Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA)

Heterogeneity in soils, hydrology, climate, and rapid changes in rural economies including fluctuating prices, aging and declining labor forces, agricultural feminization, and uneven market access are among the many factors that constrain climate-smart agriculture (CSA) in South Asia’s cereal-based farming systems.

Most previous research on CSA has employed manipulative experiments analyzing agronomic variables, or survey data from project-driven initiatives. However, this can obscure the identification of relevant factors limiting CSA, leading to inappropriate extension, policy, and inadequate institutional alignments to address and overcome limitations. Alternative big data approaches utilizing heterogeneous datasets remain insufficiently explored, though they can represent a powerful alternative source of technology and management practice performance information.

In partnership with national research systems and the private sector in Bangladesh, India and Nepal, Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA) is developing digital data collection systems to crowdsource, data-mine and interpret a wide variety of primary agronomic management and socioeconomic data from tens of thousands of smallholder rice and wheat farmers.

The project team analyzes these data by stacking them with spatially-explicit secondary environmental, climatic and remotely sensed data products, after which data mining and machine learning techniques are used to identify key factors contributing to patterns in yield, profitability, greenhouse gas emissions intensity and resilience.

These approaches however must be practical in order for them to be useful in agricultural development and policy. As such, the project’s analytical results will be represented through interactive web-based dashboards, with gender-appropriate crop management advisories deployed through interactive voice recognition technologies to farmers in Bangladesh, India and Nepal at a large-scale. Big Data2 CSA is supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Flagship 2 on Climate-Smart Technologies and Practices.

Objectives

  • Develop ICT tools enabling digital collection of crop management data and a cloud-based database that can be managed by next-users
  • Support advanced degree-level students to engage in field and data science research
  • Create a digital data collection platform enabling crowd sourcing of crop management information to evaluate contributions to CSA
  • Create interactive and customizable web-based dashboards presenting post-season research results and providing CSA management recommendations
  • Organize CSA and big data policy briefings on mainstreaming processes and policy workshops

Fighting back against fall armyworm in Bangladesh

Fall armyworm is an invasive Lepidopteran pest that favors maize and is native to the Americas. It was identified in Bangladesh for the first time in late 2018 following migration from Africa and southern India.

Supported by the University of Michigan and USAID, this project cooperates with national research and extension partners, CABI and the FAO to strengthen efforts to mitigate impact of the pest on farmers’ income, food security and health.

Objectives

  • Develop educational materials to help reach audiences with information to improve understanding and management of fall armyworm
  • Assist the Department of Agricultural Extension (DAE) in deploying awareness raising and training campaigns
  • Institutional change to improve crop protection and integrated pest management
  • Prepare the private sector for appropriate fall armyworm response
  • Support the standing multi-threat pest emergency taskforce
  • Generate data and evidence to guide integrated fall armyworm management

Climate- and market-smart mung bean advisories (CAMASMA)

Focusing on highly profitable but weather-risk prone mung bean production in coastal Bangladesh, the Climate and market-smart mung bean advisories (CAMASMA) project develops farmer friendly and demand-driven climate- and market-smart mung bean advisory dissemination systems.

Heavy rainfall events can cause significant damage to mung bean production, causing large yield and income losses for farmers in coastal Bangladesh. By integrating and disseminating weather-forecast information, climate-smart advisories for when and how to harvest mung bean help farmers to mitigate some of the climate risks associated with crop production.

Both mung bean farmers and traders can also benefit from real-time market price data. In addition to market intelligence on where large blocks of farmers have quality mung bean for sale, CAMASMA improves information flow to lower trading firms’ transactions costs while speeding farm-gate purchase and income generation from farmers.

CAMASMA is a pilot project that demonstrates the power of climate services, agricultural advisories, and use of social network analysis and ICTs to speed information delivery and increase farmers’ resilience to extreme climatic events.

