Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Visiting researcher from Malaysia studies growing importance of maize and wheat in the country

Visiting researcher Fazleen Abdul Fatah is studying the the growing importance of maize and wheat in emerging economies.
Visiting researcher Fazleen Abdul Fatah is studying the growing importance of maize and wheat in emerging economies.

Fazleen Abdul Fatah credits a number of factors for her interest in agricultural research, from a childhood spent in a small town in one of Malaysia’s main rice farming areas, where the neighborhood revolved around agriculture, to supporting lecturers and professors who encouraged her interests during her undergraduate studies. “My experiences as an intern in the Philippines and visiting commercial farms in Germany and Japan as a student also shaped my motivation to work in sustainable agriculture and rural development, and ultimately I’d like to be able to influence food and agriculture policy,” she says.

Now a senior lecturer in the Faculty of Plantation and Agrotechnology at Universiti Teknologi MARA (UITM) in Malaysia, where she specializes in agricultural economics, trade and policy. For the past three months she has been based at the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico, where she is conducting research into food consumption patterns.

Having previously completed an internship with the International Rice Research Institute (IRRI) in the Philippines, Abdul Fatah was keen to gain more experience within the CGIAR system. After graduating from the University of Gottingen, Germany, with a PhD in Agriculture Trade Policy, her interest in the growing importance of maize and wheat in emerging economies prompted her to apply for a research opportunity at CIMMYT.

“I’m very interested in understanding how current shifts in food consumption patterns might affect the consumption of cereals in Indonesia and Malaysia.” Her previous research focused on the shift to cereals from food items such as meat, fish, or vegetables, but Abdul Fatah notes that few studies document shifts between cereals. “Rice is typically the main staple food crop for Malaysians,” she explains, “but changes in diets, incomes, and urbanization mean that people are shifting towards maize and wheat. What I’ve found more striking from my research is that in some areas people are actually consuming more wheat than rice, which means there are going to be some interesting decisions for policy makers to consider in the near future, especially in terms of import strategies.”

Abdul Fatah presented her initial research findings at CIMMYT, where she updated colleagues on her efforts to analyze consumption patterns for major cereals in 11 developing countries in Africa and Asia using government household surveys and World Bank datasets. She hopes to continue this line of research once she returns to UITM and is currently working on a paper based on case studies from Indonesia and Malaysia.

You can read more research from CIMMYT on shifting food consumption patterns in Asia in “Changing Food Consumption of Households in Developing Countries: A Bangladesh Case.”

Experts identify policy gaps in fertilizer application in India

A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium.
A farmer in Ara district, Bihar state, applies NPK fertilizer, composed primarily of nitrogen, phosphorus and potassium. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

NEW DELHI (CIMMYT) — Imbalanced application of different plant nutrients through fertilizers is a widespread problem in India. The major reasons are lack of adequate knowledge among farmers about the nutritional requirement of crops, poor access to proper guidelines on the right use of plant nutrients, inadequate policy support through government regulations, and distorted and poorly targeted subsidies.

This context makes it necessary to foster innovation in the fertilizer industry, and also to find innovative ways to target farmers, provide extension services and communicate messages.

A dialogue on “Innovations for promoting balanced application of macro and micro nutrient fertilizers in Indian agriculture” facilitated discussion on this issue. Representatives from key fertilizer industries, state governments, research institutions and the Indian Council of Agricultural Research gathered in New Delhi, India, on December 12, 2018. This dialogue was part of the Cereal Systems Initiative for South Asia (CSISA) and was organized by the International Food Policy Research Institute (IFPRI) and the International Plant Nutrition Institute (IPNI).

CIMMYT scientist and CSISA project leader Andrew McDonald presents the new Soil Intelligence System for India, which employs innovative and rapid approaches to soil health assessments.
CIMMYT scientist and CSISA project leader Andrew McDonald presents the new Soil Intelligence System for India, which employs innovative and rapid approaches to soil health assessments. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The Director General of the Fertilizer Association of India (FAI), Shri Satish Chander, pointed out that new-product approvals in India take approximately 800 days. However, he explained, this delay is not the biggest problem facing the sector: other barriers include existing price controls that are highly contingent on political myths.

IFPRI researcher Avinash Kishore presented evidence contradicting the myth that farmers are highly sensitive to any price change. He presented data demonstrating that farmers’ demand for Urea and DAP remained highly price inelastic during periods of steep price increases, in 2011 and 2012.

Sheetal Sharma, soil scientist for nutrient management at IRRI, co-chaired a session on field evidences on the soil health card scheme and farmers incentives for change.
Sheetal Sharma, soil scientist for nutrient management at IRRI, co-chaired a session on field evidences on the soil health card scheme and farmers incentives for change. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

The Director of the South Asia Program at IPNI, T. Satyanarayana, highlighted the importance of micronutrients in promoting balanced fertilization of soils and innovative methods for determining soil health.

Andrew McDonald, from the International Maize and Wheat Improvement Center (CIMMYT), presented the new Soil Intelligence System for India, which employs innovative approaches to soil health assessments.

Farmers’ representative Ajay Vir Jakhar elaborated on the failure of underfunded extension systems to reach and disseminate relevant, factual and timely messages to vast numbers of farmers.

Other representatives from the fertilizer industry touched upon the need to identify farmer requirements for risk mitigation, labor shortages and site-specific nutrient management needs for custom fertilizer blends. Participants also discussed field evidence related to India’s soil health card scheme. Ultimately, discussions held at the roundtable helped identify relevant policy gaps, which will be summarized into a policy brief.

The Cereal Systems Initiative for South Asia project is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI). It is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

The saving grace of a hefty investment

Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: CIMMYT/Md. Ikram Hossain)
Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: iDE/Md. Ikram Hossain)

A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm to alleviate his drudgery and that of others in the community.

Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.

Raju found the reaper to be the most interesting and relevant for his work, and contacted a CSISA representative to acquire one.

The first challenge he encountered was the cost — the equivalent of $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.

He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.

“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”

As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization. Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.

CSISA MI is a partnership involving the International Maize and Wheat Improvement Center (CIMMYT) and iDE, a non-governmental organization that fosters farmers’ entrepreneurial development, with funding from USAID under the Feed the Future initiative.

International experts discuss progress and challenges of maize research and development in Asia

The importance of maize in Asian cropping systems has grown rapidly in recent years, with several countries registering impressive growth rates in maize production and productivity. However, increasing and competing demands — food, feed, and industry — highlight the continued need to invest in maize research for development in the region. Maize experts from around the world gathered to discuss these challenges and how to solve them at the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security, held from October 8 to 10, 2018, in Ludhiana, Punjab, India.

More than 280 delegates from 20 countries attended the conference. Technical sessions and panel discussions covered diverse topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.

The international conference was jointly organized by the Indian Council of Agricultural Research (ICAR), the International Maize and Wheat Improvement Center (CIMMYT), the Indian Institute of Maize Research (ICAR-IIMR), Punjab Agricultural University (PAU), the CGIAR Research Program on Maize (MAIZE), and the Borlaug Institute for South Asia (BISA).

