Skip to main content

Location: Asia

As a fast growing region with increasing challenges for smallholder farmers, Asia is a key target region for CIMMYT. CIMMYT’s work stretches from Central Asia to southern China and incorporates system-wide approaches to improve wheat and maize productivity and deliver quality seed to areas with high rates of child malnutrition. Activities involve national and regional local organizations to facilitate greater adoption of new technologies by farmers and benefit from close partnerships with farmer associations and agricultural extension agents.

CGIAR Initiative: Transforming Agrifood Systems in South Asia (TAFSSA)

Working across South Asia, the Transforming Agrifood Systems in South Asia (TAFSSA) Initiative will deliver a coordinated program of research and engagement across the food production to consumption continuum to improve equitable access to sustainable healthy diets, improve farmer livelihoods and resilience, and conserve land, air, and groundwater resources.

TAFSSA aims to propel evidence into impact through engagement with public and private partners across the production-to-consumption continuum, to achieve productive, environmentally-sound South Asian agrifood systems that support equitable access to sustainable healthy diets.

This objective will be achieved through:

  • Facilitating agrifood systems transformation through inclusive learning platforms, public data systems and partnerships: building new and enhancing existing learning platforms; improving the evidence base; increasing quality data availability and accessibility; and demonstrating the value of integrated agrifood systems datasets.
  • Transforming agroecosystems and rural economies to boost income, generate jobs and support diversified food production within environmental boundaries: generating linkages between farmers, landscapes and markets to diversify agricultural production, increase farmers’ incomes and foster rural entrepreneurship within environmental boundaries.
  • Improving access to and affordability of sustainably produced healthy foods through evidence and actions across the food system: creating favorable environments for diversification; improving access to inputs for and marketability of sustainable nutritious food; and improving access to healthy food for the poor through changes in food retail environments.
  • Understanding behavioral and structural determinants of sustainable healthy diets: studying dietary practices of food consumers; identifying determinants of food choices; and testing innovations to support consumption of sustainable healthy diets.
  • Building resilience and mitigating environmental impact: examining how South Asia can produce healthy diets within an environmentally safe and socially equitable operating space, and in consideration of ongoing climate change and farmers’ resilience to shocks.

Saiful AKM Islam

Saiful AKM Islam is a monitoring, evaluation and learning manager with the Innovation Science for Agroecosystems and Food Systems in Asia research theme in CIMMYT’s Sustainable Agrifood Systems (SAS) program. He has almost 18 years of experience with different organizations in the monitoring and evaluation field. He completed his master’s in social science from Dhaka University, Bangladesh, and post-graduation diploma in development planning.

Islam has a good understanding of monitoring and evaluation and knowledge management systems especially the United States Agency for International Development (USAID) system and compliances. Prior to beginning this position, he worked with the United Nations Development Program (UNDP) as a program specialist and Save the Children International as manager in research, monitoring and evaluation, and learning.

Masud Rana

Masud Rana is a Monitoring Evaluation and Learning Officer working with CIMMYT’s Sustainable Agrifood Systems (SAS) program based in Bangladesh. He is currently working for the Cereal Systems Initiatives for South Asia (CSISA) project.

Mustafa Kamal

Mustafa Kamal is a GIS and remote sensing analyst in CIMMYT, leading the GIS, remote sensing and data team in Bangladesh as part of the Sustainable Agrifood Systems (SAS) program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia.

Kamal’s core expertise is in earth observation and geospatial data science, scientific and cloud computing, webGIS, Unmanned Aerial Systems (UAS), advance landcover-landuse classification, and tool development. He contributes to research and innovation of irrigation and agro-meteorological advisory, crop identification and yield prediction, disaster and crop monitoring, landscape diversity, and climate analytics. He has published many peer-reviewed papers, reports, and training manuals, and provided teaching/training.

Kamal’s interdisciplinary background in urban and rural planning and disaster management helps him to integrate and lead an interdisciplinary team to provide solutions for sustainable agrifood systems.

Lokendra Khadka

Lokendra Khadka is a Research associate in the Sustainable Agrifood Systems (SAS) program in Nepal. He currently focuses on scaling inclusive and sustainable irrigation technologies in coordination with the public and private sector.

Lokendra’s research expertise expands from resource conservation technologies related to cereal based cropping systems to scale-appropriate farm mechanization and irrigation.

Sagar Kafle

Sagar has been working at CIMMYT-Nepal since December 2015, contributing to various projects. His main focus has been on the CSISA initiative, which aims to research and scale up resource-saving technologies within Nepal’s cereal systems. Through his work, he has developed expertise in technology scaling within cereal systems, developing market systems, and strengthening governance in the agricultural research and extension services sector. This is in part due to his strong understanding of local contextual factors that influence the adoption of sustainable intensification technologies, including mechanization.