Objectives

  • Customize heavy and extreme rainfall event forecasts for coastal Bangladesh
  • Analyze social networks to assist extension agents in rapid deployment of crop management advice in remote and hard to reach areas
  • Set up interpretive algorithms and interactive voice response (IVR) mobile call systems for weather, mung bean management and market advisories appropriate to men and women smallholder farmers
  • Release and promote a smartphone app providing customized weather forecasts, mung bean agronomic advice, early warnings for potential crop damaging extreme weather events, and market information
  • Establish business models and strategies for sustaining the use of IVR and smartphone apps after project closure

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Fall Armyworm R4D and Management

The fall armyworm (Spodoptera frugiperda; FAW), an insect-pest native to the Americas, has been a persistent and serious pest of maize for over a century. Public and private sector scientists in the Americas – particularly in Brazil and the United States – have developed and deployed effective strategies to control the pest.

Incidence of fall armyworm was first reported in Nigeria in January 2016, and subsequently in over 40 countries across Africa. In Asia, the pest was first reported in India in mid-2018, and has since emerged in several countries in the Asia-Pacific. Strategies for fall armyworm management in both Africa and the Asia-Pacific can benefit immensely from those already fine-tuned in the Americas, with necessary customization to fit local agroecologies and farming systems. There is also a need to intensively work on various aspects of integrated pest management (IPM) for effective and sustainable fall armyworm management. This includes Research-for-Development (R4D) for discovering, validating and piloting best-bet technological interventions or management practices.

This project brings together the expertise of key institutions with long-standing experience in effectively dealing with transboundary insect-pests to strengthen the capacities of Africa- and Asia-based institutions in fall armyworm management. The goal is to develop and disseminate comprehensive, expert approved, IPM-based fall armyworm pest management practices that will enable various stakeholders – especially farmers, extension agents, and pest control advisors – to effectively scout, determine the need for, and appropriately apply specific interventions to control the fall armyworm in maize and other crops in Africa and Asia.

Objectives

  • Develop, publish and disseminate comprehensive, expert-approved, IPM-based information resources for various stakeholder groups
  • Integrate traits for fall armyworm resistance into the CIMMYT breeding pipeline
  • Establish a fall armyworm Research-for-Development (R4D) Consortium

Conservation agriculture key to better income, environment protection: Study

Resorting to conservation agriculture would not only increase crop yield, income and reduce the use of natural resources, but would also confer climate change benefits, according to a study by Indian agricultural scientists and others published in an international journal on Thursday.

The study, published in the journal Nature Sustainability, also showed that conservation agriculture was key to meeting many of the UN’s Sustainable Development Goals (SDGs) such as no poverty, zero hunger, good health and well-being, climate action and clean water. Conservation agriculture can offer positive contributions to several SDGs, said M. L. Jat, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study.

Read more here: https://www.thehindubusinessline.com/economy/agri-business/conservation-agriculture-key-to-better-income-environment-protection-study/article31364196.ece#

Conservation agriculture key in meeting UN Sustainable Development Goals

During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)
During a conservation agriculture course, a young trainee operates a Happy Seeder mounted on a two-wheel tractor, for direct seeding of wheat in smallholder systems. (Photo: CIMMYT)

An international team of scientists has provided a sweeping new analysis of the benefits of conservation agriculture for crop performance, water use efficiency, farmers’ incomes and climate action across a variety of cropping systems and environments in South Asia.

The analysis, published today in Nature Sustainability, is the first of its kind to synthesize existing studies on conservation agriculture in South Asia and allows policy makers to prioritize where and which cropping systems to deploy conservation agriculture techniques. The study uses data from over 9,500 site-year comparisons across South Asia.

According to M.L. Jat, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study, conservation agriculture also offers positive contributions to the Sustainable Development Goals of no poverty, zero hunger, good health and wellbeing, climate action and clean water.

“Conservation agriculture is going to be key to meet the United Nations Sustainable Development Goals,” echoed JK Ladha, adjunct professor at the University of California, Davis, and co-author of the study.

Scientists from CIMMYT, the Indian Council of Agricultural Research (ICAR), the University of California, Davis, the International Rice Research Institute (IRRI) and Cornell University looked at a variety of agricultural, economic and environmental performance indicators — including crop yields, water use efficiency, economic return, greenhouse gas emissions and global warming potential — and compared how they correlated with conservation agriculture conditions in smallholder farms and field stations across South Asia.

