also learned about other practices such as weed, nutrient and water management using precision support and sensors.

Scientists and researchers who imparted the training included Jat, CIMMYT agronomist H.S. Jat, CIMMYT hub manager S.G. Patil, CIMMYT consultant Yogesh Kumar Singh, Borlaug Institute for South Asia (BISA) senior research engineer H.S. Sidhu, BISA senior scientist R.K. Jat and Deputy Director of the International Plant Nutrition Institute’s India Program-South Zone, T. Satyanarayana.

 

Harnessing partnerships to build maize seed production and businesses in South Asia

HYDERABAD, INDIA — A training course on maize seed production and seed business management was organized by CIMMYT and seed companies Pioneer Hi-bred and Kaveri Seeds from 28-30 March, 2016. The training was held as part of the CIMMYT’s efforts to connect several public and private sector agricultural research institutions in South Asia.

South Asian farmlands have been increasingly experiencing climate change-related weather extremes. If current trends persist until 2050, major crop yields and the food production capacity of South Asia will decrease significantly – by 17 percent for maize – due to climate change-induced heat and water stress. In response to this situation, CIMMYT with support from the United States Agency for International Development and partners are developing heat stress-resilient maize for Asia.

Participants at DuPont Pioneer seed processing plant Dundigal Hyderabad. Photo: CIMMYT
Participants at DuPont Pioneer seed processing plant Dundigal Hyderabad. Photo: CIMMYT

The course aimed to strengthen the capacity of partner institutions – particularly small-and-medium enterprises and national agricultural research systems in South Asia –  to expand their maize seed production processes and increase uptake of heat-resilient maize hybrids in stress-prone areas.  More than 20 participants from partner institutions participated in the course including breeders, seed production specialists and seed business specialists from commercial seed companies, including Syngenta, DuPont Pioneer, Advanta, J.K. Seeds, CIMMYT and the International Crops Research Institute for the Semi-Arid Tropics.

“Public-private alliances are critical to address complex issues such as heat stress and the development and deployment of heat stress-resilient maize in different regions of South Asia,” said P.H. Zaidi, CIMMYT’s Heat Stress Tolerant Maize for Asia (HTMA) project leader and senior maize physiologist. Zaidi also presented HTMA updates and listed the first variety releases licensed in 2015 to various partners for deployment.

Selvarajan Venkatesh, DuPont Pioneer senior maize breeder, gave a talk on commercial plant breeding and its business perspective with respect to sustainability and foundation for global food security. Venkatesh elaborated on how modern sophisticated hi-tech tools and interactions with multidisciplinary departments changed the face of present plant breeding. Nagesh Patne, CIMMYT seed system project Scientist, discussed the importance of seed production research and the optimization process of the cost of goods of seeds. Various aspects of plant characterization for seed production feasibility were also discussed during this meeting.

Participants learn about large-scale commercial seed production a during a visit to Kaveri Seeds Pvt. Ltd in Jiyanpur.  Photo: CIMMYT
Participants learn about large-scale commercial seed production a during a visit to Kaveri Seeds Pvt. Ltd in Jiyanpur. Photo: CIMMYT

Other topics including maintenance breeding, production workflow, hybrid seed production, post-harvest management of seed lots and seed quality control were also discussed at the training. Presenters included A.R. Sadananda, CIMMYT, Satish Hegde, Advanta Seeds Pvt. Ltd., Ramana Rao, G.K. Seeds, S. Sudhakar Reddy, Field Crops Lead, Advanta India and R. Nanda Kumar, product quality and control manager with Syngenta India.

 

receive newsletter

African ambassadors to Zimbabwe support improved agriculture technologies

HARARE — Several African nation ambassadors to Zimbabwe pledged to step up support for improved agriculture technologies during a visit to The International Maize and Wheat Improvement Center’s (CIMMYT) Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe, in April.

The special field day and meeting, held as part of CIMMYT 50 celebrations, gave ambassadors from 12 African countries (Algeria, Botswana, Democratic Republic of Congo, Ethiopia, Namibia, Nigeria, Sudan, South Sudan, Tanzania, Uganda, South Africa and Zambia) the opportunity to learn about CIMMYT projects that are helping to strengthen food systems in sub-Saharan Africa and discuss future initiatives.

