Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Better farming practices key to combating desertification and drought

Combating desertification and drought is critical, but focusing on the bigger challenge of unsustainable agriculture can deliver more for farmers. Research from India offers new insights on practical solutions for better soil fertility, more efficient water use, reduced air pollution and lower greenhouse gas emissions.

Irrigated wheat field. Photo: S. Sukumaran/CIMMYT.
Irrigated wheat field. Photo: S. Sukumaran/CIMMYT.

The world has made significant progress in reducing poverty and malnutrition over the last century. The number of people living in extreme poverty has been cut by half over the last twenty years, while the percentage of young children suffering from the effects of malnutrition has also declined 17 percent in fewer than 20 years (UNICEF). Yet these improvements have come at a cost to our planet. Can we feed the world and fight poverty without continuing to deplete water, degrade soils and change our climate?

June 17 is the UN Day to Combat Drought and Desertification, which puts a spotlight on efforts to reverse land and soil degradation. Land degradation and drought affect farmers everywhere, especially poor farmers, but tackling these issues without looking at the big picture may not accomplish the long-term change needed, according to researchers from the International Maize and Wheat Improvement Center (CIMMYT).

“Land degradation and abiotic stresses, especially drought, are often symptoms of a bigger problem,” says M.L. Jat, a Principal Scientist and Cropping Systems Agronomist at CIMMYT. “Unsustainable land use, particularly poor farming practices and policies, have led to a wide set of challenges in many rapidly-developing countries. In addition to drought and land degradation, we are experiencing climate change, increased air pollution and water scarcity” he points out. The answer, he says, can be found by taking systems focus and selecting the right combination of agricultural techniques that improve the resilience and productivity of farms while combating drought, land degradation, climate change and air and water pollution.

 

A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.
A farmer at work weeding in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.

Reversing the worrying trends in India

In India, a recent CIMMYT analysis led by Jat’s team and national partners underscores the need for action to improve current agricultural practices, which are “severely stressing the natural resource base.” The analysis shows that Indian farmers are grappling with many issues that intersect with desertification and drought. The Green Revolution, which led to enormous advances in India’s agricultural productivity and fed a rapidly expanding population, also left a worrying aftermath of inefficient or inappropriate resource use.

“The extent of land degradation is alarming” write the authors, with up to 145 million hectares of farmland now considered “practically infertile” and unable to sustain long-term agricultural production. Meanwhile, over pumping of India’s water resources for rice production has depleted groundwater to “critically low levels,” putting India in the unfortunate top world position in terms of withdrawal of fresh water from aquifers.

Further challenges in India include adapting farming to climate change (particularly increasing temperatures), reducing greenhouse gas (GHG) emissions to mitigate climate change impacts and dramatically cutting air pollution caused by the widespread burning of rice crop residues. The data indicate an urgent need to improve air quality, reverse soil degradation, and reduce GHG emissions.

 

A farmer at work in a wheat field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.
A farmer at work in a field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. Photo: M. DeFreese/CIMMYT.

Treat the causes instead of the symptoms

“Rather than treating each problem separately, we’re trying to find answers that can address a multitude of urgent challenges,” says Jat. “It’s like a doctor understanding and treating the whole person rather than the physical symptoms of the disease – but for agricultural systems,” he explained.

For the rice and wheat growing areas of Northwest India, taking a systems approach means building a closed-loop farming system. Farmers customarily burn leftover rice stems in the field in order to plant wheat, a practice that causes air pollution and depletes soil nutrition. The innovative ‘Turbo Happy Seeder’ tool allows farmers to sow wheat seed directly into unplowed fields and rice residues. Leaving the residues not only helps improve air quality in this region but builds up organic carbon and nitrogen in soils. It also offers a low-cost alternative to chemical fertilizers, saving the farmers money and reducing greenhouse gas emissions and environmental damage from overuse of fertilizers.

The scientists are also experimenting with “layering” various techniques to produce even more benefits to people and the planet. Field tests in India include combinations of climate-smart technologies for tillage, crop establishment, residue and nutrient management, along with use of improved crop varieties, information and communication technology and crop insurance. The scientists found that layering climate-smart agriculture practices improved productivity of the rice-wheat system up to 19 percent. Layering techniques helped farmers use 20 percent less water for irrigation. And global warming potential was cut by 40 percent. The results to date bring to light new possibilities for highly productive and resilient farms that have a smaller environmental footprint. This includes healthier soils, cleaner air and water, and fewer greenhouse gas emissions.

 

From India to the rest of the world

The early evidence from India is promising and could offer inspiration for other countries grappling with their own resource and food challenges. India’s leaders have embarked on a conscious effort to invest in and promote technologies that simultaneously protect the environment, support farmers and feed its people. This approach marks a shift from the last 50 years of thinking and represents the kind of transformative change needed around the world to help accomplish several of the United Nation’s Sustainable Development Goals.

 

Further Reading

Agricultural policies and investment priorities for managing natural resources, climate change and air pollution – Policy brief

“Layering” climate smart rice-wheat farming practices in India boosts benefits – CIMMYT Blog

Kakraliya SK, Jat hs, Singh I, Sapkota TB, Singh LK, Sutaliya JM, Sharma PC, Jat RD, Choudhary M, Lopez S, Jat ML. 2018. Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agricultural Water Management 202:122-133.

 

This work is led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by the Trust for Advancement of Agricultural Sciences (TAAS), the Indian Council of Agricultural Research (ICAR), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), and the World Bank Group

CIMMYTNEWSlayer1

CIMMYT director general visits India

Work plan signing ceremony, Kropff and Mohapatra. Photo: CIMMYT.
Work plan signing ceremony, Kropff and Mohapatra. Photo: CIMMYT.

Last week director general of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff touched down in India.

