Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

Intercropping

The Intercropping project aims to identify options for smallholder farmers to sustainably intensify wide-row crop production through the addition of short-duration, high-value intercrop species and to help farmers increase their productivity, profitability and nutrition security while mitigating against climate change.

The focus is on intensification of wide-row planted crops: dry (rabi) season maize in Bangladesh, eastern India (Bihar and West Bengal states) and Bhutan, and sugarcane in central north India (Uttar Pradesh state). The primary focus is to sustainably improve cropping system productivity, however, the effects of wide-row, additive intercropping at the smallholder farm level will be considered, including potential food and nutrition benefits for the household.

There are many potential benefits of wide-row, additive intercropping, beyond increased cropping system productivity and profitability: water-, labor- and energy-use efficiencies; improved nutrition and food security for rural households; empowerment for women; and (over the longer term) increased soil health.

Little research has been conducted to date into wide-row, additive intercropping (as distinct from traditional replacement intercropping) in South Asian agroecologies. To successfully and sustainably integrate wide-row, additive intercropping into farmers’ cropping systems a range of challenges must be resolved, including optimal agronomic management and crop geometry, household- and farm-scale implications, and potential off-farm bottlenecks.

This project aims to identify practical methods to overcome these challenges for farming households in Bangladesh, Bhutan and India. Focusing on existing wide-row field crop production systems, the project aims to enable farmers to increase their cropping system productivity sustainably and in a manner that requires relatively few additional inputs.

Project activities and expected outcomes:

  • Evaluating farming households’ initial perspectives on wide-row, additive intercropping.
  • Conducting on station replicated field trials into wide-row, additive intercropping, focusing on those aspects of agronomic research difficult or unethical to undertake on farms.
  • Conducting on farm replicated field trials into wide-row, additive intercropping.
  • Determining how wide-row, additive intercropping could empower women. Quantify the long-term benefits, risks and trade-offs of wide-row, additive intercropping.
  • Describing key value/supply chains for wide-row, additive intercropping. Determine pathways to scale research to maximize impact.
  • Quantifying changes in household dry season nutrition for households representative of key typologies in each agroecological zone.

Bridging research and policy: how CIMMYT’s science shapes practice in South Asia

Science without policy is just academia; policy without science is just guesswork. Through a blend of robust field research and policy advocacy, CIMMYT aims to bridge the gap between policy and practice in promoting sustainable agricultural practices through crop diversification in South Asia.

Taking Bangladesh as an example, CIMMYT’s work in the country highlights the critical need to link research with policy to achieve sustainable agricultural practices, enhance food security, and improve farmer livelihoods.

The power of research-informed policy

Bangladesh’s agriculture is highly rice-centric; although rational, this is risky and arguably unsustainable. This means there needs to be a focus on crop diversification, which is one of the approaches toward sustainable agriculture that can address socioeconomic and environmental challenges.

Recognizing these challenges, CIMMYT has been at the forefront of developing solutions by conducting extensive multi-location on-site and on-farm trials that consider the socioeconomic and pedoclimatic dimensions of farm households.

Additionally, CIMMYT analyzes historical policies and initiatives that have been implemented by the Bangladeshi government and international partners to promote crop diversification. Several opportunities for improvement were identified in past policies and project implementation; addressing these challenges requires bridging the gap between policies and research to scale up crop diversification efforts.

Through the RUPANTAR and CGIAR Transforming Agrifood Systems in South Asia (TAFSSA) projects, CIMMYT-Bangladesh has developed an analytical tool to understand the political economy of crop diversification policies and practices. When applied to agriculture policy research, this tool can be tailored to any country and policy context in South Asia.

Problem-solving for sustainable farming

Our policy-specific research, such as “Decoding the reality: Crop diversification and policy in Bangladesh”, has identified areas where policy and practical changes can drive significant improvements.

For example, while the government recognizes crop diversification in its agriculture policies starting with the Fifth Five-Year Plan, substantial funding for crop diversification efforts was only recently allocated. Integration of crop diversification into the government’s annual funding systems is essential to mainstream crop diversification in agriculture.

Many crop diversification policies and projects primarily focus on production, neglecting market systems development for new crops. Similarly, research suggests insufficient attention is paid to cold storage and other infrastructure needed to support diversification.

Most initiatives appear to have been project-driven, resulting in short-lived action without long-lasting impact. Insufficient coordination and support from government agencies appears to have affected projects led by both governments and development partners.

Stakeholder engagement spreads awareness

Without translating research into policy, we leave innovation on the shelf. CIMMYT-Bangladesh disseminates research findings to policymakers through the country Priority Investment Plan for the crop sector at the Bangladesh Agricultural Research Council (BARC), and South Asian Association for Regional Cooperation (SAARC) member countries through regional consultation workshops on accelerating the transformation process for sustainable and nutrition-sensitive food systems.

Looking ahead, CIMMYT’s efforts in South Asia remain dedicated to bridging the gap between research and policy. Ongoing projects aim to generate robust evidence, advocate for informed policy decisions, and foster partnerships across sectors. By continuing to lead in this space, CIMMYT strives to contribute to a more resilient agrifood system for South Asia.