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Results and impact on policy

Researchers found that many conservation agriculture practices had significant benefits for agricultural, economic and environmental performance indicators, whether implemented separately or together. Zero tillage with residue retention, for example, had a mean yield advantage of around 6%, provided farmers almost 25% more income, and increased water use efficiency by about 13% compared to conventional agricultural practices. This combination of practices also was shown to cut global warming potential by up to 33%.

This comes as good news for national governments in South Asia, which have been actively promoting conservation agriculture to increase crop productivity while conserving natural resources. South Asian agriculture is known as a global “hotspot” for climate vulnerability.

“Smallholder farmers in South Asia will be impacted most by climate change and natural resource degradation,” said Trilochan Mohapatra, Director General of ICAR and Secretary of India’s Department of Agricultural Research and Education (DARE). “Protecting our natural resources for future generations while producing enough quality food to feed everyone is our top priority.”

“ICAR, in collaboration with CIMMYT and other stakeholders, has been working intensively over the past decades to develop and deploy conservation agriculture in India. The country has been very successful in addressing residue burning and air pollution issues using conservation agriculture principles,” he added.

With the region’s population expected to rise to 2.4 billion, demand for cereals is expected to grow by about 43% between 2010 and 2050. This presents a major challenge for food producers who need to produce more while minimizing greenhouse gas emissions and damage to the environment and other natural resources.

“The collaborative effort behind this study epitomizes how researchers, policy-makers, and development practitioners can and should work together to find solutions to the many challenges facing agricultural development, not only in South Asia but worldwide,” said Jon Hellin, leader of the Sustainable Impact Platform at IRRI.


Related publications:

Conservation agriculture for sustainable intensification in South Asia.

Interview opportunities:

M.L. Jat, Principal Scientist and Cropping Systems Agronomist, International Maize and Wheat Improvement Center (CIMMYT)

For more information, or to arrange interviews, contact:

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

Acknowledgements:

Funders of this work include the Indian Council of Agricultural Research (ICAR), the Government of India and the CGIAR Research Programs on Wheat Agri-Food Systems (CRP WHEAT) and Climate Change, Agriculture and Food Security (CCAFS).

About CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

Collective efforts to fight fall armyworm in Nepal

Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the government’s Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.

“I wasn’t able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,” said Pavitra, a farmer from Sindhupalchowk district, Nepal.

The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production — estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.

This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.

Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.

The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.

Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Training participants examine a fall armyworm on a maize leaf. (Photo: Bandana Pradhan/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
Fall armyworms are found on leaves in a maize field in Nepal. (Photo: Shailaja Thapa/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
A pheromone trap is installed next to a maize field in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Participants in one of the trainings learn how to scout and collect data on fall armyworm in a maize field. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)
Training participants imitate the fall armyworm’s white inverted Y mark visible on the front of the head of the larva. (Photo: Bandana Pradhan/CIMMYT)

Gearing up to fight the very hungry caterpillar

In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.

In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.

In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.

“Before, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,” said Urmila Banjgayu, a lead farmer who participated in one of the trainings. “I am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.”

Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.

Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Outreach workers use an auto-rickshaw equipped with a sound system and infographics to disseminate information about armyworm in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT.)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)
Farmers listen to information about fall armyworm displayed on an auto-rickshaw in Nepal’s Banke district. (Photo: Darbin Joshi/CIMMYT)

Fall armyworm awareness campaign

Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.

CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.

Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.

“Seamless collaboration is required among the major stakeholders in the country to collectively fight the pest,” said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. “The potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.”

Dilli Bahadur K.C.

Dilli Bahadur K.C. is a project manager with CIMMYT’s Socioeconomics Program, based in Nepal. His work focuses primarily on agricultural project design and implementation, monitoring and evaluation, project impact assessment, agricultural marketing and value chain analysis.

From popcorn to roti

When asked to picture a food made of whole grains, your first thought might be a loaf of brown, whole-wheat bread. But wholegrain dishes come in all forms.

