Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

P.H. Zaidi

P.H. Zaidi joined CIMMYT in 2007, and has since focused on strengthening the abiotic stress-tolerant germplasm base relevant for the Asian region. He has led efforts to develop abiotic maize germplasm tolerant to stresses including heat, drought, water-logging and anaerobic germination. He has also developed and standardized screening phenotyping techniques, protocols and selection criterion for various abiotic stresses, and supported NARS partners in implementing these into their programs.

Zaidi played a key role in strengthening collaborative research activities between CIMMYT and Asian NARS, as well as initiating research collaborations with new partners in the region. He has organized training courses on abiotic stress breeding and precision phenotyping, and has received several awards for his contributions to maize research, including CIMMYT’s Outstanding Scientist Award in 2009.

Improved Maize for Tropical Asia (IMTA)

The Improved Maize for Tropical Asia (IMTA) is employing modern maize breeding techniques to develop and deploy new, climate-resilient maize hybrids, including traits important for identified niche markets across tropical Asia.

Principal Coordinator: B.S. Vivek

Nepal Seed and Fertilizer Project (NSAF)

The Nepal Seed and Fertilizer (NSAF) project facilitates sustainable increases in Nepal’s national crop productivity, income and household-level food and nutrition security, across 20 districts, including five earthquake-affected districts.

Nepal’s agriculture is mostly small-scale and subsistence-oriented, characterized by a mix of crop and livestock farming. The agriculture sector represents about one-third of the country’s gross domestic product and employs 75 percent of the labor force.

Over half of Nepal’s farms operate on less than half a hectare, with the majority unable to produce enough to meet their household food requirements for the whole year. Combined with an increasing urban population, it will not be possible for the country to meet future food demand without increased agricultural productivity and competitiveness of domestic production.

Major cereal crops and vegetables currently have low yields, but there are significant prospects for increases through improved seed and soil fertility management practices. A large part of this yield gap results from a lack of knowledge, inadequate access to affordable improved technologies, extension services and markets due to weak public and private sector capacity to provide support services needed by small scale farmers.

NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective and efficient extension, including the use of digital and information and communications technologies. The project will specifically increase availability of technologies to improve productivity in cauliflower, lentils, maize, onions, rice and tomatoes. It will also build competitive seed and fertilizer systems that significantly expand seed production, marketing and distribution by enhancing the capacity of public and private sectors in seed and fertilizer value chains.

Agriculture development needs to be locally owned and led through inclusive business models involving women and disadvantaged groups and farmers institutions. There is a need to further the development of Nepal’s cereals, legumes and vegetable sector by:

  • Strengthening public-private coordination mechanisms
  • Developing market systems that are agile, resilient, and adaptive
  • Propelling agricultural growth through evidence-based policy change and harmonization.

Food security in Ukraine

Supplemental funds released in 2022 will be used to respond to the impact of the Ukraine war at the household level. CIMMYT and its partners will develop food security and resilient agriculture market systems, to advance the delivery of improved agriculture input management knowledge and technologies, application of best crop management practices, and development of local capacity to apply improved technologies.

The objective is to build resilience of smallholder farmers in four areas:

  • Protecting and sustaining crop production for strengthening local food production and consumption systems.
  • Supporting efficient agriculture supply chain.
  • Strengthening local cooperatives and micro, small- and medium-sized agribusiness enterprises.
  • Addressing the impact of global fertilizer shortages by exploring innovative products, novel application techniques and local market development.

Heat Stress Tolerant Maize for Asia (HTMA)

The Heat Stress Tolerant Maize (HTMA) for Asia project is a public-private alliance that targets resource-poor people and smallholder farmers in South Asia who face weather extremes and climate-change effects. HTMA aims to create stable income and food security for resource-poor maize farmers in South Asia through development and deployment of heat-resilient maize hybrids.

South Asian farmlands have been increasingly experiencing climate change-related weather extremes. If current trends persist until 2050, major crop yields and the food production capacity of South Asia will decrease significantly – by 17 percent for maize – due to climate change-induced heat and water stress.