For Kropff, the visit would help establish and strengthen several strong private-sector partnerships for CIMMYT, including with UPL Limited, the largest manufacturer of agrochemicals in India.

During his trip, Kropff hosted all India-based staff and partners to a gala dinner to give updates from the headquarters in Mexico and thank stakeholders for their valuable contributions to the CIMMYT mission of i mproving the livelihoods of smallholder farmers.

Kropff spoke at a “Climate-smart agriculture as an investment destination for CSR” talk organized by the CGIAR program on Climate Change and Food Security (CCAFS), the Borlaug Institute of South Asia (BISA) and CIMMYT in association with The Federation of Indian Chambers of Commerce and Industry partners.

The visit culminated in the Ninth Executive Committee Meeting for BISA. BISA is a collaboration between CIMMYT and the Indian Council of Agricultural Research (ICAR). The committee reviewed BISA’s financial and research updates, ICAR reiterated its commitment and support to BISA and ICAR director general, Trilochan Mohapatra and Kropff signed the ICAR-CIMMYT five-year work plan for 2018-2022. The work plan was co-developed in consultation with ICAR and CIMMYT scientists and outlines areas of synergy and priority such as exchange of germplasm, technologies, technical cooperation, personnel, joint experimentation, joint publications and capacity enhancement in several frontier areas of research.

CIMMYTNEWSlayer1

Maize partners collaborate to maintain yield gain momentum in Pakistan  

Last year’s maize-growing season in Pakistan yielded a record-breaking six-million tons, decreasing the country’s dependence on imported maize seed and boosting local sales and exports of maize-based products.

Officials and growers attribute this surge in yields extensive use of inputs such as fertilizer, high-yielding improved maize hybrid new varieties and collaborative programs that focus on targeting maize seed improvement to the local environment.

One such program is the International Maize and Wheat Improvement Center (CIMMYT) -led and United States Agency for International Development (USAID) -funded Agricultural Innovation Program (AIP) for Pakistan.

AIP annual maize working group meeting

During the recently held 5th Annual maize working group meeting, partners representing 25 public and private institutions discussed what can be done following efforts to consolidate and sustain innovative interventions by AIP. Approximately 50 Participants from Pakistan attended this two-day meeting, where participants shared progress on their respective maize activities, updates on the status of seed production and product identification under AIP, and future prospects.

In a thematic group discussion, participants helped to identify gaps, recognize the role of stakeholders, and develop doable recommendations across the value chain.

Yusuf Zafar, chairman of the Pakistan Agricultural Research Council (PARC), said he appreciated the contributions of CIMMYT and USAID to Pakistan’s maize sector. “The collaboration and partnership of the public and private sectors under AIP is an exemplary one. We will continue supporting the continuation of this platform with all available means and resources” said Zafar while ensuring PARC’s commitment to this initiative after the completion of the project.

While presenting the annual review, Muhammad Imtiaz, CIMMYT Country Representative for Pakistan discussed the status of the project. AIP will continue under a no-cost extension until 2019 and the project is looking for assistance from the private sector in order to continue into the future.

In closing, Anjum Ali, Member Plant Sciences Division, Pakistan Agricultural Research Council, PARC, acknowledged the effort of CIMMYT in bringing all the stakeholders of maize including academia, public and private R&D institutions, policymakers under one umbrella. He further added, “PARC will channel all the deliberations from this meeting and will work with relevant government bodies to come up with amicable solutions for the problems faced by the private sector in products testing and marketing.” The timely and doable recommendations of the working group will serve as a working document for the government in the future, Ali added.

The Agricultural Innovation Program’s mission to sustainably increase agricultural productivity and incomes in Pakistan is supported by the United States Agency for International Development. Partners who have been key in this effort include the Pakistan Agricultural Research Council, the International Livestock Research Institute, the University of California – Davis, the World Vegetable Center and the International Rice Research Institute. It has been under no-cost extension since the program ended in March 2017, which extends the program until 2019.

CIMMYTNEWSlayer1

On-the job training boosts drought monitoring skills in Bangladesh

A two-week on the job training took place in March on the application of remote sensing in drought monitoring and crop mapping in Kathmandu, Nepal to build the capacity of young and mid-career professionals. The training was organized with the support of the International Maize and Wheat Improvement Center (CIMMYT)-led Climate Services for Resilient Development (CSRD) initiative in South Asia, alongside the International Centre for Integrated Mountain Development (ICIMOD). The training introduced participants from Bangladesh’s apex agricultural research body, Bangladesh Agricultural Research Council (BARC), and the Bangladesh Agricultural Research Institute (BARI) to remote sensing techniques for monitoring and forecasting weather patterns.

Suraya Parvin (left), Senior Scientific Officer of BARC, discussing with the facilitator in the training. Photo: Jitendra Raj Bajracharya/ICIMOD.
Suraya Parvin (left), Senior Scientific Officer of BARC, discussing with the facilitator in the training. Photo: Jitendra Raj Bajracharya/ICIMOD.

The training strengthened the remote sensing capabilities of professionals from BARC and BARI in using satellite-based remote sensing tools and crop mapping to monitor drought risks. During the training, participants were exposed to a number of remote sensing and geographic information systems tools including SPIRITS, QGIS, ArcMap, GeoCLIM as well as a foundation course to Google Earth Engine. Additionally, open source platform to perform online and offline data collection using mobile application training was provided.This learning exchange took place in order to address the risks for agricultural drought in portions of north-western Bangladesh where farmers may lack access to, or cannot afford irrigation. This leads to bottlenecks in crop productivity and can impair the livelihoods of smallholder farmers reliant on variable and unpredictable precipitation. Access to quality drought monitoring and forecasting could assist farmers in adapting to these climactic risks. Meteorological and agricultural research institutions play a crucial role in providing improved information flow and drought risks advisories to farmers.