In Asia, maize is rapidly growing in its importance, due to high demand. Maize productivity in the region is growing by 5.2 percent annually compared to a global average of 3.5 percent. However, this is not enough. “Asia produces nearly 80 million tons of maize annually, but demand will be double by the year 2050,” said Martin Kropff, CIMMYT director general, in his opening address at the conference. “We need to produce two times more maize in Asia, using two times less inputs, including water and nutrients. Climatic extremes and variability, especially in South and South East Asia, will make this challenge more difficult. Continued funding for maize research is crucial. We need to work together to ensure that appropriate innovations reach the smallholder farmers.”

Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Climate-resilient maize and sustainable intensification

A major theme emphasized at the conference was climate resilience in maize-based systems. South Asia is a hotspot for vulnerability due to climate change and climate variability, which poses great risks to smallholder farmers. “Climate resilience cannot be brought by only a single technology — it has to be through a judicious mix of several approaches,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

Great advances have been made in developing climate-resilient maize for Asia since the last Asian Maize Conference, held in 2014. Many new heat- and drought-tolerant maize varieties have been developed through various projects, such as the Heat Stress Tolerant Maize for Asia (HTMA), and Affordable, Accessible, Asian (AAA) maize projects. Through the HTMA project, over 50 CIMMYT-derived elite heat-tolerant maize hybrids have been licensed to public and private sector partners in Asia during the last three years, and nine heat-tolerant maize hybrids have been released so far in Bangladesh, India and Nepal.

Sustainable intensification of maize-based farming systems has also helped farmers to increase yields while reducing environmental impact, through conservation agriculture and scale-appropriate mechanization. Simple technologies are now available to reduce harvest time by up to 80 percent and hired labor costs by up to 60 percent. Researchers across the region are also working to strengthen the maize value chains.

B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)
B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)

Science and appropriate technologies

CIMMYT has been focusing on developing and deploying new technologies that can enhance the efficiency of maize breeding programs; these include doubled haploid (DH) technology, high-throughput field-based phenotyping, and genomics-assisted breeding. The conference emphasized on the need for Asian institutions to adapt such new tools and technologies in maize breeding programs.

Another topic of interest was the fall armyworm, an invasive insect pest that has spread through 44 countries in Africa and was recently reported in India for the first time. “This pest can migrate very quickly and doesn’t require visas and passports like we do. It will travel, and Asian nations need to be prepared,” Prasanna said. “However, there is no need for alarm. We will be looking at lessons learned from other regions and will work together to control this pest.”

In addition to grain for food and feed, specialty maize varieties can provide beneficial economic alternatives for smallholder maize farmers. Conference participants had the opportunity to hear from Indian farmers Kanwal Singh Chauhan and Yugandar Y, who have effectively adopted specialty maize varieties, such as baby corn, sweet corn and popcorn, into life-changing economic opportunities for farming communities. They hope to inspire other farmers in the region to do the same.

On October 10, conference delegates participated in a maize field day organized at the BISA farm in Ladhowal, Ludhiana. Nearly 100 improved maize varieties developed by CIMMYT, ICAR and public and private sector partners were on display, in addition to scale-appropriate mechanization options, decision support tools, and precision nutrient and water management techniques.

The conference concluded with a ceremony honoring the winners of the 2018 MAIZE-Asia Youth Innovators Award. The awards were launched in collaboration between the CGIAR Research Program on Maize and YPARD (Young Professionals for Agricultural Development) to recognize the contributions of innovative young women and men who can inspire fellow youth to get involved in improving maize-based agri-food systems in Asia. Winners of the first edition of the awards include Dinesh Panday of Nepal, Jie Xu of China, Samjhana Khanal of Nepal, and Vignesh Muthusamy of India.

Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)
Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)

Pakistan wheat seed makeover

Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)
Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

Nearly 3,000 smallholder wheat farmers throughout Pakistan will begin to sow seed of newer, high-yielding, disease-resistant wheat varieties and spread the seed among their peers in 2019, through a dynamic initiative that is revitalizing the contribution of science-based innovation for national agriculture.

Some 73 tons of seed of 15 improved wheat varieties recently went out to farmers in the provinces of Baluchistan, Gilgit Baltistan, Khyber Pakhtunkhwa, Punjab and Sindh, as part of the Agricultural Innovation Program (AIP), an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from the US Agency for International Development (USAID).

“Our main goal is to help farmers replace outdated, disease-susceptible wheat varieties,” said Muhammad Imtiaz, CIMMYT scientist and country representative for Pakistan who leads the AIP. “Studies have shown that some Pakistan farmers grow the same variety for as long as 10 years, meaning they lose out on the superior qualities of newer varieties and their crops may fall victim to virulent, rapidly evolving wheat diseases.”

With support from CIMMYT and partners, participating farmers will not only enjoy as much as 20 percent higher harvests, but have agreed to produce and share surplus seed with neighbors, thus multiplying the new varieties’ reach and benefits, according to Imtiaz.

He said the new seed is part of AIP’s holistic focus on better cropping systems, including training farmers in improved management practices for wheat.

Wheat is Pakistan’s number-one food crop. Farmers there produce over 25 million tons of wheat each year — nearly as much as the entire annual wheat output of Africa or South America.

Annual per capita wheat consumption in Pakistan averages over 120 kilograms, among the highest in the world and providing over 60 percent of Pakistanis’ daily caloric intake.

The seed distributed includes varieties that offer enhanced levels of grain zinc content. The varieties were developed by CIMMYT in partnership with HarvestPlus, a CGIAR research program to study and deliver biofortified foods.

According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality.

The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)
The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)

“I am very excited to be part of Zincol-16 seed distribution, because its rich ingredients of nutrition will have a good impact on the health of my family,” said Munsif Ullah, a farmer from Swabi District, Khyber Pakhtunkhwa province.

Other seed distributed includes that of the Pakistan-13 variety for rainfed areas of Punjab, Shahkar-13 for the mountainous Gilgit-Baltistan, Ehsan-16 for rainfed areas in general, and the Umeed-14 and Zardana varieties for Baluchistan.

All varieties feature improved resistance to wheat rust diseases caused by fungi whose strains are mutating and spreading quickly in South Asia.

CIMMYT and partners are training farmers in quality seed production and setting up demonstration plots in farmers’ fields to create awareness about new varieties and production technologies, as well as collecting data to monitor the varieties’ performance.

They are also promoting resource-conserving practices such as balanced applications of fertilizer based on infrared sensor readings, ridge planting, and zero tillage. These innovations can save water, fertilizer, and land preparation costs, not to mention increasing yields.

“CIMMYT’s main focus in Pakistan is work with national wheat researchers to develop and spread better wheat production systems,” Imtiaz explained. “This includes improved farming practices and wheat lines that offer higher yields, disease resistance, and resilience under higher temperatures and dry conditions, as well as good end-use quality.”