During the visit, the need to develop policies that promote smallholder farmers’ access to technologies that enable them to increase yields and improve crop resilience in the face of challenges such as droughts, as well as policies to address poverty, food security and economic growth surfaced as main priorities for the countries represented.

African ambassadors learned about CIMMYT-promoted agricultural technologies while visiting the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe. Photo: Johnson Siamachira/CIMMYT
African ambassadors learned about CIMMYT-promoted agricultural technologies while visiting the CIMMYT-Southern Africa Regional Office (CIMMYT-SARO) in Harare, Zimbabwe. Photo: Johnson Siamachira/CIMMYT

In his welcome address, Mulugetta Mekuria, CIMMYT-SARO regional representative, pointed out, “Sub-Saharan Africa’s food security faces numerous challenges, but drought is the most devastating because our farmers rely on rainfed agriculture. As you will see, CIMMYT’s work has created high-level impacts. But a host of challenges still hamper socioeconomic growth, such as reduced funding of agricultural research.”

According to Mekuria, CIMMYT’s work in sub-Saharan Africa aims to ensure farmers can access improved maize seed with drought tolerance and other relevant traits that contribute to higher, more stable yields, as well as technologies such as optimal fertilizer application. He noted that farmers in sub-Saharan African countries lag behind other regions in fertilizer application, applying, on average, less than 10 kg per hectare, which is 10 percent of the world average.

Another issue brought up was the lack of funding of agricultural research for development by most bilateral agencies on which African governments depend. The diplomats pledged to advise their governments of the need to increase support for improved agricultural technologies. They agreed that funding agricultural research work in line with the 2006 Abuja Declaration to allocate at least 1 percent of the donor country’s gross domestic product to agricultural research is of the utmost importance. Enhancing access to markets, extension services and inputs and supporting women and youth in agriculture were also identified as fundamental policy issues that need to be urgently addressed. Strong partnerships and collaborative efforts between various African governments, CIMMYT and the private sector were also called for.

The ambassadors were briefed on CIMMYT’s achievements in the region, and how, in partnership with national agricultural research systems  and private seed companies, they have released more than 200 drought-tolerant maize varieties that perform significantly better under moderate drought conditions than varieties already on the market, while yielding the same – or better – in a normal season. More than 6 million farmers in sub-Saharan Africa grow improved drought tolerant maize varieties developed by CIMMYT and partners.

A wide range of CIMMYT-SARO technologies were also showcased, including sustainable intensification strategies based on the principles of conservation agriculture. Compared to conventional cropping practices, conservation agriculture increases yields after two to five cropping seasons due to the combined benefits of minimum soil disturbance, crop residue retention and crop rotation. Conservation agriculture has been successfully promoted in Malawi, Mozambique, Zambia and Zimbabwe for the past 10 years. For example, yield increases of 20-60 percent were recorded in trials in farmers’ fields in Malawi, while in Zambia and Zimbabwe, yields increased by almost 60% using animal traction innovation agriculture technologies.

Other technologies demonstrated were pro-vitamin A maize and quality protein maize. The diplomats learned that CIMMYT had released eight pro-vitamin A hybrids with 28% more vitamin A content in Zambia (4), Malawi (3) and Zimbabwe (1). On improved varieties, CIMMYT sent 823 seed shipments (1.3 million envelopes) to 835 institutions worldwide over the last four years.

“The success of our projects goes beyond the breeding work. Through the value chain approach, our work now is to ensure that seed companies and, ultimately, maize farmers benefit from the seed that is developed with their needs in mind. Getting drought-tolerant maize and other improved seeds to the markets and farmers is a critical next step,” said James Gethi, CIMMYT seed systems specialist.

Pakistani farming community nudged to improve agricultural productivity

(L-R) Mark Bell (UC Davis), UAAR representative, Imtiaz Muhammad (CIMMYT), Rai Niaz, Vice Chancellor PMAS-UAAR, UAAR representative, UAAR representative. Photo: PMAS-UAAR.
(L-R) Mark Bell (UC Davis), UAAR representative, Imtiaz Muhammad (CIMMYT), Rai Niaz, Vice Chancellor PMAS-UAAR, UAAR representative, UAAR representative. Photo: PMAS-UAAR.