In response, CIMMYT and partners are developing heat stress-resilient maize for Asia. The project leverages the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of partners.

OBJECTIVES

  • Future climate data obtained from the recent CIMP5 database, and future and current heat stress hot-spots in South Asia are mapped
  • Genome-wide association studies revealed multiple haplotypes significantly associated heat tolerance, including nine significant haplotype blocks (~200 kb) for grain yield explaining 4 to 12% phenotypic variation individually with the effect size varied up to 440 kg/ha.
  • A total of 17 first generation heat tolerant hybrids formally licenced to project partners for deployment and scale-out in their targeted geographies/market in stress-prone ecologies of South Asia
  • New base germplasm, including early generation lines and pedigree populations, with enhanced levels of heat tolerance shared with partners to use in their own breeding programs.
  • Over 130 maize researchers and technical staff from India, Nepal, Pakistan and Bangladesh, including 32 women and 99 men, were trained on various aspects of developing stress-resilient maize through four training course workshops organized under the project.
  • Strong phenotyping network for heat stress in South Asia, with well-equipped locations and trained representatives.

FUNDING INSTITUTIONS

  • United States Agency for International Development – Feed the Future

PRINCIPAL COORDINATOR

Pervez Haider Zaidi

 

Affordable, Accessible Asian (AAA) Drought Tolerant Maize Project

Smallholder maize farmers in marginal environments in Asia are prone to drought due to either scanty/erratic rainfall or falling groundwater levels.

The Affordable, Accessible, Asian (AAA) Drought Tolerant Maize Project is a partnership among CIMMYT, the Syngenta Foundation for Sustainable Agriculture, national agricultural research systems of Indonesia, Philippines and Vietnam to develop drought-tolerant maize for smallholder farmers in Asia.

AAA combines complementary technologies and comparative advantages, such as CIMMYT’s global expertise in drought-tolerant maize breeding, Syngenta’s elite germplasm bred for Asia, the national partners’ local knowledge of farmers’ requirements and their germplasm testing network.

This project covers a gamut of upstream and downstream activities: marker discovery (genome-wide association studies); trait discovery (understanding root structure and function-lysimetrics); marker applications (genomic selection); drought phenotyping facilities (rhizotronics, rain-out shelters; managed drought stress screening locations); germplasm development; hybrid deployment; and linking with potential hybrid commercialization partners.

Objectives

  • Validation of drought-tolerant genetic markers
  • Rhizotronics studies reveal importance of root functional traits in determining drought tolerance
  • Genomic selection is proving to be a powerful strategy for developing improved source populations
  • Promising results from hybrid trials in India and Indonesia indicate the value of this innovative partnership model

Funding Institutions

  • Syngenta Foundation for Sustainable Agriculture (SFSA)

Principal Coordinator

Bindiganavile Sampath Vivek

Climate Resilient Maize for Asia (CRMA)

Climate Resilient Maize for Asia is supported by Germany’s development agency GIZ, and implemented as a public-private partnership, which targets enhanced resilience among resource-poor, maize-based farming families in South and Southeast Asia by providing them with abiotic stress-tolerant maize hybrids adapted to rain-fed stress-prone production systems for crop diversification, intensification and higher yields.

Most of the maize in Asia is grown as a rain-fed crop, which is prone to vagaries of seasonal monsoon rains. This is clearly reflected in the productivity of maize under rain-fed systems — usually less than half of the irrigated system. The erratic distribution pattern of monsoon rains results in drought or water logging at different crop growth stages, which is the main factor responsible for relatively low productivity of rain-fed maize. Due to the possibility of uncertain economic returns, farmers often hesitate to invest in improved seed, fertilizers and inputs, which further add to poor yields of rain-fed maize. Climate change effects are further threatening an already challenging maize mega-environment in the Asian tropics, which are identified as subject to climate change effects, with high vulnerability and low adoption capacity.