CIMMYT’s partners in AIP include the National Rural Support Program (NRSP), the Lok Sanjh Foundation, the Village Friends Organization (VFO), the Aga Khan Rural Support Program (AKRSP), the National Agricultural Research Council (NARC) Wheat Program, the Wheat Research Institute (WRI) Faisalabad and Sakrand centers, AZRI-Umarkot, Kashmala Agro Seed Company, ARI-Quetta, BARDC-Quetta, and Model Farm Services Center, KP.

(Photo: CIMMYT/Ansaar Ahmad)
(Photo: CIMMYT/Ansaar Ahmad)

Breaking Ground: Tek Sapkota finds ways to reduce emissions from agriculture without compromising food security

Breaking Ground Postcard TEK SAPKOTA

As the world population increases, so does the need for food. “We need to produce more to feed increasing populations and meet dietary demands,” says Tek Sapkota, agricultural systems and climate change scientist at the International Maize and Wheat Improvement Center (CIMMYT). In the case of agriculture, the area of land under cultivation is limited, so increased food production has to come through intensification, Sapkota explains. “Intensification means that you may be emitting more greenhouse gases if you’re applying more inputs, so we need to find a way to sustainable intensification: increase the resilience of production systems, but at the same time decrease greenhouse gas emissions, at least emission intensity.”

Sapkota is involved in a number of global climate change science and policy forums. He represents CIMMYT in India’s GHG platform, a multi-institution platform that regularly prepares greenhouse gas emission estimates at the national and state levels and undertakes relevant policy analyses. Nominated by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and his country, Nepal, he is one of the lead authors of the “special report on climate change and land” of  the Intergovernmental Panel on Climate Change (IPCC).

He coordinates climate change mitigation work at CIMMYT. “I am mainly involved in quantification of greenhouse gas emissions and the environmental footprint from agricultural production systems, exploring mitigation options and quantifying their potential at different scales in different regions,” Sapkota says. In addition, he explores low-carbon development activities and the synergies between food production, adaptation and mitigation work within the different components of CIMMYT’s projects.

Agriculture is both a victim of as well as a contributor to climate change, Sapkota explains. “Climate change affects all aspects of food production, because of changes in temperature, changes in water availability, CO2 concentrations, etc.,” he says. “The other side of the coin is that agriculture in general is responsible for about 25 to 32 percent of total greenhouse gas emissions.”

Tek Sapkota (center) stands for a group photo with other scientists working on the IPCC’s special report on climate change and land, at the second lead author meeting in Christchurch, New Zealand, in March 2018.
Tek Sapkota (center) stands for a group photo with other scientists working on the IPCC’s special report on climate change and land, at the second lead author meeting in Christchurch, New Zealand, in March 2018.

Measuring emissions and examining mitigation options

A big part of Sapkota’s work is to find ways to mitigate the effects of climate change and the emissions from the agricultural sector. There are three types of mitigation measures, he explains. First, on the supply side, agriculture can “increase efficiency of the inputs used in any production practice.” Second, there’s mitigation from the demand side, “by changing the diet, eating less meat, for example.” Third, by reducing food loss and waste: “About 20 percent of the total food produced for human consumption is being lost, either before harvest or during harvest, transport, processing or during consumption.”

Sapkota and his team analyze different mitigation options, their potential and their associated costs. To that purpose, they have developed methodologies to quantify and estimate greenhouse gas emissions from agricultural products and systems, using field measurement techniques, models and extrapolation.

“You can quantify the emission savings a country can have by following a particular practice” and “help countries to identify the mitigation practices in agriculture that can contribute to their commitments under the Paris climate agreement.”

Their analysis looks at the biophysical mitigation potential of different practices, their national-level mitigation potential, their economic feasibility and scalability, and the country’s governance index and readiness for finance — while considering national food security, economic development and environmental sustainability goals.

Recently, Sapkota and his colleagues completed a study quantifying emissions from the agricultural sector in India and identifying the best mitigation options.

This type of research has a global impact. Since agriculture is a contributor to climate change “better management of agricultural systems can contribute to reducing climate change in the future,” Sapkota says. Being an important sector of the economy, “agriculture should contribute its share.”

CIMMYT scientist Tek Sapkota (second from left) explains greenhouse gas emissions measurement methods to a visiting group of scientists.
CIMMYT scientist Tek Sapkota (second from left) explains greenhouse gas emissions measurement methods to a visiting group of CCAFS and Indian scientists. (Photo: CCAFS)

Impact on farmers

Sapkota’s research is also helping farmers today. Inefficient use of products and inputs is not only responsible for higher greenhouse gas emissions, but it also costs farmers more. “For example, if farmers in the Indo-Gangetic Plain of India are applying 250 to 300 kg of nitrogen per hectare to produce wheat or rice, by following precision nutrient management technologies they can get similar yield by applying less nitrogen, let’s say 150 kg.” As farmers cut production costs without compromising yield, “their net revenue from their products will be increased.”

Farmers may also get immediate benefits from government policies based on the best mitigation options. “Governments can bring appropriate policy to incentivize farmers who are following those kinds of low-emission technologies, for example.”

Farmers could also get rewarded through payments for ecosystem services or for their contribution to carbon credits.

Sapkota is happy that his work is beneficial to farmers. He was born in a small village in the district of Kaski, in the mid-hills of Nepal, and agriculture was his family’s main livelihood. “I really enjoy working with farmers,” he says. “The most fascinating part of my work is going to the field: talking to farmers, listening to them, learning what kind of farming solutions they’re looking for, and so on. This helps refine our research questions to make them more strategic, because the way farmers look at a problem is sometimes entirely different from the way we look at it.”

When he was in Himalaya Secondary School, he studied agriculture as a vocational subject. “I was interested because we were doing farming at home.” This vocation got cemented in university, in the 1990s. When he heard about the agricultural industry and the future opportunities, he decided to pursue a career in science and focus on agriculture. He got his bachelor’s and master’s degree of science in agriculture from the Institute of Agriculture and Animal Science (IAAS), Tribhuvan University, in Nepal.

Tek Sapkota (second from left) and other scientists participate in a small group session during a meeting of lead authors of the Intergovernmental Panel on Climate Change (IPCC).
Tek Sapkota (second from left) and other scientists participate in a small group session during a meeting of lead authors of the Intergovernmental Panel on Climate Change (IPCC).

A global path

He first heard about CIMMYT when he was doing his master’s. “CIMMYT was doing research in maize- and wheat-based plots and systems in Nepal. A few of my friends were also doing their master theses with the financial support of CIMMYT.” After his master’s, he joined an organization called Local Initiatives for Biodiversity, Research and Development (LI-BIRD) which was collaborating with CIMMYT on a maize research program.

Sapkota got a PhD in Agriculture, Environment and Landscapes from the Sant’Anna School of Advanced Studies in Italy, including research in Aarhus University, Denmark.

After defending his thesis, in 2012, he was working on greenhouse gas measurement in the University of Manitoba, Canada, when he saw an opening at CIMMYT. He joined the organization as a post-doctoral fellow and has been a scientist since 2017. Sapkota considers himself a team player and enjoys working with people from different cultures.