Mir Matin, theme leader of Geospatial Solutions, ICIMOD, organized the training on behalf of CSRD and ICIMOD, alongside Rajesh Bahadur Thapa, capacity building specialist, ICIMOD. ICIMOD’s Bhoj Raj also facilitated sessions on application of these tools.

“Bangladesh, especially the northern region, is most susceptible to drought and it is difficult to grow year-round crops here,” said Suraya Parvin, senior scientific officer of BARC. “To increase the cropping intensity in this region, drought monitoring is very essential. I think this training was extremely useful to prepare us for this challenge.”

The CSRD partnership and ICIMOD are working together to establish user-oriented platforms for the provision of easily accessible, timely and decision relevant scientific information, in the form of climate services. “This training, and the applied science products that will come from it, will be a crucial part of efforts to increase the resilience of Bangladesh’s smallholder farmers to climatic risks,” said Timothy J. Krupnik, systems agronomist, CIMMYT and CSRD project leader. “Working with the graduates of the training on a day-to-day basis, we expect to deepen BARC and BARI’s contributions to applied climate services in Bangladesh.”

CSRD is a global partnership whose core mission is to translate actionable climate information into easy to understand formats to spread awareness and use of climate services. The Climate Services for Resilient Development (CSRD)  consortium in South Asia is led by International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Bangladesh Meteorological Department (BMD), Bangladesh Department of Agricultural Extension (DAE), the Bangladesh Agricultural Research Council (BARC), the Bangladesh Agricultural Research Institute (BARI), the International Centre for Integrated Mountain Development (ICIMOD), International Institute for Climate and Society (IRI), University de Passo Fundo (UPF), and the University of Rhode Island (URI). 

New Publications: Tackling the wheat blast threat in South Asia

This blast-infected wheat spike contains no grain, only chaff. Photo: CIMMYT files.
This blast-infected wheat spike contains no grain, only chaff. Photo: CIMMYT files.

A spatial mapping and ex ante study regarding the risk and potential spread in South Asia of wheat blast, a mysterious and deadly disease from the Americas that unexpectedly infected wheat in southwestern Bangladesh in 2016, identified 7 million hectares of wheat cropping areas in Bangladesh, India, and Pakistan whose agro-climatic conditions resemble those of the Bangladesh outbreak zone.

The study shows that, under a conservative scenario of 5-10% wheat blast production damage in a single season in those areas, wheat grain losses would amount to from 0.89 to 1.77 million tons worth, between $180 and $350 million. This would strain the region’s already fragile food security and forcing up wheat imports and prices, according to Khondoker Abdul Mottaleb, first author of the study.

“Climate change and related changes in weather patterns, together with continuing globalization, expose wheat crops to increased risks from pathogens that are sometimes transported over long distances,” said Mottaleb.

Foresight research at the International Maize and Wheat Improvement Center (CIMMYT) has focused on new diseases and pests that have emerged or spread in recent decades, threatening global food safety and security. For wheat these include Ug99 and other new strains of stem rust, the movement of stripe rust into new areas, and the sudden appearance in Bangladesh of wheat blast, which had previously been limited to South America.

“As early as 2011, CIMMYT researchers had warned that wheat blast could spread to new areas, including South Asia,” said Kai Sonder, who manages CIMMYT’s geographic information systems lab and was a co-author on the current study, referring to a 2011 note published by the American Pathological Society. “Now that forecast has come true.”

CIMMYT has played a pivotal role in global efforts to study and control blast, with funding from the Australian Center for International Agricultural Research (ACIAR), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agriculture Research (ICAR), and the United States Agency for International Development (USAID).

This has included the release by Bangladesh of the first blast resistant, biofortified wheat variety in 2017, using a CIMMYT wheat line, and numerous training events on blast for South Asia researchers.

Read the full article in PLOS-One: “Threat of wheat blast to South Asia’s food security: An ex-ante analysis” and check out other recent publication by CIMMYT staff below:

  1. Africa’s unfolding economic transformation. 2018. Jayne, T.S., Chamberlin, J., Benfica, R. In: The Journal of Development Studies v. 54, no. 5, p. 777-787.
  2. Agricultural innovation and inclusive value-chain development: a review. 2018. Devaux, A., Torero, M., Donovan, J. A., Horton, D. In: Journal of Agribusiness in Developing and Emerging Economies v. 8, no. 1, p. 99-123.
  3. Challenges and prospects of wheat production in Bhutan: a review. 2018. Tshewang, S., Park, R.F., Chauhan, B.S., Joshi, A.K. In: Experimental Agriculture v. 54, no. 3, p. 428.442.
  4. Characterization and mapping of leaf rust resistance in four durum wheat cultivars. 2018. Kthiri, D., Loladze, A., MacLachlan, P. R., N’Diaye, A., Walkowiak, S., Nilsen, K., Dreisigacker, S.,  Ammar, K., Pozniak, C.J. In: PLoS ONE v. 13, no. 5, art. e0197317.
  5. Fixed versus variable rest period effects on herbage accumulation and canopy structure of grazed ‘Tifton 85’ and ‘Jiggs’ Bermuda grass. 2018. Pedreira, C. G. S., Silva, V. J. da., Guimaraes, M. S., Pequeño, D. N. L., Tonato, F. In: Pesquisa Agropecuaria Brasileira v. 53, no. 1, p. 113-120.
  6. Gestión de la interacción en procesos de innovación rural. 2018.  Roldan-Suarez, E., Rendon-Medel, R., Camacho Villa, T.C., Aguilar-Ávila, J. In: Corpoica : Ciencia y Tecnología Agropecuaria v. 19, no. 1, p. 15-28.
  7. Market participation and marketing channel preferences by small scale sorghum farmers in semi-arid Zimbabwe. 2018. Musara, J. P., Musemwa, L., Mutenje, M., Mushunje, A., Pfukwa, C. In: Agrekon v. 57, no. 1, p. 64-77.
  8. The economics behind an ecological crisis: livelihood effects of oil palm expansion in Sumatra, Indonesia. 2018. Kubitza, C., Krishna, V.V., Alamsyah, Z., Qaim, M. In: Human Ecology v. 46, no. 1, p. 107–116.
  9. Understanding the factors that influence household use of clean energy in the Similipal Tiger Reserve, India. 2018. Madhusmita Dash, Behera, B., Rahut, D. B. In: Natural Resources Forum v. 42, no. 1, p. 3-18.