The project deals with high priorities of Asian stakeholders related to improving maize production in the face of current and anticipated effects of climate change and access to diverse and valuable maize germplasm, building upon the GIZ-funded project known as Abiotic stress tolerant maize for increasing income and food security among the poor in South and Southeast Asia,” where significant progress is being made towards understanding the rain-fed stress-prone agro-ecologies in South and Southeast Asia, development of improved maize germplasm with enhanced levels of tolerance to drought, waterlogging or combined stress tolerance.

OBJECTIVES

  • Using data on elevation, aridity index and mean annual rainfall, a climate similarity map with a total 30 zones was developed for South Asia. This is useful in planning regional hybrid trials respective environment analogue.
  • New hybrid combinations by crossing promising stress-tolerant lines and evaluated across moisture regimes, including managed drought and waterlogging stresses, and optimal conditions, and a set of 50 promising hybrids are ready for large-scale adaptive trials.
  • Among the inbred lines developed under the project, four most promising lines were globally released CML (CIMMYT Maize Lines), namely CML-562, CML-563, CML-564 and CML-565, for use in low-land tropical breeding programs targeting stress-prone rainfed environment.
  • Total 18 Quantitative Trait Locus (QTLs) for grain yield under waterlogging and 21 QTLs for grain yield and anthesis-siling interval under drought were identified using genome-wide association studies and analyses of bi-parental populations. These validated genomic regions are candidate for introgression into elite Asia-adapted genetic background.
  • Breeder ready marker assays (KASP assays) have been developed for the 18 significant genomic regions that typically explained more than 10 percent of phenotypic variance under water-logging stress.
  • Protocol for rapid-cycle genomic selection (RC-GS) optimized with regards to constitution of suitable target population, and suitable statistical model for genomic selection.
  • Genetically enhanced cycle (C2) of two multi-parent synthetic populations were developed by inter-mating top 5 percent progenies with high genotypically estimated breeding values (GEBVs) were submitted for subjecting to double haploid for deriving new generation of stress-resilient maize lines

FUNDING INSTITUTIONS

  • Germany’s development agency GIZ

PRINCIPAL COORDINATOR

Pervez Haider Zaidi

Agricultural Innovation Program (AIP)

The Agricultural Innovation Program (AIP) for Pakistan is working to sustainably increase agricultural productivity and incomes in the agricultural sector through the promotion and dissemination of modern technologies/practices in the livestock, horticulture (fruits and vegetables) and cereals (wheat, maize and rice) sector. The CIMMYT-led project aims to foster emergence of a dynamic, responsive, and competitive system of science and innovation in Pakistan.

This unique project places particular emphasis on building partnerships between public research and those it serves, including farmers and the private sector. AIP operates through three activity windows: commissioned projects, a competitive grants system and human resource development. Within these activity windows AIP addresses complex agricultural systems, but is divided into four “science windows’” including cereals and cereal systems, livestock, vegetables and perennial horticulture. The key indicator of AIP’s success is the number of small farmers who adopt or benefit from productivity or value-enhancing technologies.

OBJECTIVES

The long term goals of the project are food security, environmental protection, gender sensitization and poverty reduction through the adoption of sustainable technologies, resource management practices, advance agricultural models and improved systems.

Building resilience, self-reliance and a reliable business model

Cereal Systems Initiative for South Asia (CSISA)

Intensive cereal cropping systems that include rice, wheat and/or maize are widespread throughout South Asia. These systems constitute the main economic activity in many rural areas and provide staple food for millions of people. The decrease in the rate of growth of cereal production, for both grain and residue, in South Asia is therefore of great concern. Simultaneously, issues of resource degradation, declining labor availability and climate variability pose steep challenges for achieving the goals of improving food security and rural livelihoods.

The Cereal Systems Initiative for South Asia (CSISA) was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

The project’s aim is to enhance the productivity of cereal-based cropping systems, increase farm incomes and reduce the environmental footprint of production through sustainable intensification technologies and management practices.

Operating in rural “innovation hubs” in Bangladesh, India and Nepal, CSISA complements regional and national efforts and involves public, civil society and private sector partners in the development and dissemination of improved cropping systems, resource-conserving management technologies, policies and markets. CSISA supports women farmers by ensuring their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills that can help them become informed and recognized decision makers in agriculture.