ISLAMABAD — The United States Agency for International Development (USAID)-funded Agricultural Innovation Program (AIP) for Pakistan, in partnership with Pir Mehr Ali Shah University of Arid Agriculture Rawalpindi (PMAS-UAAR), organized a one-day conference on “Agricultural Productivity Improvement through Nudging.” The conference was attended by agricultural experts, professors, scientists, researchers, national and international experts, and students.

Rai Niaz, PMAS-UAAR Vice Chancellor, chaired the inaugural session. He extolled the partnership between AIP and PMAS-UAAR that will bring innovation to science and better opportunities in the agricultural sector. CIMMYT Country representative Muhammad Imtiaz gave the participants an overview of AIP activities.

The audience takes a keen interest in the seminar’s inaugural session. Photo: PMAS-UAAR.
The audience takes a keen interest in the seminar’s inaugural session. Photo: PMAS-UAAR.

Mark Bell, representative of University of California Davis, outlined some areas in which nudging, a technique that influences people towards desirable behavior, can be used as a potential vehicle for agriculture extension.

The technical session of the seminar was jointly chaired by Muhammad Imtiaz and Abdul Saboor, Dean of the Social Science Faculty, PMAS-UAAR.

Speaking during the technical session, Imtiaz described the nudging concept and the difference between nudging and incentivizing. He explained in detail the types of decisions made by the farming community and their implications for crop and livestock productivity. He spoke about AIP’s nudging efforts and how successful they have been in the livestock, vegetable and cereal sectors. He explained how farmers are nudged through AIP to increase agricultural productivity. The participants lauded AIP’s efforts to nudge farmers to adopt innovations and increase their productivity.

receive newsletter

Annual meeting highlights adoption of conservation agriculture in Sichuan, China

Chaosu explains the operation and results of the Chinese-made Turbo Happy Seeder to an enthusiastic group of researchers and farmers at a conservation agriculture demonstration site near Santai, Mianyang, Sichuan Province. Photo: Jack McHugh/ CIMMYT
Chaosu explains the operation and results of the Chinese-made Turbo Happy Seeder to an enthusiastic group of researchers and farmers at a conservation agriculture demonstration site near Santai, Mianyang, Sichuan Province. Photo: Jack McHugh/CIMMYT

CHENGDU, CHINA – The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with the Sichuan Academy of Agricultural Science (SAAS) is expanding conservation agriculture (CA) practices to promote sustainable intensification (SI) (i.e., agriculture aimed at enhancing the productivity of labor, land and capital) in China’s Sichuan Province.

Sustainable intensification can simultaneously address a number of pressing development objectives, including adapting production systems to climate change, sustainably managing land, soil, nutrient and water resources, improving food and nutrition security and ultimately reducing rural poverty. Zero tillage (ZT) minimizes soil disturbance, provides continual residue soil cover and includes crop rotations, all of which increases soil fertility and water use efficiency and helps cereal farmers sustain their crop yields over the long term.

As part of a joint CA project with CIMMYT, Tang Yonglu, Dean of the Crop Research Institute, SAAS, and his team have promoted sustainable mechanization and residue management, incorporated farmer input and hosted demonstrations in the rainfed regions of Sichuan. As a result, farmers from Mianyang District in Sichuan are now interested in ZT; a plan was thus put in place to build capacity and help farmers plant ZT maize and rice in May and June 2016.

Chaosu inspects an immature ZT wheat field affected by frost. This crop will be followed by ZT mechanically transplanted rice into the standing residue in late May. Previously, rice was manually transplanted by women following conventional inversion tillage. This new planting scheme tested by CIMMYT in north western China will save 1-2 weeks and considerable input costs for the new ZT farmers in south west China. Photo: Jack McHugh/ CIMMYT
Chaosu inspects an immature ZT wheat field affected by frost. This crop will be followed by ZT mechanically transplanted rice into the standing residue in late May. Previously, rice was manually transplanted by women following conventional inversion tillage. This new planting scheme tested by CIMMYT in Northwestern China will save 1-2 weeks and considerable input costs for the new ZT farmers in Southwest China. Photo: Jack McHugh/CIMMYT

At an annual SAAS-CIMMYT meeting, Tang’s team presented their findings on the effect soil compaction and waterlogging have on wheat production. Soil compaction occurs when random wheeling over cropping areas of farm vehicles, such as tractors and harvesters, packs the soil so tightly that soil conditions deteriorate, reducing crop yields. Waterlogging caused by flooding or intense rain on degraded soils also negatively affects yields.