Wheat breeding strategies for increased climate resilience

Wheat breeding strategies for increased climate resilience

With the challenges of climate change already affecting plant breeding, especially warmer days and warmer nights, the time to future proof the world’s food supply is now. In order to make the best-informed changes, scientists at CIMMYT ran simulations mimicking five scenarios that might play out over the next 70+ years.

The researchers used 3,652 breeding line records from six global nurseries administered by the International Wheat Improvement Network, which is coordinated by CIMMYT, and involves hundreds of partners and testing sites worldwide. Researchers ran the data through five different climate change scenarios, ranging from stable to severe.

Along with colleagues from Henan Agricultural University, Zhengzhou, China, ICARDA, and the Chinese Academy of Agricultural Sciences, CIMMYT scientists published their research in Nature Climate Change.

The results showed that less than one-third of wheat varieties adapted well to the warming the planet has already seen in the last 10 years. As temperatures increased in the simulation, researchers found a clear connection between rising temperatures and lower stability for a variety. As the global wheat-growing area becomes warmer and experiences more frequent heatwaves, breeding programs have to look beyond just yield optimization.

“Stability is key for breeding programs and farmers,” said co-lead author Matthew Reynolds, CIMMYT distinguished scientist and head of wheat physiology. “Knowing that a specific variety works well in a specific environment and produces an expected amount of yield allows farmers better plan their crop futures.”

“We performed the analysis from different perspectives, so that climate effects and appropriate adjustment suggestions for current breeding models can be considered from climate change, gene selection and/or gene–environment interaction perspectives,” said co-lead author Wei Xiong, CIMMYT Senior Scientist and Agricultural System Modeler.

The paradox of breeding elite lines

Local and regional breeding programs, as well as targeted breeding by CIMMYT, contribute to gene pools that overlap for many key agronomic traits, which limit genetic diversity.

“It is an unintended consequence,” said Reynolds. “As conventional breeding focuses on crossing the best and elite material, such focus can actually reduce genetic diversity.”

This ‘paradox’ shows the need to increase genetic variability and environmental diversification in breeding programs that are developing higher-yielding climate-resilient cultivars. Breeding programs also need to target traits associated with improved adaptation to increased temperatures and tolerance to heatwaves, which requires multidisciplinary integration.

Looking to the past for answers

Over the past 10,000 years, the climate has been unusually stable, meaning modern, domesticated bread wheat has not been exposed to wide swings in temperature that are forecast for the next 100 years. Wild wheat relatives, like Triticeae, have had millions of years of experience in weathering changing climates.

CIMMYT has a pre-breeding program that examines wild wheat races and more exotic sources for climate resilience traits. When such traits are identified genetically, new breeding techniques such as gene editing can be employed and breeding models refined.

To activate these new techniques, several barriers need to be overcome, including more sharing of germplasm between countries and breeding teams, the use of faster breeding cycles where appropriate and improved understanding of genes that improve heat tolerance without a yield penalty.

With reduced climate resilience and slow cultivar development, the need to increase genetic variability for climate adaptation is urgent, particularly in developing countries, where warming rate is unprecedented, and breeding cycles tend to be longer than in developed countries.

“Faced with more climate variability, breeders need to revisit their breeding strategies to integrate genetic diversity that confers climate resilience without penalties to productivity,” said Reynolds.

African, Chinese stakeholders convene in Kenya amid call to transform food systems

The Africa-China-CIMMYT Science Forum in Nairobi gathered experts from China and Africa to explore strategies for transforming agrifood systems through innovation and cooperation. Organized by CAAS and CIMMYT, the forum emphasized the importance of collaboration in addressing food security, rural poverty, and climate resilience in Africa. Key discussions focused on the benefits of technology transfer and research partnerships to support smallholder farmers and advance agricultural modernization across the continent.

Read the full story.

Linking sustainable agricultural methods

While agricultural food systems feed the world, they also account for nearly a third of the world’s greenhouse gas (GHG) emissions. Reducing the negative environmental footprint of agrifood systems while at the same time maintaining or increasing yields is one of the most important endeavors in the world’s efforts to combat climate change.

One promising mechanism is carbon credits, a set of sustainable agricultural practices designed to enhance the soil’s ability to capture carbon and decrease the amount of GHG’s released into the atmosphere.

Farmers generate these carbon credits based on their reduction of carbon released and then sell these credits in the voluntary carbon market, addressing the critical concern of sustainably transforming agricultural systems without harming farmers’ livelihoods.

Two is better than one

Conservation Agriculture (CA) is a system that involves minimum soil disturbance, crop residue retention, and crop diversification, among other agricultural practices. Its potential to mitigate threats from climate change while increasing yields has made it increasingly popular.

Using remote sensing data and surveys with farmers in the Indian states of Bihar and Punjab, four CIMMYT researchers quantified the effect on farmer’s incomes by combining CA methods with carbon credits. Their findings were published in the April 22, 2024, issue of Scientific Reports.

Previous CIMMYT research has shown that implementing three CA practices: efficient fertilizer use, zero-tillage, and improved rice-water management could achieve more than 50% of India’s potential GHG reductions, amounting to 85.5 million tons of CO2.