The project is led by CIMMYT with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

OBJECTIVES

  • Promote resource-conserving practices, technologies and services that increase yield with less water, labor and input costs
  • Impart new knowledge on cropping management practices, from applied research
  • Improve access to market information and enterprise development.
  • Strengthen policy analysis to remove constraints to the adoption of new technologies
  • Build strategic partnerships and capacity to help sustain and enhance the scale of benefits of improved cereal growth

Core research to impact themes within CSISA include:

  • Coping with climate extremes in rice-wheat cropping systems
  • Accelerating the emergence of mechanized solutions for sustainable intensification
  • Strengthening the foundations of agro-advisory and precision management through knowledge organization and data integration at scale
  • Increasing the capacity of partners to conduct participatory science and field reconnaissance to target and prioritize development interventions

Candidate for FAO leadership Qu Dongyu visits CIMMYT’s headquarters to sign MoU and strengthen collaboration

Vice minister Qu (center) and his delegation stand for a group photo with CIMMYT's leadership and Chinese students and scientists. (Photo: Gerardo Mejía/CIMMYT)
Vice minister Qu (center) and his delegation stand for a group photo with CIMMYT’s leadership and Chinese students and scientists. (Photo: Gerardo Mejía/CIMMYT)

Qu Dongyu, China’s Vice Minister of Agriculture and Rural Affairs, and candidate for the position of Director-General of the Food and Agriculture Organization of the United Nations (FAO), visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico on March 16, 2019. He had already visited CIMMYT in 2006.

Vice minister Qu was greeted by students and CIMMYT scientists from China, the director general, the deputy director general and members of the management team. Qu and his delegation learned about CIMMYT’s latest initiatives and toured the campus.

CIMMYT’s director general Martin Kropff explained the organization’s strategic focus on agri-food systems: “Our mandate is on maize and wheat but we think broadly. Our researchers use a systems approach and work on using these two crops to improve peoples’ livelihoods, which is our ultimate goal.”

Qu expressed his career-long efforts for integrating multi-disciplinary approaches to tackle global challenges and said that he was “happy to see CIMMYT combining breeding — for which CIMMYT is famous — with value-added approaches to bring together science, farmers and industry.”

With innovation and the end user playing key roles in the vice minister’s agenda, Qu enjoyed learning about the Excellence in Breeding Platform’s target product profiles work and two-way communication channels from innovation hubs in Mexico.

The director of CIMMYT’s Genetic Resources program, Kevin Pixley (third from left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Gerardo Mejía/CIMMYT)
The director of CIMMYT’s Genetic Resources program, Kevin Pixley (third from left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Gerardo Mejía/CIMMYT)

During the visit, Qu was also introduced to CIMMYT’s small-scale machinery, which is used around the world to sustainably intensify production. CIMMYT often sources machines, such as seed planters and harvesters, from China to provide effective and efficient solutions that add tangible value for smallholders at an appropriate price point.

Bringing together advanced technology and inexpensive tools, CIMMYT pioneered the GreenSeeker, a handheld tool to advise farmers on the appropriate amount of nitrogen fertilizer to add to their crops. This tool gives farmers the double benefit of increased profitability and reduced negative environmental impacts. The director of CIMMYT’s Sustainable Intensification program, Bruno Gérard, showed a machine-mountable version of this tool, which could connect to a two-wheel tractor and automatically add the appropriate amount of fertilizer.

Gérard also explained CIMMYT’s efforts to develop mechanization as a service, pointing to the manual on developing mechanization service providers, jointly developed by CIMMYT and FAO: “Mechanization has the potential to improve environmental sustainability, farm productivity and reduce labor drudgery. If mechanization is to be adopted at scale and sustainably, in most cases it has to be provided through service provision to smallholder farmers.”

At the end of the visit, to underline the shared commitment to collaboration that began in the 1970s, Kropff and Qu signed a memorandum of understanding for the establishment of a China-CIMMYT joint laboratory for maize and wheat improvement.