His global experience has enriched his personal perspective and his research work. Through time, he has been able to see the evolution of agriculture and the “dramatic changes” in the way agriculture is practiced in least developed countries like Nepal. “When I was a kid agriculture was more manual … but now, a lot of technologies have been developed and farmers can use them to increase the efficiency of farming”.

Extension materials on best agronomic practices endorsed by government of Nepal

Agricultural extension materials on best management practices for rice (left) and cauliflower, developed by CIMMYT as part of the NSAF project.
Agricultural extension materials on best management practices for rice (left) and cauliflower, developed by CIMMYT as part of the NSAF project.

KATHMANDU, Nepal (CIMMYT) — Maintenance and enhancement of soil fertility are vital for food security and environmental sustainability. However, a baseline survey conducted through the Nepal Seed and Fertilizer (NSAF) project shows that 95 percent of farmers have poor agronomic literacy. Most of them have little or no knowledge of proper seed and soil management practices, and do not apply fertilizer appropriately. Many farmers are also unaware of micronutrients and their specific role in crop production, so they spray micronutrient solutions as advised by agrovets. While quality seed and mineral fertilizer use are necessary to improve crop yields, use alone is not sufficient to maximize efficiency — how to use these tools is equally, if not more, important.

All these challenges indicate a need to educate farmers and help them adopt good agronomic practices that will maximize crop production and productivity.

As part of the NSAF project, the International Maize and Wheat Improvement Center (CIMMYT) has developed locally appropriate agricultural extension materials to disseminate best management practices for maize, wheat and other crops. The government of Nepal has endorsed the project’s best management practices for rice, maize, wheat, tomato, cauliflower and onion.

These extension materials have information on integrated soil fertility management: a set of agricultural practices that integrates improved seed, mineral fertilizer use and soil organic matter management, all adapted to local conditions to improve agricultural productivity. They also serve to share information on the 4 Rs of fertilizer management stewardship: right source, right rate, right time and right placement.

CIMMYT and NSAF project partners are delivering these innovative extension materials to agrovets, cooperatives, extension agencies, development organizations and other intermediaries. They then use them to provide training to farmers in their working areas.

Training packages include pictorial aids, games, informative handouts, group activities, field guides, demonstrations, field visits and other physical learning tools. All the materials have been developed following an “active learning” framework. Training topics include the principles of integrated soil fertility management, soil pH and liming, crop-specific fertilizer application rates, planting methods, fertilizer splitting, methods of fertilizer placement, seed and fertilizer quality, handling considerations and postharvest practices.

“Training of extension workers and farmers on agricultural and plant nutrient related topics leads to an improvement in agronomic practices by farmers. Farmers that are trained and educated in best agronomic practices tend to realize high yields,” said Ramananda Gupta, Agronomist and Extension Specialist at the International Fertilizer Development Center (IFDC). CIMMYT is partnering with IFDC to implement the activities of the NSAF project related to fertilizer, including agricultural extension programs, policy support and market development.

All training materials have been field-tested with farmers, agro-dealers, government extension specialists and cooperatives. The training content has been reviewed by the Nepal Agricultural Research Center and Department of Agriculture. “The content of the best management practice materials are essential knowledge and skills farmers need to sustainably intensify production. Adoption of best management practices will significantly contribute in developing the rice sector as well as other related crops,” commented Ram Baran Yadaw, Rice Coordinator at the National Rice Research Program.

The NSAF project team is piloting the dissemination of improved technologies, skills and extension materials to farmers through local governments and private companies, using different tools and methods. The extension materials on best management practices will be publicly available, so improved seed and soil fertility technologies can be more accessible to farmers.

CIMMYT is also partnering with Viamo to adapt all the materials into an SMS and Interactive Voice Response (IVR) system to further scale up the program in the country, potentially reaching 12 million mobile phone subscribers.

The Nepal Seed and Fertilizer (NSAF) project promotes the use of improved seeds and integrated soil fertility management technologies along with effective and efficient extension programs across 21 “Zone of Influence” districts and in five earthquake-affected districts. The project is funded by the United States Agency for International Development (USAID), as part of the Feed the Future initiative. The project is led by International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Nepal’s Ministry of Agricultural Development and partners including the International Fertilizer Development Center (IFDC) and the Center for Environment and Agricultural Research, Extension and Development (CEAPRED).

Gratitude for soil

If we take care of our soils, our soils will take care of us. (Photo: Shashish Maharjan/CIMMYT)
If we take care of our soils, our soils will take care of us. (Photo: Shashish Maharjan/CIMMYT)

On December 5, we celebrate World Soil Day. This year the theme is “Be the solution to soil pollution.” Most of you may not have been aware that such a day even existed or perhaps even question the reason why the world even dedicates an entire day to celebrate soil. The authors of this article are soil scientists; we have devoted our professional careers to studying soil. Perhaps we are biased, but we use this opportunity to enlighten readers with a greater appreciation for the importance of this thin layer of our planet we call soil.

Humankind has a conflicting relationship with soil. In English, “dirt” and “dirty” are synonyms for unclean, calling a man or a woman “dirty” is a terrible insult. A baby’s dirty diapers are said to be “soiled.” But if we dig deeper into human consciousness, we find a different story.

For Hindus, the Panchtatva defines the universal laws of life. Everything, including life, is composed of five basic elements: Akash, space or sky; Vayu, air; Jal, water; Agni, fire; and Prithvi, earth or soil. In the Judeo-Christian tradition, the first two human beings on the planet were Adam and Eve. In Hebrew, the original language of the Bible’s Old Testament, the name Adam means “earth” or “soil” and Eve means “life.” These images and symbols portray that human life originally derived from soil.

It gets even deeper: The English terms “human” and “humanity” are rooted in the Greek word “humus,” the fertile black topsoil.

When we use the words “soil” and “dirt” as derogatory terms, we literally define ourselves as soil. Soil is important and here are a few reasons why.

Soil is absolutely critical for the survival of our species and of all living life on the planet. Over 90 percent of all food produced in the world comes from soil and a greater percentage of the world’s freshwater passes through soil.

Arguably, climate change is the greatest threat to our species. Despite mitigation efforts by the global community, soil is frequently forgotten. However, soil holds roughly two and a half times the amount of carbon held in the atmosphere and in all of the plants and animals combined.

Soil is also the greatest reservoir of biodiversity on the planet. In one pinch of soil, there are over 1 billion individual organisms and 1 million unique species, most of which we know almost nothing about. In one handful of soil, there are more living organisms than the total number of human beings that have ever walked on the planet. As all of our antibiotics have been derived from soil microorganisms, the secrets to fighting all kinds of diseases are just under your feet.

In Nepal, soil is deeply interrelated with culture. From birth to death, Nepalese use soil in many rituals: naming ceremonies, birthday celebrations, soiling on Ashar 15, local healing and medicine, etc.

The government of Nepal has set ambitious targets for increasing the levels of organic matter in soil. This is essential to ensure that the soils that have sustained Nepali civilization for centuries will continue to sustain future generations. We need to encourage farmers and land managers in Nepal to maintain terracing on steeply sloped lands to protect against soil erosion. It is also important to appropriately use agrochemicals, such as pesticides and inorganic fertilizers, to improve soil health and crop productivity.