Take a virtual journey around the world to see the popular or surprising ways in which whole grains are eaten from Mexico to Bangladesh.

Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)

Ready for the seed sector

Nepal’s National Seed Vision 2013-2025 identified the critical skills and knowledge gaps in the seed sector, across the value chain. Seed companies often struggle to find skilled human resources in hybrid product development, improved seed production technology and seed business management. One of the reasons is that graduates from agricultural universities might be missing on recent advancements in seed science and technology, required by the seed industry.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) have been collaborating with Agriculture and Forestry University (AFU) to review and update the existing curriculum on seed science and technology, for both undergraduate and postgraduate students. This work is part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) through the Feed the Future initiative.

Realizing the need to increase trained human resources in improved seed technologies, CIMMYT researchers held discussions with representatives from the Department of Agronomy at AFU, to begin revising the curriculum on seed science and technology. Developed four years ago, the current curriculum does not encompass emerging developments in the seed industry. These include, for example, research and product development initiated by local private seed companies engaged in hybrid seed production of various crops, who want to be more competitive in the existing market.

Each year, approximately 200 bachelor’s and 10 master’s students graduate from AFU. In collaboration with CIMMYT, the university identified critical areas that need to be included in the existing curriculum and drafted new courses for endorsement by the academic council. AFU also developed short-term certificate and diploma courses in the subject of seed science and technology.

AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)
AbduRahman Beshir, CIMMYT, discusses the importance of linking academic courses with the emerging trends of the seed industry. (Photo: Bandana Pradhan/CIMMYT)

Shared knowledge

On November 20, 2019, CIMMYT, AFU and Catholic Relief Services (CRS) organized a consultation workshop with seed stakeholders from the public and private sectors, civil society and academia. Participants discussed emerging needs within Nepal’s seed industry and charted out how higher education can support demand, through a dynamic and responsive program.

Sabry G. Elias, professor at Oregon State University (OSU), discussed recent advances in seed science and technology, and how to improve productivity of smallholder farmers in Nepal. He is supporting the curriculum revision by taking relevant lessons from OSU and adapting them to Nepal’s context. Sabry shared the courses that are to be included in the new program and outlined the importance of linking graduate research with the challenges of the industry. He also stressed the importance of building innovation and the continuous evolution of academic programs.

Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)
Sabry Elias, Oregon State University, talks about the importance of critical thinking to bring innovations to the seed sector. (Photo: Bandana Pradhan/CIMMYT)

Professors from AFU, Nepal Polytechnic Institute, Tribhuvan University, and several private colleges introduced the current courses in seed science and technology at their institutions. Santosh Marahatta, head of the Department of Agronomy at AFU, discussed the limitations of the current master’s and doctoral degree programs, and proposed a draft curriculum with integrated courses across the seed value chain. J.P. Dutta, dean of the Faculty of Agriculture at AFU, shared plans to create a curriculum that would reflect advanced practices and experiences in seed science and technology.

Scientists and researchers from Nepal Agricultural Research Council (NARC) presented their activities and suggested key areas to address some of the challenges in the country’s seed sector.

“Our aim is to strengthen local capacity to produce, multiply and manage adequate quality seeds that will help improve domestic seed production and seed self-sufficiency,” said Mitraraj Dawadi, a representative from the Seed Entrepreneurs Association of Nepal (SEAN). “Therefore, we encourage all graduates to get hands-on experience with private companies and become competent future scientists and researchers.”

AbduRahmann Beshir, Seed Systems Lead for the NSAF project at CIMMYT, shared this sentiment. According to him, most current graduates lack practical experience on hybrid seed development, inbred line maintenance and knowledge on the general requirements of a robust seed industry. “It is important that universities can link their students to private seed companies and work together towards a common goal,” he explained. “This human resource development drive is part of CIMMYT’s efforts to help Nepal on its journey to self-reliance.”

Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)
Organizers of the stakeholder consultation workshop to enhance the role of higher learning institutions in the Nepal seed sector at AFU, Chitwan. (Photo: Bandana Pradhan/CIMMYT)

Crowdsourced data feeds fall armyworm surveillance in Bangladesh

Following the spread of fall armyworm, crowdsourced data is powering a web-based application to help farmers in Bangladesh stay ahead of the crop pest.

The Fall Armyworm Monitor collects population, incidence and severity data, and guides pest management decisions. The web tool relies on information gathered by farmers using smartphones in their fields.

It was developed by the International Maize and Wheat Improvement Center (CIMMYT) in cooperation with Bangladesh’s Department of Agricultural Extension, through the Fighting Back Against Fall Armyworm project, supported by USAID and Michigan State University.

When a foreign caterpillar first munched through Muhammad Hasan Ali’s maize field during the winter 2018-2019 season, he was stumped as to what it was or how to manage it. All he knew was his harvest and the investment he made in growing his crop was at risk.

“I’d never seen this type of insect in previous seasons, but I soon learned from government extension workers it was the fall armyworm,” explained Hasan Ali, a farmer from rural Chuadanga, in western Bangladesh. When poorly managed, fall armyworm can significantly reduce maize productivity.

Hasan Ali asked to join a training program, where he learned how to identify, monitor and control the spread of the invasive and voracious crop pest. The training, mainly tailored to extension staff, was facilitated by CIMMYT and Bangladesh’s Department of Agricultural Extension.

Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer's field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer’s field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer's field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants of the Fighting Back Against Fall Armyworm trainings learning to collect field data through the Fall Armyworm Monitor web app in a farmer’s field in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants and instructors of the Fighting Back Against Fall Armyworm trainings participate in a field session to work with the Fall Armyworm Monitor web app in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)
Participants and instructors of the Fighting Back Against Fall Armyworm trainings participate in a field session to work with the Fall Armyworm Monitor web app in Chauadanga, Bangladesh. (Photo: Uttam Kumar/CIMMYT)

Equipped to fight the pest

Extension staff and farmers gained valuable insights into different methods of control, including management of small and large patches of insect attack.

“I learned to identify fall armyworms in my field — and how to use hand picking methods and appropriate application of insecticide for control,” said Hasan Ali.

Farmers also learned how to set up pheromone traps to monitor pest populations and to use smartphones to make data-driven integrated pest management decisions using a cloud-based monitoring platform.

Crowdsourced information on the movement of fall armyworm is essential for effectively monitoring its spread and is a pivotal step in its management, said CIMMYT Senior Scientist and Systems Agronomist Timothy Krupnik.

“Farmers in top maize growing regions are working with extension officers to monitor traps and report findings weekly by entering data into smartphones,” Krupnik said.

Pheromones are natural compounds emitted by female moths to attract males for mating. Synthetic compounds that mimic natural fall armyworm pheromones are placed in traps to lure and capture male moths, after which extension agents count moths, enter, and upload data in their districts. At the time of writing, 649 staff from the Department of Agricultural Extension are reporting weekly moth count and pest damage data.

“Pest management practices are best when they are data-driven,” Krupnik explained. “Having information on the geographical location, plant growth stage and severity of infestation provides an informed base from which appropriate decisions can be made, with the ultimate goal of reducing pesticide misuse.”

“We are also excited as the data are open-access, and we are working to share them with FAO and other partners crucial in fall armyworm response,” he added.

The Fall Armyworm Monitor gives moth count and other data at the division, district and upazilla levels. (Photo: CIMMYT)
The Fall Armyworm Monitor gives moth count and other data at the division, district and upazilla levels. (Photo: CIMMYT)

Data for better decisions

“The website hosts real-time data and depicts them graphically and in maps depending on user’s preferences. This information — which was core to the training extension agents participated in — is key for integrated pest management strategies,” explained Mutasim Billah, CIMMYT Data Specialist and the lead developer of the application.

“The department of extension services have employed 253 officers to visit fields with handheld smart devices in 25 districts to upload data,” said Billah. “The online tool stores data entries in its server and calculates the aggregated value for division, district and sub-district level on a weekly basis, and shows the estimated values through charts and in tabular format.”