Breaking Ground: Wei Xiong helps farmers and policymakers make better decisions

Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.

Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.

“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”

Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.

“We call the project drinking security,” added Xiong.

Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.

“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.

Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.

“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”

But in China, Xiong explained, agriculture still falls under government control.

“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”

The team will use their simulation models to recommend policies that benefit farmers and the environment.

Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.

After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.

Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.

CIMMYT helps national programs to enhance maize breeding efficiency in Pakistan

Maize researchers at MMRI while receiving the DH inducer lines seeds. Photo:MMRI
Maize researchers at MMRI while receiving the DH inducer lines seeds. Photo:MMRI

Maize is Pakistan’s third important cereal following wheat and rice. Pakistan’s maize yield is among the highest in South Asia with an average yield of 4.5 tons per hectare (t/ha). Maize production in Pakistan in 2016-17 set a record high of 6.1 million tons, a 16 percent increase from the previous year and almost a 600 percent increase from levels in the early 1980s. The introduction and rapid expansion of hybrid maize in the mid 1990s, particularly in the spring season, is among the drivers for the wider adoption of maize in Pakistan.

Despite the noteworthy progress of maize production and productivity, Pakistan still imports more than 80 percent of the hybrid seeds, costing the country over $50 million annually and making retail price of hybrid seeds expensive. Dependency on seed import will not warrant sustainable maize production.

The International Maize and Wheat Improvement Center (CIMMYT)–led and United States Agency for International Development (USAID)-funded Agricultural Innovation Program (AIP) for Pakistan is supporting national partners to revitalize maize research and product development initiatives. AIP achieved introduced CIMMYT’s superior second-generation tropically adapted haploid inducers (CIM2GTAILs) for the first time in the history of Pakistan.

Haploid inducers are a specially developed maize genetic stock that are used to develop doubled haploid (DH) maize lines. DH maize lines are highly uniform, genetically pure and stable, making the maize breeding process more intuitive and efficient by simplifying logistics.

This material was shared with two AIP public partners, Maize and Millets Research Institute (MMRI) and University of Agriculture Faisalabad (UAF). The CIM2GTAILs showed high haploid induction rates (~8-15 percent) under CIMMYT-tested (sub)tropical conditions in Mexico and Kenya, and showed better agronomic performance in terms of plant vigor, synchrony with tropical source populations, better standability, and resistance to important tropical foliar diseases and ear rots..

This DH technology is capable to develop a large number of inbred lines with highest uniformity and homozygosity in shortest possible time of 2-3 generations. Conventional breeding methods needs 6-8 generations to develop stable maize inbred line.

Double haploid inducer seeds handover to UAF. Dr. Muhammad Aslam (UAF),left receiving from Dr. Muhammad Imtiaz. Photo: Ehtisham/CIMMYT
Double haploid inducer seeds handover to UAF. Dr. Muhammad Aslam (UAF),left receiving from Dr. Muhammad Imtiaz. Photo: Ehtisham/CIMMYT

While handing over the inducer seeds to UAF, Muhammad Imtiaz, CIMMYT country representative for Pakistan said “the initiation of the DH technology in Pakistan will modernize and enhance maize breeding efficiency of local institutions particularly in availing locally adapted inbred lines.”

The two institutions have mobilized additional resources from the Government of Pakistan to establish the required DH facilities in their respective institutions and currently they are multiplying the seeds in a controlled environment. Receiving the seeds that were sent from CIMMYT Mexico, Muhammad Aslam, assistant professor at UAF and Muhammad Arshad, director of MMRI sincerely acknowledged the continued and unreserved support from CIMMYT particularly in building the capacity of national programs.

CIMMYT and AIP have trained Pakistani researchers on DH technology in Mexico and Kenya and have allocated 52 market-ready maize varities, including hybrids and biofortified varieties, to 12 public and private partners to foster availability and affordability of maize seeds in Pakistan.

The Agricultural Innovation Program (AIP) for Pakistan is working to sustainably increase agricultural productivity and incomes in the agricultural sector through the promotion and dissemination of modern technologies/practices in the livestock, horticulture (fruits and vegetables) and cereals (wheat, maize and rice) sector. Project management is vested in a unique consortium of CGIAR Centers and the Pakistan Agricultural Research Council (PARC), led by CIMMYT supported by the U.S. Agency for International Development. The project aims to foster emergence of a dynamic, responsive, and competitive system of science and innovation in Pakistan. AIP seeks to catalyze equitable growth in agricultural production, productivity, and value.

 

CIMMYTNEWSlayer1

How collaboration can help grow and transform agriculture in Africa

Women at a maize mill in Ethiopia. (Photo: P. Lowe/CIMMYT)
Women at a maize mill in Ethiopia. (Photo: P. Lowe/CIMMYT)

It’s been four years since African leaders met in Equatorial Guinea to commit themselves to boosting agricultural growth across the continent. This is an important way to create real change in Africa. During the gathering, all the African Union’s heads of state signed the Malabo Declaration. It offered a blueprint for Africa’s agricultural sectors, to be achieved by 2025.

For example, the declaration called for at least 10% of any nation’s public expenditure to be allocated to agriculture and rural development. It also set out plans for increasing countries’ food security by intensifying agriculture in a way that didn’t destroy the environment.