“Successfully implemented carbon credit projects could reward farmers when they adopt and continue CA practices,” said Adeeth Cariappa, lead author and environmental and resource economist at CIMMYT. “This creates a win–win scenario for all stakeholders, including farmers, carbon credit businesses, corporate customers, the government, and the entire economy.”

Farmers would enjoy an additional income source, private sectors would engage in employment-generating activities, the government would realize cost savings, and economic growth would be stimulated through the demand generated by these activities.

Less carbon and more income

The researchers found by adopting CA practices in wheat production season, farmers can reduce GHG emissions by 1.23 and 1.97 tons of CO2 per hectare of land in Bihar and Punjab States, respectively.

The researchers determined that CA practices, when combined with carbon credits, could boost farmer income by US $18 per hectare in Bihar and US $30 per hectare in Punjab. In Punjab, however, there is a ban on burning agricultural residue, which reduces potential earnings from carbon markets to US $16 per hectare.

“More farmers engaging CA methods is an overall positive for the environment,” said Cariappa. “But convincing individual farmers can be a struggle. By showing them that carbon credits are another potential source of income, along with increased yields, the case for CA is that much stronger.”

While the potential benefits are significant, there are challenges to linking CA and carbon credits.

“To achieve these potential benefits, carbon credit prices must rise, and projects must be carefully planned, designed, monitored, and implemented,” said Cariappa. “This includes selecting the right interventions and project areas, engaging with farmers effectively, and ensuring robust monitoring and implementation mechanisms.”

Eight-year study in India by CGIAR and ICAR scientists suggests adoption of Conservation Agriculture can boost yields and manage an increasing carbon footprint

Twenty-twenty four is set to become one of the hottest years on record. Warmer temperatures are destabilizing ecosystems, threatening human life, and weakening our food systems. On Earth Overshoot Day, CIMMYT calls for increased attention to the interplay between environmental health and efficient, abundant food production through sustainable practices.

Food systems are one of the top contributors to greenhouse gas (GHG) emissions, accounting for one-third of all human-caused GHG emissions. While contributing to climate change, food production is also sorely impacted by it, undermining agrarian livelihoods and the ability to feed an increasing global population. Extreme and unpredictable weather is causing economic hardship, food and nutrition insecurity, and use of environmentally harmful practices.

In the Western Indo-Gangetic Plains of India, rice and wheat are the dominant staple crops, grown yearly in rotations covering more than 13 million hectares. But conventional tillage-based methods have been unable to increase yields. Some of these traditional methods based on intensive tillage have harmed the soil, exhausted aquifers, and increased GHG emissions, without raising crop yields. CGIAR soil and climate scientists and agronomists have partnered to find solutions that help increase rice and wheat production, while minimizing harmful environmental effects.

One of the CA-based practice research fields at ICAR-CSSRI. (Photo: Nima Chodon/CIMMYT)

At CIMMYT, we interviewed a group of CGIAR scientists who recently published a long-term study on sustainable intensification in the Western Indo-Gangetic Plains. Their work, conducted at the Central Soil and Salinity Research Institute (ICAR-CSSRI) in Karnal, India, demonstrates how integrating Conservation Agriculture (CA)-based principles into cropping systems can support climate-resilient and sustainable food systems.

“Today, agriculture faces many challenges, such as increasing input costs to maintain yield in the face of climate change and ensuring the sustainability of agricultural land,” said Mahesh Gathala, senior scientist at CIMMYT.

He mentioned that the collaborative research spanned over eight years, covering various crops and cropping cycles, and studying seven scenarios representing different farming practices. One scenario was based on farmers’ existing practices, while the other six involved combining and integrating the agronomic management practices and crop diversification options based on CA principles. The team collected data on yield, profitability, soil health, global warming potential, and fertilizer use, to name critical factors.

Gathala highlighted, “The findings are consistent with our previous research conclusions, while reinforcing the significant compounding impact of Conservation Agriculture-based cropping practices in the region, in the long-run.”

According to M.L. Jat, a former CIMMYT scientist who is global director for ICRISAT’s Resilient Farm and Food Systems Program, the CA-based measures that emerged from this research are applicable in much of the Western Indo-Gangetic Plains and beyond.

“Most of our research trials over some 2-5 years have provided substantial evidence in favor of Conservation Agriculture-based cropping diversification and sustainable intensification,” Jat said. “However, this study is one of very few long-term, collaborative research trials that provide strong evidence for policy decisions on resilient, climate-smart cropping system optimization to boost yields and nutrition, while improving soil health and fighting climate change.”

Other lead authors of the publication, Timothy Krupnik, principal scientist at CIMMYT and CGIAR South Asia, and Tek Sapkota, the Climate Change Science lead at CIMMYT, provided further explanation of important lessons from this eight-year study.

Two CA-based practice research scenarios at ICAR-CSSRI. (Photo: Nima Chodon/CIMMYT)
How does CA contribute to the sustainable and conscious use of natural resources? In what ways could CA be framed to governments to develop policies that do a better job of feeding us nutritious food while contributing to climate change adaptation and mitigation?