The Fall Armyworm Monitor has become an essential tool for government officials to aid farmers in managing the pest which so far has been successful, said Bijoy Krishna Halder, additional Deputy Director of Plant Protection with the Bangladesh government.

“CIMMYT’s web portal is a very efficient way to collect data from the field. Anyone can access the page to see the overall condition of infestation across the country,”said Krishna Halder. “I check the portal every week about the fall armyworm condition and now it shows that the infestation is low with the overall field conditions good.”

The pest native to the Americas has become a global menace as it has spread attacking crops through Africa, and Asia, threatening the food and economic security of smallholder farmers.

Visit the Bangladesh Fall Armyworm Monitor.

The Fall Armyworm Monitor was created as part of the new Fighting Back Against Fall Armyworm in Bangladesh project is aligned with Michigan State University’s Borlaug Higher Education for Agricultural Research and Development (BHEARD) program, which supports the long-term training of agricultural researchers in USAID’s Feed the Future priority countries.

Systems thinking at work in South Asia’s food production

A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)

In 2009, state governments in Northwest India implemented a policy designed to reduce groundwater extraction by prohibiting the usual practice of planting rice in May and moving it to June, nearer the start of monsoon rains.

Although the policy did succeed in alleviating pressure on groundwater, it also had the unexpected effect of worsening already severe air pollution. The reason for this, according to a recent study published in Nature Sustainability, is that the delay in rice planting narrowed the window between rice harvest and sowing of the subsequent crop — mainly wheat — leaving farmers little time to remove rice straw from the field and compelling them to burn it instead.

Even though burning crop residues is prohibited in India, uncertainty about the implementation of government policy and a perceived lack of alternatives have perpetuated the practice in Haryana and Punjab states, near the nation’s capital, New Delhi, where air pollution poses a major health threat.

Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Land preparation on a rice field with a two-wheel tractor. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer uses a tractor fitted with a Happy Seeder. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
A farmer checks the drip irrigation system at his rice field in India. (Photo: Hamish John Appleby/IWMI)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
Wheat crop in conservation agriculture. (Photo: Vedachalam Dakshinamurthy/CIMMYT)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress - Dreamstime.com; Image 11205929)
A farmer ploughs a rice field with a water buffalo. (Photo: Licensed from Digitalpress – Dreamstime.com; Image 11205929)

Decades of research for development have enabled researchers at the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR) and other partners to identify potential solutions to this problem.

One particularly viable option focuses on the practice of zero tillage, in which wheat seed is sown immediately after rice harvest through the rice straw directly into untilled soil with a single tractor pass.

In a new blog published as part of the Chicago Council on Global Affairs’ Field Notes series, CIMMYT scientists Hans Braun and Bruno Gerard discuss the combination of agronomic and breeding conditions required to make zero tillage work, and propose a fundamental shift away from current incentives to maximize the region®s cereal production.

Read the full article:
Field Notes – Systems thinking at work in South Asia’s food production

Four ways of strengthening gender equality in the agricultural sector in the MENA region

When it comes to labor markets, the Middle East and North Africa (MENA) is one of the most gender unequal regions in the world. The male labor force participation rate in MENA is no different from other regions, at around 75%, but female labor force participation rates have remained stubbornly low, at around 20% .

Agriculture is the largest employer of women in the MENA region and the female share of the agricultural workforce increased from 30% in 1980 to almost 45% in 2010, exceeding 60% in Jordan, Libya, Syria and the occupied Palestinian Territory. However, women in the region still face significant challenges accessing land and benefitting from technologies and decent, equitable working conditions.

In the fall of 2019, a group of experts, including London School of Economics and Political Science (LSE) professor of Gender and Development Naila Kabeer, came together to discuss the persistent limited access to labor market opportunities for women in South Asia and MENA, despite an increase in women’s education and access to fertility planning. The workshop organized by LSE discussed barriers, opportunities and policy challenges.

Vegetable gardening in Tunisia. (Photo: ICARDA)
Vegetable gardening in Tunisia. (Photo: ICARDA)

We share some of the expert panel’s key recommendations for the MENA region, which featured research funded by the CGIAR Research Program on Wheat.