Soil has been polluted by heavy metals, effluents from chemical industries, indiscriminate use of agrochemicals, urbanization without proper planning, networking of roads without considering the carrying capacity of the soil and other factors. So let’s not overlook the importance of soil. We need to value the cleansing properties of soil, particularly riverine soils, and prevent these areas from continuing as the dumping grounds and sewers of Kathmandu and other cities.

On this day, the day when we celebrate soil, take a moment to look under your feet and marvel at the beauty and complexity of soil.

If we take care of our soils, our soils will take care of us.

New digital maps to support soil fertility management in Nepal

KATHMANDU, Nepal (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) is working with Nepal’s Soil Management Directorate and the Nepal Agricultural Research Council (NARC) to aggregate historic soil data and, for the first time in the country, produce digital soil maps. The maps include information on soil PH, organic matter, total nitrogen, clay content and boron content. Digital soil mapping gives farmers and natural resource managers easy access to location-specific information on soil properties and nutrients, so they can make efficient and localized management decisions.

As part of CIMMYT’s Nepal Seed and Fertilizer (NSAF) project, researchers used new satellite imagery that enabled the resolution of the maps to be increased from 1×1 km to 250×250 m. They have updated the web portal to make it more user friendly and interactive. When loaded onto a smartphone, the map can retrieve the soil properties information from the user’s exact location if the user is within areas with data coverage. The project team is planning to produce maps for the whole country by the end of 2019.

CIMMYT scientist David Guerena talks about the role of the new digital maps to combat soil fertility problems in Nepal.
CIMMYT scientist David Guerena talks about the role of the new digital maps to combat soil fertility problems in Nepal.

At a World Soil Day event in Nepal, CIMMYT soil scientist David Guerena presented the new digital soil maps to scientists, academics, policymakers and other attendees. Guerena explained the role this tool can play in combatting soil fertility problems in Nepal.

These interactive digital maps are not simply visualizations. They house the data and analytics which can be used to inform site-specific integrated soil fertility management recommendations.

The first high-resolution digital soil maps for the Terai region have been produced with support from the data assets from the National Land Use Project, developed by Nepal’s Ministry of Agriculture and Livestock Development. These maps will be used to guide field programming of the NSAF project, drive the development of market-led fertilizer products, and inform and update soil management recommendations. The government of Nepal can use the same information to align policy with the needs of farmers and the capacity of local private seed and fertilizer companies.

In 2017, 16 scientists from Nepal’s Soil Management Directorate, NARC and other institutions attended an advanced digital soil mapping workshop where they learned how to use different geostatistical methods for creating soil maps. This year, as part of the NSAF project, four NARC scientists attended a soil spectroscopy training workshop and learned about digitizing soil data management and using advanced spectral methods to convert soil information into fertilizer recommendations.

Soil data matters

Soil properties have a significant influence on crop growth and the yield response to management inputs. For farmers, having access to soil information can make a big difference in the adoption of integrated soil fertility management.

Farmer motivation and decision-making relies heavily on the perceived likeliness of obtaining a profitable return at minimized risk. This largely depends on the yield response to management inputs, such as improved seeds and fertilizers, which depends to a large extent on site-specific soil properties and variation in agro-ecological conditions. Therefore, quantitative estimates of the yield response to inputs at a given location are essential for estimating the risks associated with these investments.

The digital soil maps can be accessed at https://nsafmap.github.io/.

The Nepal Seed and Fertilizer project is funded by the United States Agency for International Development (USAID) and is a flagship project in Nepal. The objective of the NSAF is to build competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development and income generation in Nepal.

New Soil Intelligence System for India provides high-quality data using modern analytics

NEW DELHI (CIMMYT) — The new Soil Intelligence System (SIS) for India will help the states of Andhra Pradesh, Bihar and Odisha rationalize the costs of generating high-quality soil data and build accessible geospatial information systems based on advanced geostatistics. The SIS initiative will rely on prediction rather than direct measurements to develop comprehensive soil information at scale. The resulting data systems will embrace FAIR access principles — findable, accessible, interoperable, and reproducible — to support better decision-making in agriculture.

SIS is a $2.5 million investment funded by the Bill & Melinda Gates Foundation. This initiative is led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with numerous partners including the International Food Policy Research Institute (IFPRI), World Soil Information (ISRIC), the Andhra Pradesh Space Applications Center (APSAC), and the state governments and state agriculture universities of Andhra Pradesh and Bihar. The initiative runs from September 2018 through February 2021.

“SIS will make important contributions towards leveraging soil information for decision-making in Indian agriculture by devising new soil health management recommendations,” explained Andrew McDonald, CIMMYT’s Regional Team Leader for Sustainable Intensification and Project Leader for the Cereal Systems Initiative for South Asia (CSISA). Researchers and scientists will combine mapping outputs with crop response and landscape reconnaissance data through machine-learning analytics to derive precise agronomy decisions at scale.

Farmers will be the primary beneficiaries of this initiative, as they will get more reliable soil health management recommendations to increase yields and profits. SIS will also be useful to state partners, extension and agricultural development institutions, the private sector and other stakeholders who rely on high-quality soil information. Through SIS, scientists and researchers will have an opportunity to receive training in modern soil analytics.

The SIS initiative aims to facilitate multi-institutional alliances for soil health management and the application of big data analytics to real-world problems. These alliances will be instrumental for initiating broader discussions at the state and national levels about the importance of robust data systems, data integration and the types of progressive access policies related to ‘agronomy at scale’ that can bring India closer to the Sustainable Development Goals.

CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.
CIMMYT scientist Shishpal Poonia places a soil sample on the Tracer instrument for soil spectroscopy analysis.

Better soil analysis

Spectroscopy enables precise soil analysis and can help scientists identify appropriate preventive and rehabilitative soil management interventions. The technology is also significantly faster and more cost-effective than wide-scale wet chemistry-based soil analysis.

As part of the CSISA project, led by CIMMYT and funded by the Bill & Melinda Gates Foundation, two new soil spectroscopy labs were recently set up in Andhra Pradesh and Bihar, in collaboration with the state departments of agriculture. One lab is now operating at the Regional Agricultural Research Station (RARS) in Tirupati, Andhra Pradesh; and the other one at Bihar Agricultural University (BAU Sabour), in Bhagalpur, Bihar.

“The support from CIMMYT through the Gates Foundation will contribute directly to bringing down the cost of providing quality soil health data and agronomic advisory services to farmers in the long run,” said K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University. “We will also be able to generate precise digital soil maps for land use planning. The greatest advantage is to enable future applications like drones to use multi-spectral imagery and analyze rapidly large areas and discern changes in soil characteristics in a fast and reliable manner.”

Under the SIS initiative, soil spectroscopy results will be validated with existing gold standard wet chemistry methods. They will also be integrated with production practice data collected from the ground level, through new statistical tools.

K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.
K.V. Naga Madhuri, Principal Scientist for Soil Science at Acharya N. G. Ranga Agricultural University (front), explains soil spectra during the opening of the soil spectroscopy lab at the Regional Agricultural Research Station in Tirupati, Andhra Pradesh.