Tek Sapkota: Conservation Agriculture promotes the production of nutritious, diversified crops, sustainable yield improvements, climate change adaptation, economic benefits, and environmental protection. Governments can support these initiatives through financial incentives, subsidies, investment in research and extension services, and the development of supporting infrastructure and market access. This support further enables farmers to implement and benefit from sustainable agricultural practices.

CIMMYT and CGIAR-led projects in South Asia, like CSISA/SRFSI/TAFFSA, have already recorded some wins for CA implementation. What are some immediate implications of this study on CIMMYT’s ability to deliver this knowledge to more smallholders in the region?

Timothy Krupnik: The ICAR-CIMMYT partnership establishes long-term experiments, or living labs, across diverse ecologies to build trust among smallholder farmers, extension workers, and stakeholders. These initiatives aim to demonstrate CA’s benefits, as part of sustainable intensification. The science-based evidence generated will be co-owned by partners, through their extension networks, and shared with farm communities to highlight CA’s advantages. Additionally, the study supports reducing carbon footprints, contributing to climate change mitigation and sustainable agricultural practices and potentially used by carbon market players to disseminate CA.

Apart from climate resilience, could you explain what are the economic benefits of diversification in the rice-wheat dominant systems?

Tek Sapkota: Diversifying away from rice-wheat cropping systems provides significant economic benefits beyond climate resilience. It enhances income stability, improves resource use efficiency, maintains soil health, reduces production costs (such as irrigation expenses and water usage), and opens up new market opportunities. Diversification contributes to the creation of more sustainable and profitable farming systems.

How can CGIAR and national agricultural research and extension systems promote more widespread adoption of these technologies by farmers in South Asia and beyond?

Tek Sapkota: By establishing a multi-stakeholder platform for learning, knowledge sharing, and developing adoption pathways, CGIAR Research Centers could work together with national partners to create programs that support capacity building and knowledge transfer. Another crucial step would be to collaboratively adapt and customize the technology to local production conditions ensuring smooth implementation at the grassroots level. Additionally, it is important to encourage innovations in policies, markets, institutions and financial mechanisms to facilitate scaling.

Read excerpts of the full journal article: Enhancing productivity, soil health, and reducing global warming potential through diverse conservation agriculture cropping systems in India’s Western Indo-Gangetic Plains

SKUAST-K Maize Improvement Programme: Transforming Challenges into Bountiful Harvests

The SKUAST-K Maize Improvement Programme, in collaboration with CIMMYT, is making significant advancements in maize agriculture in Jammu and Kashmir. By developing resilient maize varieties and leveraging cutting-edge research, the programme addresses key challenges such as poor soil nutrition and erratic rainfall. This partnership has not only enhanced maize productivity and climate resilience but also secured substantial funding and facilitated the release of landmark varieties, ultimately contributing to a sustainable maize-based economy in the region.

Read the full story.

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

CIMMYT scientists deliver training to improve agriculture in Uzbekistan

Scientists from the Research Institute of Plant Genetic Resources in Uzbekistan (RIPGR) attended training on gene bank management and genetic resources, coordinated by CIMMYT-TĂŒrkiye on 13-20 April 2024. Hosted at the Turkish Department of Agricultural Economics and Project Management (TAGEM), the training is supported by the World Bank Group, which is helping Uzbekistan to modernize the country’s agriculture. With one of the highest levels of wheat consumption in Central Asia, the modernization project aims to increase Uzbekistan’s wheat yield and meet demand for the crop.

The course included lectures on status and activity of the Turkish Seed Germplasm Bank (TSGB), policy instruments and international perspectives on plant genetic resources, herbarium techniques, biotechnology studies, and genetic resources. Uzbek scientists also became acquainted with scientific laboratories, visiting the field station in İkizce Gölbaßı and learned about the breeding, pathology, and agronomy activities at the station as well as the collaboration activities between CGIAR Research Centers and TAGEM.

Country-wide expertise

In addition to sessions at CIMMYT’s office in TĂŒrkiye, participants also visited the National Gene Bank in Ankara and the National Gene Bank of Izmir.

At the latter location, experts delivered sessions on a range of topics, such as the Plant Diversity and Genetic Resources Program of TĂŒrkiye; in vitro and cryopreservation techniques; the conservation, data recording, and documentation of plant genetic resources; conservation and utilization of vegetable genetic resources; conservation studies on mushroom genetic resources; studies on wheat genetic resources and wheat breeding at the international winter wheat breeding program; regional collaboration to combat wheat rust disease in Central and West Asia and North Africa (CWANA); and international winter wheat breeding strategies.

In addition to the seminar sessions, the participants also visited several locations to familiarize themselves with scientific processes in field and laboratory conditions. They visited the field gene banks, guided by Fatih Çağir, who provided brief information about the fruit genetic resources activities of TĂŒrkiye. They also visited the plant collection activities and herbarium techniques laboratory, the National Gene Bank, Herbarium, Fungarium & Seed Physiology Laboratory of the Plant Genetics Resources Department & Plant Tissue Center, and the Regional Cereal Rust Research Center.

The importance of the training course for Uzbek scientists is to study the system of rational use, conservation, and management of plant genetic resources of TĂŒrkiye and to introduce new innovative knowledge in Uzbekistan. It also consists of discussing aspects related to bilateral cooperation and sustainable development in the field of plant genetic resources as well gene bank management.