At the meeting, CIMMYT proposed managing soil compaction through controlled traffic farming (CTF), an essential ZT practice that alleviates soil degradation. CTF permanently separates the crop area and the traffic lanes, thereby avoiding vehicle-induced soil compaction and improving and sustaining soil health. SAAS plans on implementing CTF as one tool in its sustainable intensification efforts.

During the two-day event, local researchers presented their academic and work reports and attended a field demonstration on advances in ZT mechanization; technical training sessions for farmers were also held. Other researchers addressed subjects such as soil health, weed control, sustainable techniques for rainfed wheat and mechanization techniques for rainfed maize.

Field demonstrations compared the performance of crops sown using locally produced one-pass planting machines and the Chinese made Turbo Happy Seeder. It was the first time participating researchers and farmers had seen a demonstration of the Happy Seeder. The Chinese seeder minimizes soil disturbance and uses devices that block residue, which makes it very useful for planting irrigated and rainfed crops when high levels of residue are maintained in the fields. For the locally produced machines to operate successfully, they require low levels of residue on the soil surface or that residues be incorporated into the soil.

Differences in planting machinery performance were difficult to discern in the wheat fields, due to yield losses across the region as a result of a very cold period in January. What was apparent was that while all the machines were equally effective in terms of crop establishment, there appeared to be slight differences in water stress in crops sown by the rotary till planter (high soil disturbance) and the non-rotary planter (low soil disturbance). This improvement in crop soil water was not lost on the participants as they strolled through the fields while listening to Li Chaosu, senior researcher at the Crop Research Institute, SAAS, explain the results.

CIMMYT SAAS collaboration is set to expand in the mountainous regions of Sichuan Province later this year, when new farmers come on board to implement ZT rice transplanting. The Green Farming Association, in collaboration with the local Agricultural Mechanization Bureau based in Santai, is also forging ahead with its conservation agriculture plans with CIMMYT’s guidance and support.

 

 

CIMMYT delivers technology to public and private partners in Nepal

Puniram Chaudhary in Kailali District explains the advantages of growing new lentil variety Black Masuro over the local variety. Photo: Narayan Khanal
Puniram Chaudhary in Kailali District explains the advantages of growing new lentil variety Black Masuro over the local variety. Photo: Narayan Khanal

KATHMANDU, NEPAL (CIMMYT) – Farmers in Nepal are benefiting from the work done by the Cereal Systems Initiative of South Asia (CSISA) in Nepal, which  promotes public-private partnerships with small and medium enterprises in the seed sector to aid sustainable intensification of wheat- and maize-based cropping systems over the past two years.

Representatives of these enterprises have received business mentoring, participated in an exercise on creating business plans, collaborated with Indian seed companies and attended a “theory of change” workshop. Subsequently, two seed companies (GATE Nepal Pvt. Ltd. and Unique Seed Company) requested technical support from CIMMYT to organize field demonstrations of new wheat and lentil varieties for farmers in six strategic districts in the hills and terai (plains) of Nepal. In terai demonstrations were held in Banke, Bardiya, Kailali and Kanchanpur.  In hill districts demonstrations were held in Surkhet and Dadeldhura. Altogether, CIMMYT provided support for 60 wheat and lentil field demonstrations during the 2015-2016 winter season in collaboration with national agriculture research system partners.

A team of professionals, which included representatives from District Agriculture Development Offices (DADOs), Nepal Agriculture Research Council (NARC), CSISA-Nepal, seed companies and the media, attended the demonstrations from 13-17 March 2016. They observed three treatments: a farmers’ variety under farmers’ management; an improved variety under farmers’ management and an improved variety under improved management. The visitors also viewed seed production plots, interacted with farmers about key lessons learned and discussed possible strategies for scaling out wheat and lentil technology through public-private partnerships.

During the visit, it was clear that farmers understood the advantages of growing quality seed of recently released wheat varieties such as Vijay, compared to the local varieties. Some farmers asked for wheat varieties with physical features and cooking qualities similar to those of NL 297, an old variety. At one of the participatory variety selection (PVS) plots, senior wheat breeder Madan Bhatta proposed NARC’s pipeline variety BL4341 as an alternative to NL 297. Milan Paudel, GATE Nepal agriculture officer, became keenly interested in BL4341 and said he would collect seed from the trial plot so his company could multiply it.

