Skip to main content

Location: Nepal

For more information, contact CIMMYT’s Nepal office.

Nepal’s seed sector partners join forces to realize the National Seed Vision 2013-2025

Access to affordable quality seed is one of the prerequisites to increase agricultural production and improve the livelihoods of Nepali farmers. However, there are significant challenges to boost Nepal’s seed industry and help sustainably feed a growing population.

Six years ago, Nepal launched its National Seed Vision 2013-2025. This strategic plan aims at fostering vibrant, resilient, market-oriented and inclusive seed systems in public-private partnership modalities, to boost crop productivity and enhance food security.

The Nepal Seed and Fertilizer (NSAF) project, led by the International Maize and Wheat Improvement Center (CIMMYT), is supporting the government to enhance national policies and guidelines, and private seed companies to build competitive seed businesses and hybrid seed production.

General view of a hybrid maize field from Lumbini Seed Company, a NSAF project partner, in Nepal’s Bhairahawa district. (Photo: Subhas Sapkota)
General view of a hybrid maize field from Lumbini Seed Company, a NSAF project partner, in Nepal’s Bhairahawa district. (Photo: Subhas Sapkota)

Quality seed can increase crop yield by 15-20%. However, there are critical challenges hindering the growth of Nepal’s seed industry. Existing seed replacement rate for major cereals is low, around 15%. About 85% of Nepali farmers are unable to access recently developed improved seeds — instead, they are cultivating decades-old varieties with low yield and low profits. Some of the factors limiting the development of seed systems are the high cost of seed production and processing, the limited reach of mechanization, and the low use of conservation agriculture practices.

The demand for hybrid seeds in Nepal is soaring but research in variety development is limited. Most of the country’s supply comes from imports.

In collaboration with the Nepal Agricultural Research Council (NARC), the NSAF project team is working with seed companies and cooperatives to scale hybrid seed production of maize, tomato and rice. Through this project, CIMMYT collaborated with the Seed Quality Control Center (SQCC) and national commodity programs of the NARC to draft the first hybrid seed production and certification guidelines for Nepal to help private seed companies produce and maintain standards of hybrid seeds.

Extension and promotion activities are essential to bring improved seed varieties to farmers. Standard labelling and packaging also needs to be strengthened.

Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, explained the importance of seed stakeholders’ collaboration to achieve the National Seed Vision targets. (Photo: Bandana Pradhan/CIMMYT)
Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, explained the importance of seed stakeholders’ collaboration to achieve the National Seed Vision targets. (Photo: Bandana Pradhan/CIMMYT)

A joint effort

CIMMYT and its partners organized a two-day workshop to review the progress of the National Seed Vision. The event attracted 111 participants from government institutions, private companies and development organizations engaged in crop variety development, seed research, seed production and dissemination activities.

In the opening remarks, Yubak Dhoj G.C., Secretary of Nepal’s Ministry of Agriculture and Livestock Development, addressed the seed sector scenario and its challenges. He stressed the importance of collaboration among seed stakeholders to meet the targets of the National Seed Vision in the next six years.

During the technical sessions, Madan Thapa, Chief of the SQCC, analyzed the current status of the National Seed Vision and highlighted the challenges as well as the opportunities to realize it.

Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) emphasized the importance of private sector engagement and other support areas to strengthen seed production and marketing of open-pollinated varieties and hybrids.

Seed systems specialist AbduRahman Beshir shares CIMMYT’s experiences in hybrid testing and seed business promotion in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Seed systems specialist AbduRahman Beshir shares CIMMYT’s experiences in hybrid testing and seed business promotion in Nepal. (Photo: Bandana Pradhan/CIMMYT)

Tara Bahadur Ghimire, Principal Scientist at NARC, gave an overview of the status of NARC varieties, source seed and resource allocation.

Dila Ram Bhandari, former Chief of SQCC, led a discussion around the assumptions and expectations that arose while developing the National Seed Vision.

Technical leads of maize, rice, wheat and vegetables presented a road map on hybrid variety development and seed production in line with the National Seed Vision’s targets for each crop.

“A large quantity of hybrid seeds, worth millions of dollars, is being imported into Nepal each year,” explained AbduRahman Beshir, Seed Systems Lead of CIMMYT’s NSAF project. “However, if stakeholders work together and strengthen the local seed system, there is a huge potential in Nepal not only to become self-sufficient but also to export good quality hybrid seeds in the foreseeable future. Under the NSAF project we are witnessing a few seed companies that have initiated hybrid seed production of maize and tomato.”