The delegation from Uzbekistan, on behalf of the Ministry of Agriculture of the Republic of Uzbekistan, and the director of the Research Institute of Plant Genetic Resources, Zafarjon Mashrapovich Ziyaev, expressed their deep gratitude to the organizers and departments for this training course.

Climate-proofing India’s daily bread: The race for resilient wheat

CIMMYT collaborates with Indian research institutions like IIWBR to develop climate-resilient wheat varieties, supplying essential genetic materials and leveraging global research initiatives, advanced breeding techniques, and technological tools. This partnership accelerates the creation and distribution of resilient crops, supporting local scientists and smallholder farmers through training, capacity-building programs, and knowledge sharing to ensure sustainable agriculture and enhanced food security in the face of climate change.

Read the full story.

A journey through Bangladesh’s ground-breaking agricultural practices

Bangladesh’s agricultural landscape is evolving rapidly, with initiatives focused on modernization, sustainability, and innovation. Projects supported by the United States Agency for International Development (USAID) are working to advance the country’s agriculture through stakeholder collaboration, enhancing productivity, improving mechanization, and embedding sustainable practices.

To explore the impact of this work, USAID officials and senior staff from CIMMYT embarked on a comprehensive tour across multiple project sites on 14 – 19 April 2024. The USAID delegation featured Zachary P. Stewart, production systems specialist from the Bureau for Resilience, Environment, and Food Security, and John Laborde and Muhammad Nuruzzaman from the USAID Bangladesh Mission. From CIMMYT, the team included Sieglinde Snapp, program director from the Sustainable Agrifood Systems Program, Timothy J. Krupnik, country representative for Bangladesh, and Owen Calvert, project leader for the Cereal Systems Initiative for South Asia-Mechanization Extension Activity (CSISA-MEA).

Visitors at Bangladesh Wheat and Maize Research Institute (BWMRI) lab, Dinajpur, Bangladesh. (Photo: Masud Rana/CIMMYT Bangladesh)

Pioneering agricultural technology

The team visited Dinajpur, Bangladesh to observe the progress of the Transforming Agrifood Systems in South Asia (TAFSSA) CGIAR Initiative, including creative efforts to raise agricultural output, support sustainable practices, and boost the area’s nutrition levels. The integrated strategy of TAFSSA, which combines inclusive community participation with socio-agronomic research, has enabled local farmers to increase revenue, diversify their crop production, and enhance yields. From the premium quality rice (PQR) value chain at the Bengal Auto Rice Mill to the sustainable intensification of mixed farming systems, the visit demonstrated TAFSSA’s dedication to building agricultural resilience and improving lives throughout Bangladesh.

In Faridpur, the team observed CSISA-MEA, a five-year project dedicated to supporting smart mechanization in Bangladesh. This included displays of innovative agricultural machinery, such as onion storage blowers, jute fiber separators, axial flow pumps, and combine harvester spare parts. Stakeholders from various sectors shared insights on how to improve machine service providers’ capacity to manage their businesses effectively.

Sholakundu, a village in Kanaipur Union, Faridpur Sadar, has embraced modern agricultural practices and diversified crop cultivation. This site showcased the impact of mechanized rice transplantation and integrated pest management (IPM) techniques, with the opportunity to observe a live demonstration of mat-type seedling raising for mechanized rice transplantation. Discussions revolved around the benefits of mechanization, IPM activities, and the village’s commitment to enhancing agricultural sustainability and productivity.

Climate-specific farming

The southern coastal region of Bangladesh has long suffered from problems including salinity, drought, waterlogging, and unpredictable weather.  Addressing these issues is the USAID-funded Sustainable Intensification Innovation Lab–Asian Mega Delta (SIIL-AMD) project, which encourages climate-resilient farming and better water management.

The initiative engages approximately 400 farmers in trials of improved agronomic techniques through the use of 14 Learning Hubs and the Cluster Farmer Field School (CFFS), aiming to increase output and assist local people in adjusting to the special conditions of the coastal polder zone.

“Bangladesh’s women farmers, especially those in this area and the coastal regions, are incredibly hardworking,” stated Zachary P. Stewart. “Even in the face of adverse weather conditions, their dedication has led to excellent crop yields. If provided with further training and allocated more time, these industrious women could take the lead in driving Bangladesh’s agricultural progress forward.”

Visitors at local machine manufacturing workshop in Jashore, Bangladesh. (Photo: Masud Rana/CIMMYT Bangladesh)

Systemic self-sufficiency

For reasons of development and sustainability, Bangladesh’s agriculture industry is focused on using locally made machinery and spare parts. As USAID personnel visited the SMR Agro Engineering Workshop and Foundry, situated in Jashore Sadar, they witnessed how support by CSISA-MEA has improved the agricultural mechanization market system. SMR Agro Engineering produces high-quality agricultural machinery and spare parts, increasing farmers’ productivity and decreasing labor intensity.