CIMMYT's director general Martin Kropff (left) and vice minister Qu Dongyu sign a memorandum of understanding for the establishment of a joint laboratory for maize and wheat improvement. (Photo: Gerardo Mejía/CIMMYT)
CIMMYT’s director general Martin Kropff (left) and vice minister Qu Dongyu sign a memorandum of understanding for the establishment of a joint laboratory for maize and wheat improvement. (Photo: Gerardo Mejía/CIMMYT)

Arun Kumar Joshi

Arun Kumar Joshi is engaged in developing climate-resilient, high-yielding, nutritive wheat varieties for South Asia. In addition, he is engaged in various collaborations on climate-resilient agriculture and seed system. He has facilitated the development and release of more than five dozen wheat varieties in South Asia through a significant contribution to climate resilience, disease resistance, conservation agriculture, and Zinc rich biofortification. His research findings are published in 188 refereed journal articles, 212 extension articles and manuals, 10 books or book chapters, and 136 symposia proceedings, and has a patent.

Joshi, a former Professor of Banaras Hindu University, is a fellow of the three most prestigious science academies in India – the Indian National Science Academy (INSA), the National Academy of Science in India (NASI), and the National Academy of Agriculture Sciences (NAAS). In 2014, he was awarded the Jeanie Borlaug Laube WIT Mentor Award from the Borlaug Global Rust Initiative at Cornell University.

Innovative irrigation promises “more crop per drop” for India’s water-stressed cereals

A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)
A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)

On World Water day, researchers show how India’s farmers can beat water shortages and grow rice and wheat with 40 percent less water

India’s northwest region is the most important production area for two staple cereals: rice and wheat. But a growing population and demand for food, inefficient flood-based irrigation, and climate change are putting enormous stress on the region’s groundwater supplies. Science has now confronted this challenge: a “breakthrough” study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. The study’s authors, from the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Punjab Agricultural University and Thapar University, claim farmers can grow similar or better yields than conventional growing methods, and still make a profit.

The researchers tested a range of existing solutions to determine the optimal mix of approaches that will help farmers save water and money. They found that rice and wheat grown using a “sub-surface drip fertigation system” combined with conservation agriculture approaches used at least 40 percent less water and needed 20 percent less Nitrogen-based fertilizer, for the same amount of yields under flood irrigation, and still be cost-effective for farmers. Sub-surface drip fertigation systems involve belowground pipes that deliver precise doses of water and fertilizer directly to the plant’s root zone, avoiding evaporation from the soil. The proposed system can work for both rice and wheat crops without the need to adjust pipes between rotations, saving money and labor. But a transition to more efficient approaches will require new policies and incentives, say the authors.

During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)
During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)

Read the full story:

Innovative irrigation system could future-proof India’s major cereals. Thomsom Reuters Foundation News, 20 March 2019.

Read the study:

Sidhu HS, Jat ML, Singh Y, Sidhu RK, Gupta N, Singh P, Singh P, Jat HS, Gerard B. 2019. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management. 216:1 (273-283). https://doi.org/10.1016/j.agwat.2019.02.019

The study received funding from the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Government of Punjab. The authors acknowledge the contributions of the field staff at BISA and CIMMYT based at Ludhiana, Punjab state.

CIMMYT and UAS-Bangalore to establish a maize doubled haploid facility in Karnataka, India

Representatives from CIMMYT and UAS-Bangalore signed the collaboration agreement on February 18, 2019.
Representatives from CIMMYT and UAS-Bangalore signed the collaboration agreement on February 18, 2019.

KARNAKATA, India (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) and the University of Agricultural Sciences-Bangalore (UAS-Bangalore) have signed a collaboration agreement for establishing a maize doubled haploid (DH) facility at the Agricultural Research Station in Kunigal (ARS-Kunigal), Tumkur district, Karnataka state, India.

CIMMYT will establish and operate the maize DH facility, including field activities and the associated laboratory. Occupying 12 acres of land, the facility is estimated to produce at least 30,000 DH lines a year. CIMMYT hopes the facility to be operational by the last quarter of 2019.