Precise predictive models

Drawing information from a limited number of soil observations from a sample dataset, digital soil mapping (DSM) uses (geo)statistical models to predict the soil type or property for locations where no samples have been taken.

“These ‘unsampled locations’ are typically arranged on a regular grid,” explained Balwinder Singh, CIMMYT scientist and Simulation Modeler, “so DSM produces gridded — raster — soil maps at a specific spatial resolution — grid cell or pixel size — with a spatial prediction made for each individual grid cell.”

“Adopting DSM methods, combined with intelligent sampling design, could reduce the strain on the soil testing system in terms of logistics, quality control and costs,” noted Amit Srivastava, a geospatial scientist at CIMMYT. “Improving digital soil mapping practices can also help create the infrastructure for a soil intelligence system that can drive decision-making at scale.”

In partnership with state government agencies and the Bill & Melinda Gates Foundation, CIMMYT will continue to support the expansion of digital soil mapping and soil analysis capacity in India. The CSISA project and the SIS initiative are helping to deliver soil fertility recommendations to farmers, an important step towards the sustainable intensification of agriculture in South Asia.

For more details, contact Balwinder Singh, Cropping System Simulation Modeler, CIMMYT at Balwinder.SINGH@cgiar.org.

An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)
An example of digital soil mapping (DSM), showing pH levels of soil in the state of Bihar. (Map: Amit Kumar Srivastava/CIMMYT)

West Bengal agri-entrepreneur a role model for farmers in her community

Hosneara Bibi (top-right) shows her zero-tillage wheat crop. (Photo: SSCOP)
Hosneara Bibi (top-right) shows her zero-tillage wheat crop. (Photo: SSCOP)

Hosneara Bibi is a farmer in the village of West Ghughumari, in the Cooch Behar district of West Bengal, India. She began her journey as an agricultural entrepreneur two years ago, when members of the nonprofit Satmile Satish Club o Pathagar (SSCOP), a CIMMYT partner, first came to her village.

Their visit was part of CIMMYT’s Sustainable and Resilient Farming Systems Intensification (SRFSI) project. This project aims to reduce poverty in the Eastern Gangetic Plains of Bangladesh, India and Nepal by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women.

In the context of the SRFSI project and in collaboration with Godrej Agrovet, Bibi and her self-help group received training on conservation agriculture practices for sustainable intensification. Self-help groups are small associations, usually of women, that work together to overcome common obstacles. With support from SSCOP, Bibi’s fellow group members learned about a variety of improved agricultural practices, including zero tillage, which improves soil nutrient levels and water efficiency. This support helped them to increase their crop yields while promoting sustainability.

Hosneara Bibi works at the rice seedling enterprise she and her fellow self-help group members started. (Photo: SSCOP)
Hosneara Bibi works at the rice seedling enterprise she and her fellow self-help group members started. (Photo: SSCOP)

After adopting the improved practices, Bibi increased her wheat yield by 50 percent. This positive experience encouraged her to implement mechanically transplanted rice technology. Bibi and her self-help group have since started a rice seedling enterprise and they offer their mechanically transplanted rice services to other farmers. This has become a profitable agri-enterprise for the group.

Bibi has been able to expand her farm and now cultivates wheat, rice and jute. She has also adopted digital technologies in her farming practice and now uses a mobile app to aid in pest management for her rice crop, designed by Uttar Banga Krishi Viswavidyalaya.

Because of her higher yields and the profitability of the self-help group’s rice seedling enterprise, Bibi has successfully increased and diversified her income. Her proudest moment was when she was able to buy a motorbike for her husband.

Members of the SRFSI team consider Hosneara Bibi a role model for other farmers and entrepreneurs in her community.

The Sustainable and Resilient Farming Systems Intensification project is funded by the Australian Centre for International Agricultural Research.

Hosneara Bibi (center, in pink) poses for a photograph with other members of her self-help group, SSCOP representatives and Sagarika Bose, Deputy General Manager of Corporate Social Responsibility for Godrej Agrovet. (Photo: SSCOP)
Hosneara Bibi (center, in pink) poses for a photograph with other members of her self-help group, SSCOP representatives and Sagarika Bose, Deputy General Manager of Corporate Social Responsibility for Godrej Agrovet. (Photo: SSCOP)

Breaking Ground: Huihui Li links new genetic knowledge with crop breeding

Postcard_Huihui Li Breaking Ground

DNA is often referred to as the blueprint for life. It contains codes to make the proteins, molecules and cells essential for an organism’s growth and development. Over the last decade, scientists have been figuring out how specific sections of DNA in maize and wheat are associated with physical and genetic traits, such as grain size and drought resistance.

Quantitative geneticist Huihui Li with the International Maize and Wheat Improvement Center (CIMMYT) helps link this new genetic knowledge with traditional crop breeding, to speed up the development of improved maize and wheat varieties. Li’s research uses cutting-edge genomics, computational biology and statistical tools to turn data into useful information for plant breeders.

“Breeders always accumulate big amounts of data, most of the time they need efficient tools to mine the stories from this data. That’s part of our job in the Biometrics and Statistics Unit,” she explained.

Her research helps breeders more quickly and accurately predict which maize and wheat varieties in the CIMMYT gene bank have the traits they seek to create improved varieties. For example, if a plant breeder wanted to develop a hybrid maize variety with high protein levels and pest resistance, Li could help by identifying which parental varieties would have these traits.

It takes about ten years for crop breeders to develop a new hybrid. Removing some of the guesswork during the early stages of their experiments could reduce this time significantly. With increasing environmental pressures from climate change and population growth, releasing better crop varieties more quickly will be vital to ensure there is enough food in the future.

Li says her family and experience growing up in China greatly influenced her career choice.

“Through my grandfather’s experience as the head of the Bureau of Agriculture and Forestry, I learned that there were many people in China suffering from hunger, poverty and malnutrition,” she said.

Li realized that these issues were prevalent throughout the developing world when her mother left China for two years to serve as a foreign aid doctor in Cameroon.

“As a ten-year-old girl, I told myself that I should make my contribution to reduce hunger and poverty, and improve human nutrition in the future,” Li recalled. “I always ask myself, ‘What’s my value to humanity?”

She studied bio-mathematics and quantitative genetics at Beijing Normal University and Cornell University before joining CIMMYT in 2010 as a consultant.

“I wanted to join CIMMYT because it works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming,” Li explained. “Also, CIMMYT provided a platform where I could collaborate with scientists worldwide and receive academic and career-boosting trainings.”

She became staff in 2012 and is currently based out of the CIMMYT office in Beijing. In addition, Li is an adjunct associate professor with the Chinese Academy of Agricultural Sciences (CAAS). She helps CAAS scientists improve their experimental design and better incorporate genetic information into their crop breeding.

“I love doing research,” Li said. “I’m a curious person so if I can solve a problem, I feel very happy, but I really want my research to have value – not just for myself – but for the world.”

Huihui Li’s work contributes to Seeds of Discovery (SeeD), a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project and the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).