CSISA-MEA’s support has been significant in preparing new industrial layouts, raising labor skill levels, providing technical guidance, and facilitating financing. Moreover, through the development of business partnerships with lead companies, agriculture-based light engineering enterprises (ABLEs), and dealers, CSISA-MEA ensures a strong network that supports the widespread use of mechanized services. This collaborative effort marks a significant step towards enhancing rural livelihoods and achieving sustainable agricultural practices in Bangladesh.

Global research partnerships

In addition to visiting farmers’ fields, the team also attended the Bangladesh Agricultural Research Institute (BARI), the nation’s largest agricultural research center which focuses on improving crop yields, food security, and employment. The visitors explored the work in mechanization, IPM, and farm machinery, with a tour of BARI’s IPM and toxicology laboratories highlighting the organizations’ sustainable approach to pest management.

The final visit was to Ispahani Agro Limited (IAL), a leading bio-pesticide producer in Gazipur. IAL is at the forefront of bio-rational pest management, creating environmentally friendly, non-toxic inputs. CIMMYT’s assistance has been crucial for the company’s growth, with the tour covering production units, laboratories, and discussions on IAL’s business development.

Overall, the experience offered a comprehensive overview of collaborative activities between USAID, CIMMYT, and Bangladeshi stakeholders. From research and mechanization to bio-rational pest management, the combined efforts boost output and encourage sustainability and responsible environmental behavior.

As Bangladesh continues to embrace modern farming practices, partnerships and projects will play a pivotal role in defining how the country’s agricultural industry evolves into one that is economically viable and sustainable.

Heat tolerant maize: a solution for climate change-induced 360◩ water deficits

Seed company partners observe the performance of heat-tolerant hybrids in the dry heat of southern Karnataka, India. (Photo: CIMMYT)

Millions of smallholders in the Global South depend on maize, largely cultivated under rainfed conditions, for their own food security and livelihoods. Climate change mediated weather extremes, such as heat waves and frequent droughts, pose a major challenge to agricultural production, especially for rainfed crops like maize in the tropics.

“With both effects coming together under heat stress conditions, plants are surrounded, with no relief from the soil or the air,” said Pervez H. Zaidi, maize physiologist with CIMMYT’s Global Maize Program in Asia. “Climate change induced drought and heat stress results in a double-sided water deficit: supply-side drought due to depleted moisture in soils, and demand-side drought with decreased moisture in the surface air. “

Extreme weather events

Weather extremes have emerged as the major factor contributing to low productivity of the rainfed system in lowland tropics. South Asia is already experiencing soaring high temperatures (≄40◩C), at least 5◩C above the threshold limit for tropical maize and increased frequency of drought stress.

A woman agricultural officer discusses the performance of heat tolerant hybrids at farmers’ field in Raichur districts of Karnataka, India. (Photo: CIMMYT)

“In today’s warmer and drier climate, unless farmers have copious amounts of water (which might not be a sustainable choice for smallholders in the tropics) to not only meet the increased transpiration needs of the plants but also for increased evaporation to maintain necessary levels of humidity in the air, the climate change mediated weather extremes, such as heat and drought pose a major challenge to agricultural production, especially for rainfed crops like maize in lowland tropics,” said Zaidi.

To deal with emerging trends of unpredictable weather patterns with an increased number of warmer and drier days, new maize cultivars must combine high yield potential with tolerance to heat stress.

Maize designed to thrive in extreme weather conditions

CIMMYT’s Global Maize Program in South Asia, in partnership with public sector maize research institutes and private sector seed companies in the region, is implementing an intensive initiative for developing and deploying heat tolerant maize that combines high yield potential with resilience to heat and drought.

By integrating novel breeding and precision phenotyping tools and methods, new maize germplasm with enhanced levels of heat stress tolerance is being developed for lowland tropics. Over a decade of concerted efforts have resulted in over 50 elite heat stress tolerant, CIMMYT-derived maize hybrids licensed to public and private sector partners for varietal release, improved seed deployment, and scale-up.

Popular normal hybrids (left) & CAH153, a heat tolerant hybrid (right) under heat stress. (Photo: CIMMYT)

As of 2023, a total of 22 such high-yielding climate-adaptive maize (CAM) hybrids have been released by partners throughout South Asia. Through public-private partnerships, eight hybrids are being already deployed and scaled-up to over 100,000 hectares in Bangladesh, Bhutan, India, Nepal, and Pakistan. Also, the heat tolerant lines developed by CIMMYT in Asia were used by maize programs in sub-Saharan Africa for developing heat tolerant maize hybrids by crossing these as trait donors with their elite maize lines.

Studies on the new CAM hybrids show that while their yield is like existing normal maize hybrids under favorable conditions, the CAM hybrids outperform normal hybrids significantly under unfavorable weather conditions.

“The unique selling point of the new CAM hybrids is that they guarantee a minimum yield of at least 1.0 tons per hectare to smallholder farmers under unfavorable weather when most of the existing normal hybrids end-up with very poor yield,” said Subhas Raj Upadhyay, from the Lumbini Seed Company Ltd. in Nepal.

Given the superior performance of CAM seeds in stress conditions, Nepali farmers have expressed willingness to pay a premium price: an average of 71% more with government subsidy, or at least 19% extra without a subsidy for CAM seed. Similarly, the farmers in hot-dry areas of the Karnataka state of India are ready to pay 37% premium price for CAM seed compared to normal hybrid seed. These reports strongly validate the demand of CAM seed and therefore a targeted initiative is needed to accelerate deployment and scaling these seeds in climate-vulnerable marginal agroecologies in tropics.