Women farmers selected wheat variety Danfe at the PVS trial in Gadhi VDC, Surkhet District. Photo: Narayan Khanal
Women farmers selected wheat variety Danfe at the PVS trial in Gadhi VDC, Surkhet District. Photo: Narayan Khanal

The team also observed the wheat field of farmer Ram Chandra Yadav, who had planted Vijay on 3 ha using a zero-tillage seed drill. Yadav is also a local service provider of the zero-tillage seed drill promoted by the CSISA project. During the current wheat season, he has provided paid services on 18 hectares (44.5 acres) belonging to other farmers. The team also witnessed the success of new wheat varieties WK 1204, Dhawalagiri and Danphe in the hill district of Surkhet, where farmers planted a significant area with seed saved from their previous harvest.

Lentils were also in focus, most farmers liked the performance of new variety Black Masuro across districts in the terai. Rabendra Sah, senior technical officer of the National Grain Legume Research Program, said that to get higher yields, farmers should sow Black Masuro by 15 October.

DADO officials acknowledged CIMMYT’s contribution to seed system development and mechanization. They proposed an improved model for producing seed of major food crops in public-private partnerships. In this model, seed companies agree to make contractual arrangements with seed producer groups and cooperatives to produce and market truthfully labeled (TL) seed. Once the contract is signed, DADOs will provide source seed to the seed companies at a subsidized rate, and the seed will be multiplied by producer groups and cooperatives. The TL seed thus produced will then be distributed through different food security related projects.

Given that DADOs from Surkhet and Kanchanpur are keen to participate in this model, CIMMYT has agreed to further strengthen such partnership arrangements. There is a growing realization that the CIMMYT can mobilize private seed companies in Nepal to utilize the network of farmer groups and cooperatives to scale out technologies/varieties.

Afghan and Indian researchers collaborate to combat wheat rust disease

Afghan and Indian researchers are collaborating to combat the wheat rust disease Karnal bunt. Photo: CIMMYT
Afghan and Indian researchers are collaborating to combat the wheat rust disease Karnal bunt. Photo: CIMMYT

DELHI, INDIA — Afghanistan is strategically located at the intersection of South, Central and West Asia, making it an incredibly geographically diverse country. Varying climates and terrains across the country have a direct impact on agriculture, including Afghanistan’s staple crop wheat, which is grown in in tropical climates in the east to cooler regions in the west.

However, various rust diseases affect wheat yields across the country. According to the Food and Agricultural Organization of the United Nations, wheat rusts manifest as yellow, blackish or brown colored blisters that form on wheat leaves and stems, full of millions of spores. These spores, similar in appearance to rust, infect the plant tissues, hindering photosynthesis and decreasing the crop’s ability to produce grain.

While yellow rust is one of the most far-reaching diseases in Afghanistan and globally most devastating rust disease, Karnal bunt is another disease that while confined to the eastern part of Afghanistan, has proven challenging to combat with climate change creating more favorable conditions for the disease to spread in the region.  In addition, the eastern province of Nangarhar is emerging as an important seed production hub in the country, raising concerns about Karnal bunt.

To counteract and contain Karnal bunt, CIMMYT and the Indian Institute of Wheat and Barley Research (IIWBR) of the Indian Council of Agricultural Research jointly organized a three-day training program on Karnal bunt for Afghan researchers. Indu Sharma, former IIWBR director, stated this training is the beginning of a long collaboration between IIWBR and Afghanistan’s national agricultural research system. She also gave a detailed description of the Karnal bunt pathogen and its epidemiology, emphasizing the importance of detecting and how to combat Karnal bunt in Afghanistan.

During the workshop various principal scientists from IIWBR and the Indian Agricultural Research Institute discussed India’s perspective and experience with wheat diseases, production strategies current research trends and genetic and biotechnological means for improving wheat. There was also a demonstration on preparing Karnal bunt-free seed samples for international shipping by IIWBR principal scientist M. S. Saharan.

In his address, IIWBR Director R. K. Gupta expressed his appreciation for the trainees’ active participation and looked forward to collaborating with them in the future. Sharma cited material exchange and screening of advanced lines for quality and disease resistance as opportunities for future collaboration.