1. Recognize women as workers not helpers

According to the World Bank, agriculture employs 36% of women and 22% of men in Egypt. However, research shows that women who work in agriculture are widely categorized as “helpers” to male workers rather than workers in their own right. What’s more, women are listed as “housewives” on their national ID cards, while men are listed as “agricultural workers.” As a result, these women are unable to even access opportunities to bargain for better wages and working conditions.

Legally and socially recognizing these women as workers is a first step to introducing equal pay legislation for men and women in agriculture. It would also justify their inclusion in agricultural extension services and strengthen social protection measures.

2. Change perceptions of property ownership

The MENA region has the lowest level of women’s landownership in the world, at just 5%. Our research findings indicate completely different perceptions of ownership among women and men.

Research in Egypt shows that women tend to identify land officially owned solely by themselves as belonging to themselves and their husbands. Men, on the other hand, are less likely to consider their wives as co-owners, identifying male relatives instead.

In the New Lands — lands irrigated after the building of the High Aswan Dam in Egypt — there are land distribution quotas to encourage more land ownership among women. This has enabled some women to gain significant economic, social and political power. Despite this, these women still prefer to bequeath their land to their sons rather than their daughters due to social pressure and the expectation that their sons will provide for them in their old age.

To mitigate these low levels of women’s land ownership, policy change on its own is not enough. Changing perceptions of land and property ownership needs to go hand in hand with changes at a policy level.

3. Enforce legislation for equal pay and zero tolerance for sexual harassment

In Morocco, female employment in agriculture has jumped from 29% in 1980 to 48% in 2010. However, women’s wages, working conditions and bargaining power have not risen with it.

Research shows that women are designated lower paid and more time-consuming tasks, and are systemically paid less than men, even for the same tasks. Women agricultural workers also face high levels of sexual harassment and have limited bargaining power.

Moroccan legislation already stipulates equal pay and zero tolerance for sexual harassment. However, enforcement remains extremely weak. Enforcing existing pro-active legislation is an essential step towards equality for women in agriculture.

4. Revitalize agriculture as a valuable and necessary occupation in society

Much of the world sees agriculture as an occupation of last resort. When surveyed, men and women in Morocco both complained about agricultural work being an unstable and unreliable way of making a living. Women were found to be hired more easily but only because they were paid less than men.

To shift how agriculture is viewed and rebrand it as an important and respected occupation, it needs to be reformed as a safer, more equal and respectful space for both women and men.

Building resilience for smallholder farmers in marginal drylands. (Photo: ICARDA)
Building resilience for smallholder farmers in marginal drylands. (Photo: ICARDA)

A key overall take-away message from the expert panel is that supportive policies alone are not enough. Rather, in order to tackle the institutionalization of harmful gender norms and stimulate actual change in practice at all levels, policy interventions need to go hand in hand with strong consciousness-raising, critical reflection and behavior change initiatives.

Read the full report:
Women’s access to market opportunities in South Asia and the Middle East & North Africa: barriers, opportunities and policy challenges

Explore our coverage of International Women’s Day 2020.
Explore our coverage of International Women’s Day 2020.

Moving out of poverty or staying poor

Farmer Dhansa Bhandari (left) sows maize seed while Bikram Daugi (right) ploughs with his oxen in Ramghat, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)
Farmer Dhansa Bhandari (left) sows maize seed while Bikram Daugi (right) ploughs with his oxen in Ramghat, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)

Although the conventional wisdom in South Asian rural villages is that men are principally responsible for pulling their families out of poverty, our recent study showed the truth to be more subtle, and more female.

In our new paper we dig into focus groups and individual life stories in a sample of 32 farming villages from five countries of South Asia. Although we asked about both men’s and women’s roles, focus groups of both sexes emphasized men in their responses — whether explaining how families escaped poverty or why they remained poor.

“Women usually cannot bring a big change, but they can assist their men in climbing up,” explains a member of the poor men’s focus group from Ismashal village (a pseudonym) of Pakistan’s Khyber Pakhtunkhwa province.