CIMMYT and China join forces to tackle wheat disease in Africa

While wheat acreage has been increasing across the whole of Africa, the sub-Saharan countries account for a significant proportion of the total growth and yield, equaling an area of approximately 3.1 million hectares and a production of more than 9 million tons. However, in recent years, Fusarium head blight (FHB) or head scab has become a major disease in the region, causing significant reductions in yield and quality due to the lack of resistant varieties and management tools.

In China, a successful wheat shuttle breeding program by the Chinese Academy of Agricultural Sciences (CAAS) and CIMMYT for improving FHB has existed since the 1980s. Additionally, CIMMYT and the Jiangsu Academy of Agricultural Sciences (JAAS) have provided an FHB screening station in Nanjing since 2019. With a wealth of experience in confronting the disease, this ongoing partnership can help to solve the challenges currently faced by farmers in Africa.

To this end, CAAS, JAAS, and CIMMYT organized a training workshop on FHB management for Africa, which took place with financial support from China Aid in Beijing and Nanjing, China, between 10 and 23 April 2024. Twenty participants, 45% of which were women, attended the workshop, with specialists in wheat breeding, pathology, seed quarantine, and other related fields at public institutions in Ethiopia, Zambia, and Lesotho.

“This is the first time China has worked with an international organization to conduct an agricultural training workshop for sub-Saharan Africa,” said Zhonghu He, CIMMYT distinguished scientist and country liaison officer in China.

A hands-on demonstration at the Jiangsu Academy of Agricultural Sciences (JAAS) and CIMMYT Fusarium head blight (FHB) precision phenotyping platform helps scientists in Africa to better understand and fight the wheat disease. (Photo: Liu Xiyan/CAAS)

Practical tools to target FHB

Experts from China and CIMMYT shared their successful experiences of FHB management, including breeding resistant varieties. The trainees benefitted from hands-on experience of FHB identification, disease screening (including inoculum preparation, inoculation, and scoring), mycotoxin quantification techniques, and wheat breeding.

At the end of the workshop, the participants were extremely pleased to observe the impressive progress made in China on wheat FHB both on breeding and disease control, and they expressed strong willingness to contribute to collaboration between Africa, China, and CIMMYT on more wheat breeding and research. Netsanet Bacha Hei from the Ethiopian Institute of Agricultural Research (EIAR) was impressed with the scientific and technical expertise provided in the training and mentioned that sub-Saharan Africa needs similar practical trainings to mitigate the threat of FHB. Similar opinions were echoed by Doreen Malekano Chomba from the Zambian Plant Quarantine and Phytosanitary Service (PQPS), who discussed the need to have an effective in-country surveillance and monitoring to assess and manage FHB in the region.

Participants gather for the opening ceremony of the workshop at the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. (Photo: Li Simin/CAAS)

Xu Zhang, who heads the FHB research program at JAAS, is very appreciative of the collaborative work that has been going on for several decades between CIMMYT and China, highlighting that the workshop represents another step in understanding and managing FHB in sub-Saharan Africa and beyond, Zhang said, JAAS and CIMMYT has grown together through strong partnership.

“This training lays firm groundwork for future China-Africa-CIMMYT collaboration on mitigating the threat of FHB and improving wheat production and food security in sub-Saharan African countries,” said He.

Enhancing maize seed and feed security

Maize is the second most important cereal in Laos after rice, driven primarily by the demand for animal feed in neighboring countries such as China, Thailand, and Vietnam. Laos has an export-oriented maize sector, with most of the country’s production destined for these markets. The sector reached its peak in 2016, when production levels hit 6 metric tons per hectare across an area of 0.26 million hectares.

Over 90% of Laos’s maize production relies on rain-fed agriculture, with maize grain and stover serving as the primary source of feed for smallholder farmers who depend on mixed crop and livestock farming systems for their livelihoods. However, between 2016 and 2022, total maize area and production declined significantly, contracting by 64% and 70%, respectively. Several factors contributed to this decline, including volatile market prices, competition from cassava and other crops, rising production costs, and yield losses due to pests, diseases, and soil nutrient degradation because of monocropping.

Additionally, Laos relies on imported hybrid maize seed, primarily from Thailand and Vietnam, which creates a dependence on external suppliers and exposes farmers to price fluctuations. Recognizing the importance of improving maize productivity and sustainability, the Laotian government is taking steps to enhance local capacity for seed production and ensure access to affordable high-quality feed.

Enhancing local hybrid maize seed production  

Recognizing the importance of enhancing the availability and accessibility of quality maize seed and feed, CIMMYT and Laos’s National Agriculture and Forestry Research Institute (NAFRI) have initiated the evaluation of high-yielding maize hybrids for both grain and stover quality. In 2023, 12 yellow-kernel maize hybrids developed by the CIMMYT-Asia breeding program underwent evaluation in Laos. The same set of hybrids is undergoing evaluation in 2024 to identify stable and suitable germplasm. According to Siviengkhek Phommalath, director of the rice and cash crop research center at NAFRI, the 2023 evaluation provided promising results, with at least two hybrids performing better or on par with widely grown commercial ones in Laos. These hybrids exhibit high productivity, particularly in terms of grain and stover quality. However, further validation is planned for 2024, with the introduction of additional testing sites to assess performance across various environments.