Since 2024, Sagar has turned his attention to generating innovations, tools and scaling pathways in the mixed farming systems of the mid-hills of Nepal as part of the CGIAR Mixed Farming Systems (MFS) Initiative.

Khandakar Shafiqul Islam

Khandakar Shafiqul Islam is a hub coordinator with CIMMYT in Bangladesh. He is responsible for implementing different projects at field level involving government, non-government and private sector organizations, along with managing resources.

Md. Mizanur Rahman

Mizanur Rahman is a Monitoring, Evaluation, and Learning Officer with the Sustainable Agrifood System (SAS) program’s Innovation Sciences in Agroecosystems and Food Systems theme across Asia. His role involves developing and implementing logical and conceptual data flows for analytical processes supporting decision-making at the project and donor level. He has more than 18 years of progressive experience with 12 years in research, monitoring, and evaluation.

Washiq Faisal

Washiq Faisal is a Research Associate with CIMMYT’s sustainable intensification program, based in Bangladesh. He joined CIMMYT in 2014 and has been involved in applied agricultural research to tackle food insecurity through improved nutrient-rich, high-yielding varieties and sustainable agronomic practices for nearly 15 years.

Faisal is involved in innovative and multi-disciplinary research focused on the principles of sustainable and ecological intensification in smallholder dominated and tropical agricultural systems in Bangladesh. His current research focuses on climate-driven epidemiology of two crop diseases, Stemphylium blight of lentil and wheat leaf rust.

In collaboration with the Bangladesh Meteorological Department (BMD) and Bangladesh Department of Agricultural Extension, Faisal learnt how to use Agvisely, an agro-meteorological services tool providing location-specific advice to farmers.

The potential of conservation agriculture in increasing yield and tackling climate change

A multitude of research on the benefits of conservation agriculture in South Asia has predominantly focused on favorable environments where farmers have reliable access to energy supporting irrigation and inputs.

In this new publication, scientists from the International Maize and Wheat Improvement Center (CIMMYT) explore the performance of conservation agriculture in under-developed coastal environments in southern coastal Bangladesh over a period of three consecutive years, including under rainfed conditions and/or with limited application of irrigation.

Farmers calibrate their machines for strip tillage in communities participating in experiments. (Credit: Ranik Martin)

Responding to the identified research gap, this research tests the hypothesis that seasonally alternating tillage (SAT) practices that alternate between strip-tillage in the winter season for maize and conventional tillage (CT) prior to rice can reduce energy use, increase energy productivity, and reduce yield-scaled emissions while increasing or maintaining yield and profit, even under these challenging conditions.

Working with 35 farmers who managed experiments in partially irrigated and rainfed environments in southern coastal Bangladesh, researchers teamed up with farming communities to compare the full suite of conservation agriculture to SAT practices against CT and farmer’s own practices.

The research found that in these coastal environments, both conservation agriculture and SAT practices have the potential to increase cereal yields and energy productivity while reducing yield-scaled emissions, thereby enabling farmers even in challenging coastal environments to produce more while reducing energy use and mitigating greenhouse gas emissions.

However, in consideration of farmers’ aversion to the elimination of tillage in rice, the research suggests that adaptations in CA practices and seasonal tillage prior to rice may be a more practical fit for rice-maize systems managed by smallholders reluctant to eliminate tillage for rice in coastal Bangladesh.

This research gives implications for future research and development efforts to take into consideration farmers’ preferences or the trade-offs resulting from significant change to conservation agriculture management in otherwise fully tilled systems. It is also vital to integrate development efforts that focus not only on agronomic management, but also on building supportive value chains to improve availability and affordability of the inputs and farm machinery required to successfully establish crops with such practices.

Read the full study: Adapted Conservation Agriculture Practices Can Increase Energy Productivity and Lower Yield-Scaled Greenhouse Gas Emissions in Coastal Bangladesh

Cover photo: Long-term conservation agriculture in Rajshahi, Bangladesh. (Credit: CIMMYT/Sam Storr)

The power of data in improving conditions for female farmers

Despite women’s essential role in agrifood systems, their contribution can be overlooked, with resources instead targeted towards their male counterparts.

However, advancements in technology now allow scientists to generate rich datasets that can aid analysis of the situational factors impacting women farmers’ participation in extension training services.

These developments have enabled scientists from the International Maize and Wheat Improvement Center (CIMMYT), Michigan State University, and Agricultural Advisory Society, a local NGO, to understand barriers to access and recommend improvements that will benefit women in Bangladesh.

Using a large dataset of 131,073 farmers in Bangladesh, researchers worked to identify ways to tackle gender exclusion in extension training. Scientists used machine learning to understand preferences according to gender and applied optimization theory and identified actionable ways to increase the number of farmers participating in video- and multi-media mediated trainings, while simultaneously improving gender inclusivity in public training events.