In one of the exercises, workshop participants were divided in groups and examined different topics related to the realization of the National Seed Vision. They looked at genetic resources, hybrid and open-pollinated variety development, source seed production and supply, private sector engagement and marketing, seed extension and varietal adoption by farmers, seed quality control services, and roles of research partners and other stakeholders. The groups presented some of the major challenges and opportunities related to these topics, as well as recommendations, which will be documented and shared.

The outcomes of this mid-term review workshop will inform policy and guide the discussions at the upcoming International Seed Conference to be held in early September 2019.

In one of the breakout sessions, a group discusses challenges and recommendation to improve private sector engagement. (Photo: Bandana Pradhan/CIMMYT)
In one of the breakout sessions, a group discusses challenges and recommendation to improve private sector engagement. (Photo: Bandana Pradhan/CIMMYT)

Regulating hybrid seed production

At the workshop, participants thoroughly discussed the draft hybrid seed production and certification guidelines, developed under the NSAF project.

The guidelines are the first of their kind in Nepal and essential to achieve the targets of the National Seed Vision, by engaging the private sector in hybrid seed production.

Hari Kumar Shrestha, CIMMYT’s Seed Systems Officer, and other seed experts from the SQCC presented the main features and regulatory implications of the guidelines.

After the workshop, the guidelines were sent to the National Seed Board for approval.

Climate Services for Resilient Development in South Asia (CSRD)

Climate Services for Resilient Development (CSRD) is a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries. Translating complex climate information into easy to understand actionable formats to spread awareness in the form of climate services is core to CSRD’s mission. CSRD works across South Asia (with emphasis on Bangladesh), the Horn of Africa (Ethiopia), and in South America (Colombia) to generate and provide timely and useful climate information, decision tools and services. In South Asia, CSRD focusses the development, supply and adaptation of agricultural climate services to reduce vulnerability by increasing resiliency in smallholder farming systems. These goals are strategically aligned with the Global Framework for Climate Services.

Project description

CSRD in South Asia aims to have the impact by increasing climate resilient farm management, indicated by increased use of climate services and climate information to inform farmers on how to better manage their production systems.  CSRD also aims to develop and validate models for agricultural climate services that can be replicated in other regions with similar farming systems and climate risks, while also fine-tuning weather and climate advisories to be most useful to farmers’ decision-making. A series of sustained contributions to CSRD’s Action and Learning Framework Pillars 1-4, detailed below, are envisioned as major project outcomes:

  • Pillar 1: Create the solution space:
    CSRD works to establish a problem-focus, to engage key stakeholders, to create a platform for sustained communication and collaboration, and to build synergies among relevant programs.
  • Pillar 2: Utilize quality data, products, and tools
    CSRD provides access to useful and available information and technology, and to develop tailored products and services responsive to problem-specific needs.
  • Pillar 3: Build capacities and platforms
    CSRD supports the use of targeted products and services, and to promote sustainability, scalability, and replicability.
  • Pillar 4: Build knowledge
    A key goal of CSRD’s work is to identify and promote good practices among the global climate services community and to support research efforts and innovation that increase the effectiveness of climate services.

Outputs

CSRD in South Asia will ultimately generate the following broad outputs and services:

Download the report summarizing CSRD activities, achievements, and challenges during the first year (from November 2016 through December 2017).

The CSRD consortium in South Asia is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Bangladesh Meteorological Department (BMD), Bangladesh Department of Agricultural Extension (DAE), Bangladesh Agricultural Research Council (BARC), Bangladesh Agricultural Research Institute (BARI), International Center for Integrated Mountain Development (ICIMOD), International Institute for Climate and Society (IRI), University de Passo Fundo (UPF), and the University of Rhode Island (URI). This consortium provides strength and technical expertise to develop relevant climate products that can assist farmers and other stakeholders with relevant information to improve decision making, with the ultimate goal of increasing resilience to climate-related risks. The CSRD consortium also works to assure that climate information can be conveyed in ways that are decision-relevant to farmers and other agricultural stakeholders.