New study: India could cut nearly 18% of agricultural greenhouse gas emissions through cost-saving farming practices

NEW DELHI (CIMMYT) — India could reduce its greenhouse gas emissions from agriculture by almost 18 percent through the adoption of mitigation measures, according to a new study. Three improved farming practices would account for more than half of these emission reductions, researchers say: efficient use of fertilizer, zero tillage and better water management in rice farming.

In an article published in Science in the Total Environment, scientists estimate that, by 2030, “business-as-usual” greenhouse gas emissions from the agricultural sector in India would be 515 MtCO2e per year. The study indicates that Indian agriculture has the potential to mitigate 85.5 Megatonne CO2 equivalent (MtCO2e) per year without compromising food production and nutrition. Considering the 2012 estimates of 481 MtCO2e, that would represent a reduction of almost 18 percent. Researchers suggest mitigation options that are technically feasible but will require government efforts to be implemented at scale.

The study was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the University of Aberdeen and the Indian Council of Agricultural Research (ICAR), with support from the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). They followed a “bottom-up” approach to estimate and analyze greenhouse gas emissions from agriculture, using large datasets related to crops (around 45,000 data points) and livestock production (around 1,600 data points) along with soil, climate and management information. To evaluate mitigation measures, associated costs and benefits of adoption, researchers used a variety of sources, including literature, stakeholder meetings and consultations with experts in crops, livestock and natural resource management.

The authors also identify “hotspots” where mitigation practices would have the highest potential for reduction of greenhouse gas emissions. For example, reduced fertilizer consumption through precision nutrient management shows the highest potential in the state of Uttar Pradesh, followed by Andhra Pradesh, Maharashtra and Punjab. Water management in rice farming has the highest mitigation potential in Andhra Pradesh, followed by Tamil Nadu, Orissa and West Bengal.

India is the world’s third largest emitter of greenhouse gases. Contributing almost one-fifth to the national total, agriculture has been identified as a priority in the country’s efforts to reduce emissions. The results from this study can help the country make great strides towards its goals. However, these climate change mitigation benefits can only work if farmers take up the new practices, some of which require an initial investment. Government policies and incentives will be crucial to help farmers take the first steps, ensure wide-scale adoption of these mitigation options, and help India meet its food security and greenhouse gas emission reduction goals.

Marginal abatement cost curve of Indian agriculture.
Marginal abatement cost curve of Indian agriculture.

Three feasible mitigation measures

Efficient use of fertilizer not only lowers emissions at the field, but also reduces the need for fertilizer and the emissions associated with production and transportation. It also represents savings for the farmer. Mitigation options would include applying fertilizer at the right time and the right place for plant uptake, or using slow-release fertilizer forms or nitrification inhibitors. “Efficient fertilizer use in the agriculture sector in India has potential to reduce around 17.5 MtCO2e per year,” said Tek Sapkota, CIMMYT scientist and lead author of the study.

Adoption of zero tillage farming and residue management — maintaining crop residues on the soil surface to protect the ground from erosion — in rice, wheat, maize, cotton and sugarcane was shown to reduce emissions by about 17 MtCO2e per year. “CIMMYT has successfully worked to develop and promote these practices in India,” said M.L. Jat, CIMMYT principal scientist and co-author of the study.

Better water management in rice farming — such as adopting alternate wetting and drying in rice fields that are currently continuously flooded — can offer mitigation of about 12 MtCo2e per year. Other water management techniques in major cereals, such as laser-levelling of fields, or using sprinkler or micro-sprinkler irrigation and fertigation together, also provide important greenhouse gas emissions savings, with a reduction of around 4 MtCO2e per year for laser levelling alone.

This work was jointly carried out by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Aberdeen. Research was funded by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), supported by CGIAR Fund Donors and through bilateral funding agreements.


RELATED RESEARCH PUBLICATIONS:

Cost-effective opportunities for climate change mitigation in Indian agriculture

INTERVIEW OPPORTUNITIES:

Tek Sapkota – Scientist, International Maize and Wheat Improvement Center (CIMMYT)

M.L. Jat – Principal Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Geneviève Renard, Head of Communications, CIMMYT. g.renard@cgiar.org, +52 (55) 5804 2004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

Let’s make hunger history

Samjhana Khanal surveys heat-tolerant maize varieties in Ludhiana, India, during a field day at the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Samjhana Khanal surveys heat-tolerant maize varieties in Ludhiana, India, during a field day at the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

KATHMANDU, Nepal — I feel humbled and honored to have been chosen for the 2018 MAIZE-Asia Youth Innovators Award. I want to thank my father and brother for never clipping my wings and letting me fly high. I want to thank my mother, who despite having no education, not being able to read or write a single word, dreamed of having a scientist daughter. Everyone has a story and this is mine.

Due to my family’s poverty and the hardships faced during the civil war in Nepal, I had to leave school at grade 5 and was compelled to work as child labor in a local hotel to meet my family’s daily needs. I remember those difficult months where I used to cry every day, as the hotel was right across from the school and I wanted to study so badly but I was deprived from education due to my family’s condition. My life changed when a mountain climber staying at the hotel heard my story and generously decided to pay my school fees. I would go on to graduate top of my class.

Everyone has challenges. It is my dream to dedicate my life to fight the greatest challenge of all: hunger.

The amount of undernourished people in the world has been increasing. According to the Food and Agriculture Organization of the United Nations (FAO), over 820 million people face chronic food deprivation. Many of these people live in developing countries, including my home country, Nepal. About 6 million people, which is about 23% of Nepal’s population, are undernourished. Moreover, half of children under the age of five suffer from malnutrition in Nepal.

Increasing agricultural production, gender equity and awareness is crucial to meet sustainable development goals by 2030. As an agricultural student, I chose to focus on maize-based systems, as maize is a staple food crop and a major component of feed and fodder for farm animals. It is the second major crop in Nepal after rice — first in the hill region of Nepal — and can be a backbone for food security and a good source of income for resource-poor farmers.

Demand for maize is growing in Nepal, but production has remained stagnant. This is partly due to lack of knowledge on proper nutrient management and fertilizer use. In addition, due to the economic situation in Nepal, many men have been forced to migrate to find work and support their families, which has led to an increased “feminization” of agriculture. However, female farmers frequently have less access to information and resources that would help them to increase yields.

Since my undergraduate degree, I have carried out research on nutrient management in maize in the Eastern Terai region of Nepal, particularly focusing on women, to increase the maize production and income of smallholder farmers. My research involved the use of Nutrient Expert, a dynamic nutrient management tool based on site-specific nutrient management principles, to increase maize production and enhance soil quality without negatively affecting the environment. Regional fertilizer recommendations are often too broad and cannot take into account the soil quality of individual farmers’ field, as it varies greatly among fields, seasons and years. Applying the incorrect amount of fertilizer is costly to farmers and can negatively affect the environment and crop yields.