The study discovered strong gender specific considerations, such as the training session’s day of the week and time and the gender of the trainer, which prevented women from or encouraged them to take part in educational events.

It also demonstrates the potential for big data to transform our understanding of unstructured and semi-structured data into statistically verifiable insights that can genuinely impact farmer’s lives. Optimizing women’s involvement in agrifood systems can additionally play an important part in efforts to enhance farm productivity, gender and social inclusion, and nutrition in Bangladesh and beyond.

Read the full study: Large-scale rollout of extension training in Bangladesh: Challenges and opportunities for gender-inclusive participation

Cover photo: Women in Bangladesh can benefit from improved inclusivity in extension training. (Credit: Sam Storr/CIMMYT)

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Afghan wheat landrace shows promise for rust resistance

Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.

Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.

In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.

Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.

Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.

Read the full study here: Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace “KU3067”

Cover photo: Yellow rust screening takes place at a CIMMYT experimental station in Mexico. (Credit: Sridhar Bhavani/CIMMYT)

New CIMMYT maize hybrid available from South Asian Tropical Breeding Program

How does CIMMYT’s improved maize get to the farmer?
How does CIMMYT’s improved maize get to the farmer?

CIMMYT is happy to announce a new, improved tropical maize hybrid that is now available for uptake by public and private sector partners, especially those interested in marketing or disseminating hybrid maize seed across rainfed tropics of South Asia and similar agro-ecologies. NARS and seed companies are hereby invited to apply for licenses to pursue national release and /or scale-up seed production and deliver these maize hybrids to farming communities.

Product Code CIM19SADT-01
Target agroecology Tropical, rainfed lowlands of South Asia
Key traits Medium maturing, single-cross hybrid; yellow, semi-dent kernels; high yielding; drought-tolerant; and resistant to TLB, FSR, and BLSB
Performance data Download the CIMMYT Asia Regional On-Station (Stage 4) and On-Farm (Stage 5) Trials: Results of the 2019 to 2021 Seasons and Product Announcement from Dataverse.
How to apply Visit CIMMYT’s maize product allocation page for details
Application deadline The deadline to submit applications to be considered during the first round of allocations is 26 Aug 2022. Applications received after that deadline will be considered during subsequent rounds of product allocations.

 

The newly available CIMMYT maize hybrid, CIM19SADT-01, was identified through rigorous trialing and a stage-gate advancement process which started in 2019 and culminated in the 2020 and 2021 South Asia Regional On-Farm Trials for our South Asian Drought Tolerance (SADT) and Drought + Waterlogging Tolerance (SAWLDT) maize breeding pipelines. The product was found to meet the stringent performance criteria for CIMMYT’s SADT pipeline. While there is variation between different products coming from the same pipeline, the SADT pipeline is designed around the product concept described below:

Product Profile Basic traits Nice-to-have / Emerging traits Target agroecologies
SADT (South Asian Drought Tolerance) Medium maturing, yellow, high yielding, drought tolerant, and resistant to TLB and FSR FER, BLSB, FAW Semi-arid, rainfed, lowland tropics of South Asia, and similar agroecologies
FER: Fusarium Ear Rot; BLSB: Banded Leaf and Sheath Blight; FAW: Fall Armyworm; TLB: Turcicum Leaf Blight; FSR: Fusarium Stalk Rot

 

Applications must be accompanied by a proposed commercialization plan for each product being requested. Applications may be submitted online via the CIMMYT Maize Licensing Portal and will be reviewed in accordance with CIMMYT’s Principles and Procedures for Acquisition and use of CIMMYT maize hybrids and OPVs for commercialization. Specific questions or issues faced with regard to the application process may be addressed to GMP-CIMMYT@cgiar.org with attention to Nicholas Davis, Program Manager, Global Maize Program, CIMMYT.

APPLY FOR A LICENSE

More than machines

Cooperative farmers receive training on operation of a mobile seed cleaner in Oromia, Ethiopia. (Credit: Dessalegn Molla/GIZ)

It’s a familiar problem in international agricultural development – a project with external funding and support has achieved impressive early results, but the money is running out, the time is growing short, and there’s not a clear plan in place to continue and extend the program’s success.

Over the past seven years, the German development agency Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) established Green Innovation Centers in 13 countries in Africa and two in Asia, partnering with the International Maize and Wheat Improvement Center (CIMMYT) to support projects that introduce mechanization in a way that improves long-term food security and prompts economic growth. Now, as the project enters its final two years of funding, GIZ and CIMMYT are focused on ensuring the gains produced by the Green Innovation Centers are not lost.