As a public-private partnership, CSRD is supported by the United States Agency for International Development (USAID), UK AID, the UK Met Office, the Asian Development Bank (ADB), the Inter-American Development Bank (IDB), ESRI, Google, the American Red Cross, and the Skoll Global Threats Fund.

Precision spreader for fertilizer set to change the agriculture scene in Nepal

A man demonstrates the precision spreader to farmers in Bardiya, Nepal, in collaboration with the Janaekata cooperative and the local government. (Photo: Hari Prasad Acharya/CIMMYT)
A man demonstrates the precision spreader to farmers in Bardiya, Nepal, in collaboration with the Janaekata cooperative and the local government. (Photo: Hari Prasad Acharya/CIMMYT)

Smallholder farmers in Nepal tend to apply fertilizer by hand, spreading it as they walk through the field. Under this practice, fertilizer is dispersed randomly and is therefore unevenly distributed among all the seedlings. A recently introduced method, however, helps farmers spread fertilizer in a more uniform, faster and easier way.

The precision spreader is a hand-operated device that ensures an even distribution of fertilizer and is easy to operate. This technology is endorsed by the Cereal Systems Initiative for South Asia (CSISA), a project led by the International Maize and Wheat Improvement Center (CIMMYT) which helps Nepalese farmers adapt measures that are efficient, effective and resilient to the impacts of climate change.

In addition to more consistent distribution, the precision spreader regulates the exact amount of fertilizer required and helps the farmer cover a considerable area with limited movement. This technology has been proven to require less time and effort than the traditional method of broadcasting by hand.

Considering the potential benefits, the CSISA team introduced farmers in Nepal to the precision spreader through training sessions followed by demonstrations of its use. They took place in wheat fields in Bansgadhi, Barbardiya and Duduwa, in Lumbini province, in collaboration with multipurpose cooperative Janaekata and the local governments. Through these sessions, conducted in 45 different sites, more than 650 farmers had a chance to familiarize themselves with the precision spreader, and most of them took a keen interest in incorporating the device into their cropping management practices.

Perhaps the most prominent reason why the precision spreader sparked such interest is that women can easily use it. Most men in rural areas have migrated to the city or abroad in hopes of higher income, so work in the fields has been inadvertently transferred to women. Since Nepal is a predominantly conservative patriarchal society, women have not yet become comfortable and familiarized with all farming practices, especially operating heavy agricultural machinery. However, as expressed by women themselves, the precision spreader is highly convenient to use. Its use could help ease women into the agriculture scene of Nepal and consequently reduce farming drudgery.

A woman operates a precision spreader during a demonstration for a farmer group in Guleriya MCP, Bardiya, in coordination with the Suahaara nutrition project. (Photo: Salin Acharya/CIMMYT)
A woman operates a precision spreader during a demonstration for a farmer group in Guleriya MCP, Bardiya, in coordination with the Suahaara nutrition project. (Photo: Salin Acharya/CIMMYT)

Healthier crops, healthier people

Nestled between China and India, Nepal predominantly relies on agriculture for employment. With the majority of its population engaged in the agricultural sector, the country still struggles to produce an adequate food supply for its people, resulting in depressed rural economies, increased malnutrition and widespread hunger.

Sustainable intensification, therefore, is necessary to increase the overall yield and to accelerate agricultural development.

Better distribution of fertilizer in the fields results in a higher chance of healthier crops, which are the source of better nutrition.

A wider use of a seemingly small technology like the precision spreader would not only reduce hardships in farming, but it would also help farmers become more resilient towards the natural and economic adversities they face.

The Cereal Systems Initiative for South Asia (CSISA) is a regional project in Bangladesh, India and Nepal that was established in 2009 with the goal of benefiting more than 8 million farmers by the end of 2020. Funded by the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation, CSISA is led by the International Maize and Wheat Improvement Center (CIMMYT) and implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI).

Improved access to finance can boost seed business in Nepal

Finance is a key driver for agricultural development, as it allows farmers and agribusinesses to improve production efficiency and adopt improved technologies. In Nepal, most of the seed in the formal sector is produced by companies and cooperatives which, like any enterprise, need access to finance in order to grow and increase their capacity.

Nepal’s Agricultural Development Strategy 2015-2035 and National Seed Vision 2013-2025 are key policy documents of the government that provide a roadmap for the development of the agricultural and seed sectors in the country.