The maize DH facility, funded by the CGIAR Research Program on Maize (MAIZE), fulfills a very important requirement of the region. It has the potential to accelerate maize breeding and hybrid development and significantly increase genetic gains through maize breeding in Asia. During the 13th Asian Maize Conference in Ludhiana, India (October 8-10, 2018), several partners — including the Indian Institute of Maize Research (ICAR-IIMR) — emphasized the urgent need for a state-of-the-art maize DH facility that could serve breeding programs across Asia.

“This is indeed a major landmark for maize breeding, especially in the public sector, not only in India, but also in Asia,” said B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE). “The facility will provide maize DH development services, not only for the maize breeding programs of CIMMYT and UAS-B, but also for national agricultural research system institutions and small and medium-sized seed companies engaged in maize breeding and interested to pursue DH-based advanced maize breeding strategies in Asia. DH technology, in combination with molecular marker-assisted breeding, can significantly increase genetic gains in maize breeding.”

“The maize doubled haploid facility … will be the first of its kind in the public domain in Asia,” said S. Rajendra Prasad, Vice Chancellor of UAS-Bangalore. “The work done at this facility will certainly benefit the farmers of the state, country and the Asian region, by accelerating maize breeding and improving efficiencies.”

The signing of the collaboration agreement took place on February 18, 2019 at UAS-Bangalore’s campus in Bengaluru. CIMMYT was represented by B.M. Prasanna and BS Vivek, Senior Maize Breeder. UAS-Bangalore was represented by S. Rajendra Prasad; Mahabaleshwar Hegde, Registrar, and Y.G. Shadakshari, Director of Research.

The benefits of doubled haploid technology

DH maize lines are highly uniform, genetically pure and stable, and enable significant saving of time and resources in deriving parental lines, which are building blocks of improved maize hybrids.

Over the last 12 years, CIMMYT has worked intensively on optimizing DH technology for the tropics. Researchers released first-generation tropicalized haploid inducers in 2012, and second-generation tropicalized haploid inducers in 2017, in partnership with the University of Hohenheim, Germany. In 2017, CIMMYT developed more than 93,000 maize DH lines from 455 populations, and delivered them to maize breeders in Africa, Asia and Latin America.


INTERVIEW OPPORTUNITIES:

B.M. Prasanna – Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize (MAIZE).

FOR MORE INFORMATION, CONTACT THE MEDIA TEAM:

Jennifer Johnson – Maize Communication Officer, CIMMYT. J.A.JOHNSON@cgiar.org, +52 (55) 5804 2004 ext. 1036.

Sustainable intensification practices build resilience in Bangladesh’s charlands

Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.
Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.

The charlands, island-like tracts of land arising from riverbeds as a result of erosion and accretion, are home to millions of Bangladesh’s most vulnerable people. The lives of these people, much like the land itself, are exposed to nature’s forces such as erosion and floods.

In Eachlirchar, an area of charland in Lakkhitari Union, Gangachara, Rangpur district, where the soil struggles to yield even rice, the fate of the marginalized char community is arbitrarily determined by the course of nature. However, mother of three Anzuma Begam is living proof of the resilience and socioeconomic development catalyzed by adopting conservation agriculture-based sustainable intensification technologies.

Promoted by the International Maize and Wheat Improvement Center (CIMMYT) through its Sustainable and Resilient Farming Systems Intensification (SRFSI) project, sustainable intensification technologies have been heralded as a major breakthrough in the fight against charland aridity since 2014. By reducing drudgery, irrigation and costs, conservation agriculture enables the soil of the charlands to produce rice and maize yields consecutively.

Given its eventual success, it is surprising that the first phase of CIMMYT’s work in Eachlirchar did not run according to plan, as the tobacco-producing community did not welcome new technologies. Begam’s husband, Hossain Ali, even rejected her initial proposal to participate in the SRFSI project’s introductory training on zero tillage, weed management and new seeds. However, in spite of her husband’s disapproval and defying patriarchal constraints, Begam stepped forward to accept the new agricultural technology.