Like any complex challenge, there’s not just one solution to the sustainability problem – but CIMMYT is working to address a massive question around why pilots fail in agricultural development by implementing a systematic approach to scalability that recognizes the critical importance of context and puts projects on a sustainable path before the money is gone.

Training the trainers

As the Green Innovation Centers enter a crucial, final stage, a CIMMYT-led team recently completed training for seven GIZ staff from Ivory Coast, Togo, Ethiopia, and Zambia, who are now certified to facilitate CIMMYT’s Scaling Scan tool and train others to put agricultural innovations in their home countries on a solid path for growth. The training team included CIMMYT scaling advisor Lennart Woltering, CIMMYT mechanization support specialist Leon Jamann, and students from Germany’s University of Hohenheim and Weihenstephan-Triesdorf University.

The Scaling Scan is a practical tool that helps users set a defined growth ambition, analyze their readiness to scale using ten core ingredients, and identify specific areas that need attention in order to reach the scaling ambition.

The GIZ staff learned to use the Scaling Scan by applying it to early stage innovations in their home countries, ranging from commercial fodder production in the Southern Province of Zambia to seed value chains in the Oromia and Amhara regions of Ethiopia.

Mohammed, a farmer in Amhara, Ethiopia, with a fistful of wheat on his farm. (Credit: Mulugeta Gebrekidan/GIZ)

What will scale up in Ethiopia?

In Ethiopia, smallholding farmers producing legumes, wheat and maize struggle to increase their yield to a level that can improve food security, generate higher incomes for producers and their families, and promote economic growth and jobs in agricultural communities. To help smallholders develop sustainable solutions, GIZ senior advisor Molla Dessalegn worked with his Green Innovation Center team to brainstorm and launch a range of 20 proposed innovations – from risk mitigation and new contract structures to introduction of new technology – all with the aim of improving agricultural yields.

To date, these innovations have introduced over 200,000 Ethiopian smallholders to new knowledge and practices to improve their output. But with the project exit bearing down, Molla and his team were eager to identify which innovations held the most promise for survival and growth beyond the endpoint. So they put their pilot projects to the test using the Scaling Scan.

The scan involves an intensive, day-long seminar originally designed for in-person delivery, but remote versions have also proved successful as COVID limited global travel. The scan focuses on thorough analysis and scoring of the current state of a pilot project and its potential for growth given the realities of conditions on the ground.

Facilitators lead project managers through evaluation of the ten ingredients required for successful scaling, from finance and collaboration to technology, know-how, and public sector governance. The outcome is a clear data set assessing the scalability of the pilot and directing attention to specific areas where improvement is needed before a project can expect serious growth.

An unexpected outcome

What emerged from the scan surprised Molla. Some of the strategies he saw as most successful in the early stages, such as a contract farming program, scored poorly, whereas the scan identified deployment of mobile seed cleaners as a solution that held particular promise for scalability. These outcomes prompted the team to refocus efforts on this strategy.

About 95 percent of Ethiopian smallholders rely on informal seed systems, either saving and reusing seed or exchanging low quality seed with other farmers. Seed cleaning plays a critical role in helping farmers build a high quality, high yield seed development system. Molla and his team had already worked with smallholder cooperatives in Oromia to distribute three mobile seed cleaners, and they knew these machines were being heavily relied upon by farmers in this region.

The Scaling Scan showed them, among other things, that the successful adoption of the seed cleaners had even more potential – it was an innovation that could be sustained and even expanded by local stakeholders, including the Ministry of Agriculture.

This result prompted Molla to recommend investment in additional mobile seed cleaners – four to serve cooperatives in the Amhara region and a fifth for the West Arsi district in Oromia. These machines are now in operation and helping additional smallholders improve the quality of their seed stock. This initial expansion confirms the Scaling Scan results – and CIMMYT plans to continue supporting this growth with the purchase of another round of seed cleaners.

The Scaling Scan also identified problems with the business model for sustaining the mobile seed cleaners through cooperatives in Ethiopia, and this outcome directed the Green Innovation Centers to partner with a consultant to develop improvements in this area. In this way, one of the most important values of the scan is its ability to guide decision-making.

Scaling up the future

Seed cleaners alone won’t solve every yield problem for Ethiopian farmers, but the scan has now guided the initial implementation – and contextual adaptation – of a new form of agricultural mechanization across two regions of the country, with the promise of more to come.

And there’s more to come from the Scaling Scan as well.

Now that he’s received certification as a trainer, Molla plans to help farmers, officials, and other development workers adopt this rigorous approach to evaluating innovations that show potential. When funding for his project ends in 2024, he will be leaving 300,000 smallholders in Ethiopia with more than machines – he will be leaving them with the knowledge, experience, and practices to make the most of the technological solutions that are improving their yields today and building a more secure future for their communities.