In 2017, realizing the need to increase investments in the agricultural sector, the central bank of Nepal, Nepal Rastra Bank, adopted the Priority Sector Lending Programme (PSLP). This program mandates banks and financial institutions to allocate 10% of their loan portfolio to the agricultural sector at a subsidized interest rate of 5%.

The Nepal Seed and Fertilizer (NSAF) project is providing an interface between banks and seed enterprises. Commercial banks are improving their knowledge of the seed sector, its needs and growth opportunities, so they can develop loan products and credit modalities that match the requirements of seed producers and agribusinesses.

These enterprises require finances to upgrade their infrastructure, increase production and grow their businesses. The business plans of seed companies which partner with the NSAF project indicate that the average size of loan required is around $50,000 — 60% for infrastructure development and 40% for working capital. About 66% of the working capital is used to procure raw seed from contract seed growers.

A farmer processes a loan through Laxmi Bank's branchless banking system in Kailali district, Nepal. (Photo: Suman Khanal/CIMMYT)
A farmer processes a loan through Laxmi Bank’s branchless banking system in Kailali district, Nepal. (Photo: Suman Khanal/CIMMYT)

Barriers to lending

Given the huge requirement for finance for seed procurement, access to loans through the PSLP can provide respite to seed companies. However, unlike in other commercial agribusiness, bank lending under the PSLP is uncommon in the seed business, as financial institutions lack understanding of the sector. Many seed companies have not been able to benefit from these loans due to perceived high risks or the lack of business plans and compliance mechanisms required by banks.

In 2018, the NSAF project team assessed the current status, challenges and opportunities in seed business financing through the PSLP. The project also facilitated a seed growers’ lending model through a tripartite agreement between Laxmi Bank Pvt. Limited, Panchashakti Seed Company and seed growers to access loans under PSLP.

On June 14, 2019, NSAF organized a meeting in collaboration with Seed Entrepreneurs Association of Nepal (SEAN) to present findings of their assessments and experiences. The meeting brought together representatives from the Ministry of Agriculture and Livestock Development, national financial institutions, private sector banks, seed companies, agricultural cooperatives and development organizations, who took part in the deliberations and also contributed to refining policy recommendations to enhance seed sector financing.

The assessments showed that PSLP awareness among farmers is low and seed growers borrowing from the informal sector were paying high interest rates, ranging from 24-36% per year. Lack of adequate business plans and compliance mechanisms for seed companies, limited eligibility criteria for PSLP, complex loan acquisition process and collateral issues were some of the factors that made funds largely inaccessible to smallholder farmers. Moreover, the terms and conditions for loan repayment stipulated by banks do not synchronize with the agricultural crop calendar and farm cash flows.

Navin Hada, AID Project Development Specialist at USAID, discusses the strategic measures to enhance access to seed business financing with relevant stakeholders. (Photo: Bandana Pradhan/CIMMYT)
Navin Hada, AID Project Development Specialist at USAID, discusses the strategic measures to enhance access to seed business financing with relevant stakeholders. (Photo: Bandana Pradhan/CIMMYT)

Tailor-made financing solutions

Participants in the meeting discussed ways to create a conducive environment to access financial services for agricultural producers and agribusinesses. Seed companies suggested to improve banks and financial institutions’ understanding of the agricultural markets and build their capacity to assess business opportunities. They also requested that banks simplify the documentation process for acquiring loans for farmers.

Participants from the Kisanka Lagi Unnat Biu-Bijan Karyakram (KUBK), a Nepal government project located in Rupandehi district Province 5, highlighted their model where farmers, organized into cooperatives, are linked to the Small Farmer Development Bank, which could be worth exploring in other sites.

Branchless banking promoted by NSAF is a workable strategy to provide financial services to seed growers in remote areas.

The action research also highlighted that innovative modalities, such as group guarantees, can be a feasible approach to mitigate risks to fund seed growers who do not have land registration certificates and whose land rights have not been transferred in their names. In the case of female producers, this is especially helpful, as many women are the lead decision-makers on the land registered under the name of their husbands, who are migrant workers abroad.

Utilizing the learning from this event, NSAF and SEAN will share the evidence-based policy recommendations with the Ministry of Agriculture and Livestock Development, the Ministry of Finance, the central bank and the Bankers’ Association of Nepal.