Following thorough evaluations across multiple years and environments, the most suitable dual-purpose maize hybrids will be allocated to NAFRI by CIMMYT along with their parental lines, to kickstart local seed production. However, the capacity of national partners needs to be strengthened to initiate local hybrid maize seed production effectively, and this necessitates the integration and coordination of efforts among all stakeholders in the seed and feed value chains in Laos.

Capacity building across seed and feed value chains

In response to the need for capacity building in local hybrid seed production and ensuring a consistent supply of high-quality seed and feed to Laotian smallholder farmers, NAFRI has collaborated with CIMMYT under the CGIAR Sustainable Intensification of Mixed Farming Systems (SIMFS), Seed Equal, and Plant Health Initiatives to organize an international training workshop on enhancing access to quality maize seed and feed in the crop-livestock farming system of Lao PDR, which took place from May 7-9, 2024.

Workshop participants. (Photo: NAFRI)

The three-day interactive workshop, held in Vientiane, brought together 28 specialists from various organizations, including NAFRI, Souphanou Vong University, the Upland Agriculture Research Center (UARC), Provincial Agriculture and Forestry Offices (PAFO), as well as maize seed importers and grain traders from different provinces within the country.

The first day was dedicated to understanding the challenges and opportunities of the maize seed value chain. Participants were divided into three groups based on their practical backgrounds and invited to discuss challenges, stakeholder roles, and develop actionable recommendations for better coordination across value chains. This multi-stakeholder platform aimed to comprehend the challenges and opportunities of the crop-livestock farming nexus and integrate them into a more sustainable and productive system. It also served as a forum to promote synergistic partnerships among value-chain actors in enhancing local access to good quality seed and feed. The following days focused on various essential components of quality hybrid seed production, including understanding product profiles and market segments, realizing the economics of hybrid maize seed production, seed quality assurance, management of maize pests and diseases, and enhancing maize stover quality.

A collaborative approach

Workshop participants highlighted the challenges they face in acquiring maize seeds from external sources, citing inconsistent delivery times and limited availability of preferred varieties as factors that posed significant operational constraints. “The development of a competitive domestic maize seed system would ensure timely seed supply for farmers and save resources for the nation,” said Maisong Yodnuanchan, an agripreneur from Xiangkhouang province. His concerns resonated with fellow agripreneurs Bounmy Si and Teuang Sophapmixay, from Oudomxay and Hua Phan provinces, respectively, who both acknowledged the challenges associated with the current reliance on imported seeds and the potential benefits of a sustainable, locally produced seed supply.

CIMMYT and NAFRI open a workshop session. (Photo: NAFRI)

The training workshop offered valuable insights into addressing these concerns, providing a comprehensive overview of effective seed system development and the technical aspects of seed production applicable to a wide range of crops beyond maize. “This is the first ever training I received in my career and the knowledge gained will be directly applicable to my research activities at the UARC,” said researcher Malay Soukkhy. Recognizing the unique context of Laos compared to most of its neighboring countries with more established seed systems, AbduRahman Beshir, CIMMYT’s seed systems specialist for Asia and the lead trainer and facilitator for the workshop, emphasized the need for a collaborative approach to develop a custom solution for Laos. The workshop itself exemplified this collaborative spirit, incorporating a variety of engaging formats such as group discussions, lectures, assignments, and participant presentations. Subject matter specialists from CIMMYT offices in Nepal, India, and Kenya, as well as experts from Alliance Bioversity-CIAT and ILRI offices in Asia, shared valuable experiences applicable to Laos’s seed and feed systems.

Cementing partnerships

While addressing the participants, Timothy J. Krupnik, regional director for CIMMYT’s Sustainable Agrifood Systems Program in Asia, opened the workshop by acknowledging the invaluable support of NAFRI for organizing the event and collaborating under the CGIAR mixed farming initiative. He highlighted the imminent finalization of a Memorandum of Understanding (MoU) between CIMMYT and NAFRI, which will pave the way to further cement partnerships and establish a long term CIMMYT operations in Laos.

NAFRI’s Director General, Chanthakhone Bualaphan, presided over the workshop and emphasized the importance of continued collaboration between CIMMYT and NAFRI. Bualaphan requested CIMMYT’s continued focus on capacity building in Laos, encompassing both human resource development and institutional strengthening. She further highlighted the establishment of a specific target for domestic hybrid maize seed production, aligning with the government’s self-sufficiency goals.  To translate plans into action, Bualaphan emphasized the need for future training programs to be more action-oriented and practical. She concluded by reiterating NAFRI’s unwavering support for CIMMYT’s expanded activities in Laos, with the ultimate objective of significantly improving the livelihoods of Laotian farmers. The workshop culminated with the presentation of certificates to participants and the development of a collaborative follow-up plan for deploying well-tailored maize germplasm within the mixed farming system of Laos.