There has been some progress in attaining these goals, as a recent status report conducted by the African Union Commission shows. But there’s still a great deal of work to be done.

The report shows that in 2015 and 2016 only ten of the 47 signatory states reached or exceeded the target of 10 percent investment in public expenditure in agriculture and rural development. These are Malawi, Ethiopia, Angola, Egypt, Sudan, Mauritania, Mali, Senegal, Burkina Faso and Equatorial Guinea. Some other countries had invested as little as 0.6 percent of public expenditure in these crucial sectors. Only 20 of the 47 signatories are on track to meet the declaration’s goals by 2025.

There’s no doubt that investment in agriculture can empower economic transformation in the region. But money alone can’t solve Africa’s agricultural problems. International collaboration is key. And it can yield real results, as a project we’re involved in has proved.

The project has relied on multidisciplinary teams of both local and international researchers from the International Maize and Wheat Improvement Centre, The University of Queensland and the Association for Strengthening Agricultural Research in East and Central Africa. Ethiopia, Kenya, Malawi, Mozambique and Tanzania’s departments of agriculture are also involved.

The collaborative effort has meant that it’s been possible to address multiple constraints. These include low crop productivity, poor market access, environmental degradation, and social inequalities. The project had a strong value chain focus. This involves linking – among others – farmers, agribusinesses, traders and policy makers. The result has been improved productivity. We’ve also seen reduced climate risks and improved soil fertility and soil conservation among highly vulnerable smallholder farmers in five East and Southern African countries.

Initiatives like these can help translate the Malabo Declaration from mere document to reality.

Great gains

The Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme is led by the International Maize and Wheat Improvement Centre. It is funded by the Australian government. Researchers from Australia and the participating African countries have worked together with researchers from the centre.

The project was set up in 2010 in response to major concerns about food security across the eastern and southern Africa regions. So far, 258,393 smallholder farmers in Ethiopia, Kenya, Malawi, Mozambique and Tanzania have benefited from our activities. We expect this number to increase to 600,000 by 2020.

To date, up to 91 percent of the targeted farmers have adopted at least one of sustainable intensification practices the project promotes. These practices include using drought tolerant maize non-GMO varieties; the rotation of maize and legumes; and intercrops, where a legume is sown into a standing maize crop.

Yields have increased between 30 and 60 percent across the five countries because these practices and associated technologies were adopted.

We don’t only work directly with farmers. It’s important to develop skills and capacity in crop and soil management, market development, resource conservation, gender issues and project management and evaluation.

One key resource here has been the Australia Awards Scholarships. These give people from developing countries the chance to undertake undergraduate or postgraduate studies at Australian institutions. So far this award has supported 65 master’s and doctoral candidates.

Once they return to their countries, these graduates can contribute to solving the complex problems of achieving food security and eliminating poverty. They apply modern research tools, inform policy, train others and even provide leadership in their original institutions.

Harnessing potential

The Malabo Declaration is a useful document against which to measure progress. It offers countries clear targets. It sets metrics against which they can monitor their success. This will help countries to achieve many of the UN’s Sustainable Development Goals by 2030 – including those related to agriculture and food security.

The work of the Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa Programme offers an insight into how these goals can be met.

Countries must develop a better understanding of constraints and opportunities so they can massively scale out more productive, efficient and sustainable farm practices. They also need to develop markets, value chains and supporting policies and institutions. And crucially, continued collaborations will be necessary to increase the continent’s capacity in science, extension, policy, institutions, governance and leadership.

These must be priorities to harness Africa’s agricultural potential and spur economic growth.

This article orinally appeared on The Conversation. For the full article, click here

Wheat blast screening and surveillance training in Bangladesh

Researchers take part in Wheat Blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)
Researchers take part in Wheat Blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.

Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.

Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.

Workshop participants learned how to use the latest in technology to identify and keep track of the deadly Wheat Blast disease. Photo: CIMMYT archives.

“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”

Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).

“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.

The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”

“Layering” climate smart rice-wheat farming practices in India boosts benefits

Farmers confront a daunting range of options for potentially achieving high crop yields in India’s western Indo-Gangetic Plains, where rice and wheat crops are planted in rotation to meet high demand for dietary food staples.

Since 1965, rotational crop planting has been deployed in the area to intensify production in a limited growing area, initially yielding positive food security results. Over time, agricultural practices have led to troubling consequences for the landscape, leading to unreliable or lower yields for farmers.

Now, new scientific research into “layering” climate smart agriculture techniques shows promise, demonstrating the potential for crop adaptability to climate change. Experiments reveal the possibilities for high productivity, benefits for water and energy supplies resulting in a smaller environmental footprint.

Throughout Southeast Asia, but particularly in the Indo-Gangetic Plains area, natural resources are three to five times more stressed due to agricultural intensification, urbanization, population growth, increasing climate change risks, and land degradation difficulties.

“Land is degraded in the region because over the past 50 years crop production increased quickly leading to inefficient use and mismanagement of resources,” said M.L. Jat, a Principal Scientist with the International Maize and Wheat Improvement Center (CIMMYT), who works with a team of scientists on sustainable intensification and climate smart agriculture.

The scientists conducted a study to determine the most effective methods to grow rice and wheat in constrained conditions where horizontal expansion of crop growing areas is no longer a viable option for increasing yields.

Before embarking on their research, scientists were already aware that due to overpopulation, to meet rising food demand in the Indo-Gangetic Plains area, the only option for farmers is to increase yields on land already under agricultural production. Land shortages are exacerbated by reduced availability of water and energy.

By 2050, variability in growing conditions due to climate change is projected to lower crop yields by 10 to 40 percent and total crop failure will become more common.