The focus group testimonies presented rich examples of the strong influence of gender norms: the social rules that dictate differential roles and conducts for men and women in their society. These norms significantly influenced how local people conceived of movements in and out of poverty in their village and in their own lives.

According to the women’s focus group from Rangpur district in Bangladesh, women “cannot work outside the home for fear of losing their reputation and respect.”

However, in these same communities, men’s and women’s productive roles proved far more variable in the mobility processes of their families than conveyed by the focus groups. We encountered many households with men making irregular or very limited contributions to family maintenance. This happens for a number of reasons, including men’s labor migration, disability, family conflict and separations, aging and death.

What’s more, when sharing their life stories in individual interviews, nearly every woman testified to her own persistent efforts to make a living, cover household expenses, deal with debts, and, when conditions allowed, provide a better life for their families. In fact, our life story sample captured 12 women who testified to making substantial contributions to moving their families out of poverty.

Movers and shakers

We were especially struck by how many of these women “movers” were employing innovative agricultural technologies and practices to expand their production and earnings.

“In 2015, using zero tillage machines I started maize farming, for which I had a great yield and large profit,” reports a 30-year-old woman and mother of two from Matipur, Bangladesh who brought her family out of poverty.

Another 30-year-old mover, a farmer and mother of two from the village of Thool in Nepal, attests to diversification and adoption of improved cultivation practices: “I got training on vegetable farming. In the beginning the agriculture office provided some vegetable seeds as well. And I began to grow vegetables along with cereal crops like wheat, paddy, maize, oats. [
] I learnt how to make soil rows.”

Among the women who got ahead, a large majority credited an important man in their life with flouting local customs and directly supporting them to innovate in their agricultural livelihoods and bring their families out of poverty.

Across the “mover” stories, women gained access to family resources which enabled them to step up their livelihood activities. For example, three quarters of the women “movers” spoke of husbands or brothers supporting them to pursue important goals in their lives.

Women’s most important relationship helping them to pursue goals in life: women "movers" (on left) versus "chronic poor" (right).
Women’s most important relationship helping them to pursue goals in life: women “movers” (on left) versus “chronic poor” (right).

Sufia, from a village in the Rajshahi district of Bangladesh, describes how she overcame great resistance from her husband to access a farm plot provided by her brother. The plot enabled Sufia to cultivate betel leaves and paddy rice, and with those profits and additional earnings from livestock activities, she purchased more land and diversified into eggplant, chilies and bitter gourd. Sufia’s husband had struggled to maintain the family and shortly after Sufia began to prosper, he suffered a stroke and required years of medical treatments before passing away.

When Sufia reflects on her life, she considers the most important relationship in her life to be with her brother. “Because of him I can now stand on my two feet.”

We also studied women and their families who did not move out of poverty. These “chronic poor” women rarely mentioned accessing innovations or garnering significant benefits from their livelihoods. In these life stories, we find far fewer testimonies about men who financially supported a wife or sister to help her pursue an important goal.

The restrictive normative climate in much of South Asia means that women’s capacity to enable change in their livelihoods is rarely recognized or encouraged by the wider community as a way for a poor family to prosper. Still, the life stories of these “movers” open a window onto the possibilities unlocked when women have opportunities to take on more equitable household roles and are able to access agricultural innovations.

The women movers, and the men who support them, provide insights into pathways of more equitable agricultural change. What we can learn from these experiences holds great potential for programs aiming to relax gender norms, catalyze agricultural innovation, and unlock faster transitions to gender equality and poverty reduction in the region. Nevertheless, challenging social norms can be risky and can result in backlash from family or other community members. To address this, collaborative research models offer promise. These approaches engage researchers and local women and men in action learning to build understanding of and support for inclusive agricultural change. Our research suggests that such interventions, which combine social, institutional and technical dimensions of agricultural innovation, can help diverse types of families to leave poverty behind.

Read the full study:
Gender Norms and Poverty Dynamics in 32 Villages of South Asia

Explore our coverage of International Women’s Day 2020.
Explore our coverage of International Women’s Day 2020.