The Nutrient Expert app rapidly provides farm-specific fertilizer recommendations for nitrogen, phosphorus and potassium for crops in the presence or absence of soil testing results, contributing to dynamic nutrient management, increased productivity and net returns from crops for farmers. In the meantime, it helps to decrease the nitrogen and phosphorous leaching from the soil into rivers, which protects the water ecosystem both in wetlands and oceans. This technology is sustainable because it optimizes the use of nutrients in the soil for higher productivity and prevents the overuse of fertilizer. It decreases the farmer’s cost of production and is environmentally friendly. Further, my research showed that Nutrient Expert helped farmers to produce 86.6% more maize grain than their previous fertilizer practice.

Proper nutrient management is just one of the challenges facing agriculture today. To address these challenges and to create a world without hunger it is extremely important to work with and include young people. Effective extension tools to train and motivate young minds in research and create more interest in maize-based systems and farming is necessary for the overall adoption and proper utilization of improved varieties and technologies.

Samjhana Khanal was recently awarded the 2018 MAIZE-Asia Youth Innovators Award from the CGIAR Research Program on Maize (MAIZE) in the category of “Change Agent” for her research on the productivity and profitability of hybrid maize in Eastern Terai, Nepal. Using Nutrient Expert, a decision support tool, individual maize farmers can get specific soil nutrition and fertilizer recommendations, resulting in higher grain yield, productivity and profits.

An agricultural graduate, Khanal has founded and co-founded several local social organizations in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger. Her organizations support more than 285 households with community microfinance, help resource-poor farmers and assist women farmers.

The MAIZE-Asia Youth Innovators Awards aim to celebrate youth participation in maize-based agri-food systems and are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).

The Director General of CIMMYT, Martin Kropff (left), and the Chair of the MAIZE Independent Steering Committee, Michael Robinson (right), present Samjhana Khanal with the 2018 MAIZE-Asia Youth Innovator Award in the category of Change Agent. (Photo: Manjit Singh/Punjab Agricultural University)
The Director General of CIMMYT, Martin Kropff (left), and the Chair of the MAIZE Independent Steering Committee, Michael Robinson (right), present Samjhana Khanal with the 2018 MAIZE-Asia Youth Innovator Award in the category of Change Agent. (Photo: Manjit Singh/Punjab Agricultural University)

New publications: Does a climate-smart village approach influence gender equality in farming households?

South Asia faces multiple food security challenges, one of which being its extreme vulnerability to climate change. Millions living in the region are expected to be affected by water stress, yield loss, and other climate disasters caused by rising temperatures. Technological innovations can in important tool in ensuring food and livelihood security in the region, but social inclusivity is key to promoting the large-scale adoption of new technologies and practices.

Women’s participation in agricultural activities is increasing over time, but many still have limited capacity to contribute to farm decision-making. They may also have limited control over and access to resources such as credit, extension services and markets. The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) has developed and piloted the use of climate-smart villages (CSVs) in the Indian states of Bihar and Haryana to test climate-smart agriculture options for managing climate-related risks and promoting gender equality in agricultural production.

As climate change disproportionately affects poor and socially marginalized groups, including women, it is important to understand the ways in which the climate-smart approach helps to address specific climate change adaptation challenges. However, there are few studies to date focusing on this question.

In an attempt to fill this gap, a new study carried out as part of the CCAFS project on Climate-Smart Agriculture analyzes the extent to which the climate-smart village approach can contribute to establishing greater gender equality across the agricultural, political, social and economic sectors. The study introduces a Gender Empowerment Index for climate-smart villages, based on measurable indicators. It also documents the gender gap by mapping differences in empowerment levels across selected climate-smart villages and other villages across India’s eastern and western Indo-Gangetic Plains.

Read the full article “Does climate-smart village approach influence gender equality on farming households? A case of two contrasting ecologies in India” in Climatic Change.

The research was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

A woman in a climate-smart village in Bihar, India. (Photo: V.Reddy/ViDocs/CCAFS)
A woman in a climate-smart village in Bihar, India. (Photo: V.Reddy/ViDocs/CCAFS)

Check out other recent publications by CIMMYT researchers below:

  1. When the going gets tough: performance of stress tolerant maize during the 2015/16 (El niño) and 2016/17 (la niña) season in Southern Africa. 2018. Setimela, P.S., Gasura, E., Thierfelder, C., Zaman-Allah, M., Cairns, J.E., Prasanna, B.M. In: Agriculture, Ecosystems and Environment v. 268, p. 79-89.
  2. Potassium supplying capacity of diverse soils and K-use efficiency of maize in South Asia. 2018. Saiful Islam, Timsina, J., Muhammad Salim, Majumdar, K., Gathala, M.K. In: Agronomy v.8, no. 7, art. 121.
  3. Improvement of power tiller operated seeder for maize planting. 2018. Muhammad Arshadul Hoque, Gathala, M.K. In: Fundamental and Applied Agriculture v. 3, no. 2, p. 474–479.
  4. Climate change impact on Mexico wheat production. 2018. Hernandez-Ochoa, I.M., Asseng, S., Kassie, B.T., Wei Xiong, Robertson, R., Pequeño, D. N. L., Sonder, K., Reynolds, M.P., Md Ali Babar., Molero, A., Hoogenboom, G. In: Agricultural and Forest Meteorology v. 263, p. 373-387.
  5. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. 2018. Velu, G., Singh, R.P., Crespo-Herrera, L.A., Juliana, P., Dreisigacker, S., Valluru, R., Stangoulis, J., Sohu, V.S., Gurvinder Singh Mavi,  Vinod Kumar Mishra, Balasubramaniam, A., Chatrath, R., Gupta, V., Gyanendra Pratap Singh, Joshi, A.K. In: Nature Scientific reports v. 8, art. 13526.
  6. Re-assessing nitrous oxide emissions from croplands across Mainland China. 2018. Qian Yue, Ledo, A., Kun Cheng, Albanito, F., Lebender, U., Sapkota, T.B., Brentrup, F., Stirling, C., Smith, P., Jianfei Sun, Genxing Pan, Hillier, J. In: Agriculture, Ecosystems and Environment v. 268, p. 70-78.
  7. Crop model and weather data generation evaluation for conservation agriculture in Ethiopia. 2018. Liben, F.M., Wortmann, C.S., Haishun Yang, Lindquist, J.L., Tsegaye Tadesse, Dagne Wegary Gissa. In: Field Crops Research v. 228, p. 122-134.
  8. Assessing sustainability in agricultural landscapes: a review of approaches. 2018. Eichler Inwood, Sarah E., Lopez-Ridaura, S., Kline, K.L., Gerard, B., Gardeazabal Monsalue, A., Govaerts, B., Dale, V.H. In: Environmental Reviews v. 26, no. 3, p. 299-315.
  9. Unpacking the push-pull system: assessing the contribution of companion crops along a gradient of landscape complexity. 2018. Kebede, Y., Baudron, F., Bianchi, F., Tittonell, P. In: Agriculture, Ecosystems and Environment v. 268, p. 115-123.
  10. Genetic relationships and heterotic structure of quality protein maize (Zea mays L.) inbred lines adapted to eastern and southern Africa. 2018. Dagne Wegary Gissa, Vivek, B., Labuschagne, M. In: Euphytica v. 214, art. 172.