Additionally, over the same time period, more than half the current wheat growing area in the Indo-Gangetic Plains will likely become unsuitable for production due to heat stress. Over pumping of ground water for rice production is simultaneously depleting the water table.

“Adaptation to climate change is no longer an option, but essential for minimizing crop losses that will occur as a result of the adverse impact of climate change,” Jat said, adding that the key to future food security is to use agricultural technologies that promote sustainable intensification and adapt to emerging climatic variability.

“Farmers face an enormous challenge – to be successful they must now rely on sustainable intensification management practices and adapt to emerging climate variability while playing a role in reducing greenhouse gas emissions and sequestering carbon to keep global warming in check,” he said.

The key will be to boost the use climate smart agriculture techniques, which have the potential to address these challenges, maintain environmental equilibrium and produce high crop yields simultaneously.

The strategy opens the door to sustainably increase agricultural productivity and farmer income, adapt to and develop the capacity to resist climate change, and reduce or eliminate greenhouse gas emissions.

After experimental fieldwork, the scientists learned that strategically combining climate smart agricultural technologies already used selectively as a result of years of CIMMYT-designed trials in the region are most likely to lead to high crop yields and food security.

Participatory experimental field in Beernarayana climate-smart village. (Photo: CIMMYT)
Participatory experimental field in Beernarayana climate-smart village. (Photo: CIMMYT)

WINNING TECHNIQUES

Their findings are reported in a new research paper published in Agricultural Water Management journal.

Currently, farmers are using such climate smart water and energy saving techniques as direct seeded rice, zero tillage, laser land leveling, alternate wetting and drying, weather forecast based irrigation, precision nutrient management. Other climate smart techniques include retention of crop residues on the fields to store carbon and prevent emissions and unhealthy smog levels that result from residue burning.

“Climate smart agriculture practices in isolation may not fulfill their full potential in adapting to climate risks and mitigating greenhouse gas emissions in rice-wheat production systems,” Jat said.

“However, layering of these practices and services in optimal combinations may help to adapt and build resilience under diverse production systems and ecologies to ensure future food security.”

The scientists studied six scenarios in three different climate smart villages in India’s sub-tropical state of Haryana in the Indo-Gangetic Plains.

The first scenario was based solely on observing the normal practices of a farmer, the second and third scenarios were layered with different technologies used for tillage, crop establishment, residue and nutrient management, and designated as “improved farmers’ practices.”

The other three scenarios were based on climate smart agriculture practices combined with the available range of technologies deployed to enhance tillage, crop establishment, laser land leveling; residue, water and nutrient management; improved crop varieties, information and communication technology and crop insurance.

Scientists set out to determine the best combination of practices and found that layering of climate smart agriculture practices improved rice-wheat system productivity from 6 to 19 percent depending on techniques used.

Layering also led to savings of more than 20 percent irrigation water. Global warming potential was reduced by 40 percent.

“The research leaves us feeling optimistic that the work we’ve been conducting throughout South Asia is leading to strong results,” Jat said. “Our aim now is to continue to work through various real life scenarios to see how far we can go in sustainably intensifying the entire region so that food supply can keep apace with population growth under emerging climate change challenges.”

The project was supported by the CGIAR Research Program on Wheat (WHEAT) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

Fourth international workshop on farming system design in south Asia

The fourth international workshop on “Science of Farming Systems: Moving from Prototyping to Model-Based Assessment and Designing of Sustainable and Resilient Farming Systems in South Asia” took place in Udaipur, Rajasthan, India from 19 to 22 March this year. The workshop was jointly organized by the International Maize and Wheat Improvement Center (CIMMYT)Wageningen University & Research (WUR) and the Indian Council of Agricultural Research (ICAR) – Indian Institute of Farming System Research (IIFSR) and was supported by the CGIAR Research Program on Wheat Agri-Food Systems (WHEAT) and the CGIAR Research Program on Climate Change, Agriculture & Food Security (CCAFS).

Twenty-five participants from 11 research centers across 13 Indian states and Nepal attended the workshop. Workshop objectives included mainstreaming science-based approaches to farming systems analysis and research for development programs in South Asia, as well as overview and training courses on farming systems and technologies, especially focusing on FarmDESIGN, modelling software developed by WUR. A number of talks around FarmDESIGN were given, including hands-on workshops by scientists from CIMMYT and WUR.

Group photo of participants at the fourth international workshop on farming system design in south Asia. Photo: CIMMYT.
Group photo of participants at the fourth international workshop on farming system design in south Asia. Photo: CIMMYT.

South Asian farming systems are characterized by a large diversity of smallholder systems with diversified faming system households. Accordingly, the farming systems research has been central to the south Asian national agriculture research systems. ICAR-IIFSR has developed specific integrated farming systems (IFS) prototypes for different agro-ecological zones of India and implemented them in research stations and rural communities.

The growing complexity of climate, markets and income uncertainties, as well as large age divides within farming households limits the large-scale adoption these prototype farming systems weigh output performance on the one hand and tradeoffs such as income resilience, environmental footprints and markets on the flip-side. Therefore, designing farm systems with effective targeting of climate resilience, profitability and sustainability, requires suitable technologies, practices to understand and capture the diversity of farming systems, their main components, characteristics, interrelationships and flows.

Previous CIMMYT-ICAR-WUR collaborations have explored the use of farm level modeling tools to assess, with multiple criteria, the sustainability of such IFS, identify main trade-offs and synergies and provide guidelines for their improvement. Capacity development of farming system network researchers on the use and application of the FarmDESIGN model has been one important activity in such collaboration. For scaling the outputs of such exercise, the farming systems have to be evaluated in terms of relevant indicators for different farm household types and communities, allowing them to identify main potential leverages and obstacles for adoption of different intervention. In this regard, this workshop is being organized involving key stakeholders.