Anzuma Begam’s husband takes pride in his wife's achievements.
Anzuma Begam’s husband takes pride in his wife’s achievements.

After engaging with the project, Begam decided apply conservation agriculture-based sustainable intensification practices on her small plot of land. She began to produce mechanically transplanted rice and strip-till maize. Her first harvest in 2015 deepened her understanding of the benefits of comparatively low utilization of irrigation, pesticides and labor.

Begam has since yielded a bumper maize crop using strip-till technology and her socioeconomic progress is an inspiration to her charland community. Even the floods of June 2017 failed take the smiles off her family’s faces and, in 2018, she and her family moved from a shack into a well-built tin-shaded house.

The profits from Begam’s higher yielding and more reliable maize and rice harvests have ensured access to proper education and food for her children, and her husband now helps cultivate their land using conservation agriculture technologies. “Anzuma did the right thing by not listening to my wrong decision back then in 2014,” he explains. “SRFSI showed her the right way to attain self-reliance through conservation agriculture technologies. I am proud of my wife.”

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project is funded by the Australian Centre for International Agricultural Research (ACIAR).

Support groups open women’s access to farm technologies in northeast India

In Odisha and Bihar, CSISA has leveraged the social capital of women's self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)
In Odisha and Bihar, CSISA has leveraged the social capital of women’s self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)

Self-help groups in Bihar, India, are putting thousands of rural women in touch with agricultural innovations, including mechanization and sustainable intensification, that save time, money, and critical resources such as soil and water, benefiting households and the environment.

The Bihar Rural Livelihoods Promotion Society, locally known as Jeevika, has partnered with the Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT), to train women’s self-help groups and other stakeholders in practices such as zero tillage, early sowing of wheat, direct-seeded rice and community nurseries.

Through their efforts to date, more than 35,000 households are planting wheat earlier than was customary, with the advantage that the crop fully fills its grain before the hot weather of late spring. In addition, some 18,000 households are using zero tillage, in which they sow wheat directly into unplowed fields and residues, a practice that improves soil quality and saves water, among other benefits. As many as 5,000 households have tested non-flooded, direct-seeded rice cultivation during 2018-19, which also saves water and can reduce greenhouse gas emissions.

An autonomous body under the Bihar Department of Rural Development, Jeevika is also helping women to obtain specialized equipment for zero tillage and for the mechanized transplanting of rice seedlings into paddies, which reduces women’s hard labor of hand transplanting.

“Mechanization is helping us manage our costs and judiciously use our time in farming,” says Rekha Devi, a woman farmer member of Jeevika Gulab self-help group of Beniwal Village, Jamui District. “We have learned many new techniques through our self-help group.”

With more than 100 million inhabitants and over 1,000 persons per square kilometer, Bihar is India’s most densely-populated state. Nearly 90 percent of its people live in rural areas and agriculture is the main occupation. Women in Bihar play key roles in agriculture, weeding, harvesting, threshing, and milling crops, in addition to their household chores and bearing and caring for children, but they often lack access to training, vital information, or strategic technology.

Like all farmers in South Asia, they also face risks from rising temperatures, variable rainfall, resource degradation, and financial constraints.

Jeevika has formed more than 700,000 self-help groups in Bihar, mobilizing nearly 8.4 million poor households, 25,000 village organizations, and 318 cluster-level federations in all 38 districts of Bihar.

The organization also fosters access for women to “custom-hiring” businesses, which own the specialized implement for practices such as zero tillage and will sow or perform other mechanized services for farmers at a cost. “Custom hiring centers help farmers save time in sowing, harvesting and threshing,” said Anil Kumar, Program Manager, Jeevika.

The staff training, knowledge and tools shared by CSISA have been immensely helpful in strengthening the capacity of women farmers, according to D. Balamurugan, CEO of Jeevika. “We aim to further strengthen our partnership with CSISA and accelerate our work with women farmers, improving their productivity while saving their time and costs,” Balamurugan said.

CSISA is implemented jointly by the International Maize and Wheat Improvement Center (CIMMYT), the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). It is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).