The workshop objectives were to mainstream science based approaches for farming systems analysis in research for development programs in South Asia; to share results of integrated assessments of farming systems’ performance in a range of agro-ecologies across South Asia and discuss main implications for the re-design of IFS; to select methods for improved prototyping and model-based analysis using on-station data for developing an out-scaling process that is tested in multiple environments for large scale application; to share and solve main technical barriers implementation; to share and discuss other modeling techniques and their potential complementarity; to provide an overview of the application ‘FarmDESIGN,’ which was created by WUR, discuss main issues for further development to cover the needs of South Asian farming systems and further steps for larger implementation; discuss future research activities and collaborations.

Santiago Lopez Rodaura, senior farming systems specialist, CIMMYT and Jeroen Groot, farming systems expert from WUR gave a hands-on session on debugging, analysis visualization and analyzing prototype implementations in FarmDESIGN. AK Prusty, scientist, ICAR-IIFSR and collaborators from WUR, elaborated on-farm diagnosis and analysis in FarmDESIGN. AS Panwar, director, ICAR-IIFSR, led a session with presentations of case studies from peer review articles in diverse ecologies to demonstrate improved efficiency, income and reducing footprints through optimizing resource allocation with science-based approach using FarmDESIGN and other modeling programs using at least 10 prototype farming systems cases.

The workshop concluding with a planning session facilitated by CIMMYT principal scientist ML Jat. Recommendations were made by all the participants and emphasized studies on ongoing interventions looking at 10-15 year scenarios in cropping systems. Participants suggested studying climate prediction data and crop simulations with alternate wet-dry techniques to consider variability in the water table, among a number of other follow-up suggestions.

A “Virtual Task Force” was assigned to organize follow-ups on progress made based on meeting suggestions across locations and present a document to the Prime Minister of India’s office with suggestions for the Government of India’s initiative “Doubling farmer Income by 2022.”

Participants suggested creating a users guide for FarmDESIGN to be circulated to encourage wide-scale adoption, along with a manual for targeting typology interventions.

Panwar said, “seeing the progress across sites, I am convinced with the impact FarmDESIGN model has brought and will continue to with support from CIMMYT and WUR for changing face of cropping systems research”.

The program was able to achieve its target for improved understanding and capacity of key researchers on designing and implementing science based farming systems for improved efficiency and enhanced adoption in smallholder systems of South Asia.

The fourth international workshop on “Science of Farming Systems: Moving from Prototyping to Model-Based Assessment and Designing of Sustainable and Resilient Farming Systems in South Asia” was jointly organized by the International Maize and Wheat Improvement Center (CIMMYT), Wageningen University & Research (WUR) and the Indian Council of Agricultural Research (ICAR) – Indian Institute of Farming System Research (IIFSR) and was supported by the CGIAR Research Program on Wheat Agri-Food Systems (WHEAT) and the CGIAR Research Program on Climate Change, Agriculture & Food Security (CCAFS).

CIMMYTNEWSlayer1

Precision Nutrient Management: The Future of Nitrogen Use Efficiency

Photo: Hardeep, CIMMYT
Photo: Hardeep, CIMMYT

This March, the Borlaug Institute of South Asia (BISA) held an international workshop on enhancing Nitrogen use efficiency in wheat using the combined approach of breeding and precision agronomy in Ladhowal, Punjab. The objective of this workshop was to train young scientists and students on new opportunities for improving Nitrogen use efficiency in wheat. This initiative is a part of the project supported by the Rothamsted Research, U.K. known as the Indo-U.K. Centre. Eighteen young scientists and post-graduate students from organizations across India and the U.K. attended the event.

The workshop was kicked off by N.S. Bains, director of research, Punjab Agricultural University (PAU), who emphasized the need to increase Nitrogen use efficiency (NUE) in wheat through breeding and agronomic adjustments. The workshop combined lectures and hands-on activities during field visits. In the lectures, participants received a global overview of fertilizer use and strategies for improving NUE in cereals with special reference to wheat. Lecturers used examples from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank to highlight the variability of genetic NUE in wheat, explored modeling approaches for improving NUE and soil-based approaches.

BISA organized field visits to provide a real-life learning platform for participants to see the precision nutrient management techniques used in the research trials. Coordinators provided hands-on training about in field root measurements and other physiological and agronomic traits. Coordinators defined NUE, discussed calculations and explained how root traits can affect Nitrogen use efficiency – extensive root systems allow plants to use Nitrogen more effectively. The group participated in using a handheld GreenSeeker Nitrogen sensor with the help of algorithms to find critical values nitrogen and fertilizer doses.

Concluding the workshop, Rajbir Singh, director, ICAR-Agricultural Technology Application Research Institute (ATARI) at PAU, Ludhiana said “precision nutrient management is the new and futuristic research in the field of NUE.”

Feedback from participants shows an increased understanding of processes and procedures for improved NUE in wheat, genotype by environment interactions and recent advances in precision nutrient management. The site-specific knowledge and hands-on training supported better understanding on rate and timing effects of Nitrogen in conventionally and fertigation applied fertilizer. The knowledge exchange of experts from multi-disciplinary fields enhanced the understanding of principles of precision nutrient management and provided guidance for organizing the precision nutrition platform.

The Borlaug Institute for South Asia is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the International Maize and Wheat Improvement Center and the Indian Council for Agricultural Research. The objective of BISA is to harness the latest technology in agriculture to improve farm productivity and sustainably meet the demands of the future.

CIMMYTNEWSlayer1

New Publications: Adopting climate-smart agricultural practices

Farmers in a climate-smart village in Bihar use the leaf colour chart to judge the nitrogen content required for crops. Photo: V.Reddy, ViDocs, CCAFS.
Farmers in a climate-smart village in Bihar use the leaf colour chart to judge the nitrogen content required for crops. Photo: V.Reddy, ViDocs, CCAFS.

Since the 1960s and the Green Revolution in India, agricultural production has been steadily increasing. Much of this increase is due to widespread adoption of high-yielding varieties, chemical fertilizers, pesticides, irrigation and mechanization. However, recently sustaining yield gains has become increasingly difficult as India faces a number of climate-related problems, which put pressure on sustaining the existing production system.

Many scientists have proposed that the best way to counter this stagnation in yield gains is through promotion and adoption of climate-smart agricultural practices. However, uptake of these practices in India is very low despite national and international promotion efforts.

A new study examines the factors behind the likelihood of adoption of climate-smart agricultural practices in the eastern Indian province of Bihar.

The authors found a number of confounding factors that limit adoption of new agricultural practices, such as perceived climate or market risk and limited access to extension services and training. They suggest that policy changes to strengthen extension services and market access would likely boost farmers willingness and ability to adopt these practices.

Check out the full article: Precision for Smallholder Farmers: Adoption of multiple climate-smart agricultural practices in the Gangetic plains of Bihar, India. 2018. J.P. Aryal, M.L. Jat, T.B. Sapkota, A. Khatri-Chhetri, M. Kassie, D.B. Rahut, S. Maharjan. Vol. 10, Issue: 3. pp.407-427. In: International Journal of Climate Change Strategies and Management and check out other recent publication by CIMMYT staff below:

1. Molecular introgression of leaf rust resistance gene Lr34 validates enhanced effect on resistance to spot blotch in spring wheat. 2017. Vasistha, N.K., Balasubramaniam, A., Vinod Kumar Mishra., Srinivasa, J., Chand, R., Joshi, A.K. In: Euphytica no. 213, 262.

2. Biology of B. sorokiniana (syn. Cochliobolus sativus) in genomics era. 2018. Pushpendra Kumar Gupta, Vasistha, N.K., Aggarwal, R., Joshi, A.K. In: Journal of Plant Biochemistry and Biotechnology v.27, no. 2, p. 123–138.

3. Enhancing genetic gain in the era of molecular breeding. 2017. Yunbi Xu, Ping Li, Cheng Zou, Yanli Lu, Chuanxiao Xie, Zhang, X., Prasanna, B.M., Olsen, M. In: Journal of Experimental Botany v. 68, no. 11, p. 2641-2666.

4. Impact of improved maize adoption on household food security of maize producing smallholder farmers in Ethiopia. 2018. Jaleta Debello Moti, Kassie, M., Marenya, P., Yirga, C., Erenstein, O. In: Food security v. 10, no. 1, p. 81–93.

5. Land ownership and technology adoption revisited : improved maize varieties in Ethiopia. 2018. Zeng, D., Alwang, J.R., Norton, G.W., Jaleta Debello Moti, Shiferaw, B., Yirga, C. In: Land Use Policy v. 72, p. 270-279.

6. Integrating quantified risk in efficiency analysis : evidence from rice production in East and Southern Africa. 2017. Mujawamariya, G., Medagbe, F. M. K., Karimov, A. In: Agrekon v. 56, no. 4, p. 383-401.

7. Adoption and farm-level impact of conservation agriculture in Central Ethiopia. 2017. Tsegaye, W., LaRovere, R., Mwabu, G., Kassie, G.T. In: Environment, Development and Sustainability v. 19, no. 6, p. 2517–2533.

8. Yield effects of rust-resistant wheat varieties in Ethiopia. 2017. Abro, Z. A., Jaleta Debello Moti, Qaim, M. In: Food security v. 9, no. 6, p. 1343–1357.

9. Rapid cycling genomics selection in a multiparental tropical maize population. 2017. Zhang, X., Pérez-Rodríguez, P., Burgueño, J., Olsen, M., Buckler, E., Atlin, G.N., Prasanna, B.M., Vargas, M., San Vicente, F.M., Crossa, J. In: G3 : genes – genomes – genetics v. 7, no. 7, p. 2315-2326.

10. Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. 2018. Sukumaran, S., Reynolds, M.P., Sansaloni, C.P. In: Frontiers in Plant Science no. 9 : 81.

CIMMYTNEWSlayer1

Vijesh V. Krishna

Vijesh Krishna is a lead economist focusing on the economics of technological change in agriculture. He joined CIMMYT in 2017 and has been mainly working on inclusive technology adoption and its impacts on resource use, productivity, and farmer livelihoods. Before joining CIMMYT, Krishna worked as a senior research fellow at the University of Goettingen in Germany (2012-2017), where he examined the determinants and impacts of land-use transformation systems in Indonesia. He also worked as a production and resource economist for CIMMYT in South Asia (2009-2012) and as a Ciriacy-Wantrup post-doctoral fellow at the University of California at Berkeley (2008-2009).

Krishna holds a PhD in agricultural economics (University of Hohenheim), an MPhil in environmental policy (University of Cambridge), and an MSc in agricultural economics (University of Agricultural Sciences Bangalore). His research findings are published in several peer-reviewed journal articles and book chapters.

Timothy J. Krupnik

Timothy Krupnik has worked in agricultural research for development in Asia, sub-Saharan Africa, and the Caribbean. At CIMMYT, he leads a multi-disciplinary and multi-cultural research team that comprises the Sustainable Agrifood Systems program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia.

This team spans disciplines and brings together technical skills ranging from systems agronomy, remote sensing, socioeconomics, climatology, agricultural engineering, and modeling and data science. The team’s research generates real-world impact by addressing key knowledge gaps, developing tools, and facilitating partnerships that increase productivity, sustainability and resilience in the context of the region’s biophysical, economic, and sociocultural diversity.

Krupnik has published over 120 peer-reviewed papers, policy briefs, chapters and books, and has led the development of numerous extension modules, decision support tools, and early warning systems.