Through the NSAF project’s facilitation, banks have approved loans amounting to $2.5 million for business expansion of seven seed companies in 2018. The project will continue to support its seed partners in developing and strengthening their business plans and will facilitate linkages with commercial banks.

The Nepal Seed and Fertilizer project is funded by the United States Agency for International Development (USAID) and is a flagship project in Nepal. The objective of NSAF is to build competitive and synergistic seed and fertilizer systems for inclusive and sustainable growth in agricultural productivity, business development and income generation in Nepal.

Participants of the results sharing meeting on Access to Finance in Seed Sector in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Participants of the results sharing meeting on Access to Finance in Seed Sector in Nepal. (Photo: Bandana Pradhan/CIMMYT)

System uses plants to lure fall armyworm away from maize fields

Push-pull cropping system in maize. (Figure: CIMMYT)
Push-pull cropping system in maize. (Figure: CIMMYT)

Climate conditions in Nepal are suitable for the establishment of fall armyworm, which could cause considerable crop loss if not managed properly. The fall armyworm is a destructive pest that has a voracious appetite for maize and other crops. Through the Nepal Seed and Fertilizer (NSAF) project, the International Maize and Wheat Improvement Center (CIMMYT) is working with the government of Nepal and other partners to address this imminent threat.

Chemical control of fall armyworm is too expensive and impractical for small-scale farmers, has negative human health effects, and can be a source of soil pollutants with a negative effect on biodiversity.

CIMMYT is currently evaluating the efficacy of push-pull cropping systems to control fall armyworm. Considered one of the most climate-smart technologies, push-pull systems use plant-pest ecology instead of harmful chemical insecticides to control weeds and insects. It is an environmentally friendly pest control method which is also economically viable for maize producers.

Napier grass is planted by farmers to prevent soil erosion in Kenya's Tana River Basin. (Photo: Georgina Smith/CIAT)
Napier grass is planted by farmers to prevent soil erosion in Kenya’s Tana River Basin. (Photo: Georgina Smith/CIAT)

This system involves two types of crops: Napier grass (Pennisetum purpureum) and silverleaf desmodium legume (Desmodium uncinatum).

Desmodium plants are intercropped with the rows of maize and Napier grass surrounds the maize crop. Desmodium produces volatile chemicals that repel fall armyworm moths, while the Napier grass produces chemicals that attract female moths. The resulting push-pull system takes the pest away from the maize field.

An additional benefit is that desmodium improves nitrogen fertility through biological nitrogen fixation, which may reduce nitrogen input in the long-term. Desmodium also provides ground cover for maize, controlling soil erosion and offering protection from extreme heat conditions. Both desmodium and Napier grass are excellent fodder crops for livestock.

Desmodium uncinatum pods. (Photo: Harry Rose)
Desmodium uncinatum pods. (Photo: Harry Rose)

Because of all these reasons, push-pull technology is highly beneficial to smallholders who are dependent on locally available inputs for their subsistence farming. It can also have a positive spiral effect on the environment.

Scientists in other regions are also looking at agro-ecological options to manage fall armyworm.

Slow-release nitrogen fertilizers measure up

Maize, rice and wheat are the major staple crops in Nepal, but they are produced using a lot of fertilizer, which may become an environmental hazard if not completely used up in production. Unfortunately, most farmers apply fertilizers in an unbalanced way.

Urea is a common fertilizer used as a nitrogen source by Nepali farmers. If the time of application is not synchronized with crop uptake, the chances of losses through volatilization releasing ammonia and leaching are high, thereby creating environmental hazards in the atmosphere and downstream.

Through the Nepal Seed and Fertilizer (NSAF) project, the International Maize and Wheat Improvement Center (CIMMYT) is testing the application of environmentally friendly slow-release nitrogen fertilizer in maize production.

In particular, CIMMYT researchers examined the nutrient-use efficiency of briquetted urea and polymer-coated urea, also known as PCU.

Polymer-coated urea (left) and briquetted urea. (Photo: David Guerena/CIMMYT)
Polymer-coated urea (left) and briquetted urea. (Photo: David Guerena/CIMMYT)

Using regular urea, the efficiency of nitrogen use in maize is limited to 17 kg of grain per kg of nitrogen. Using briquetted urea and polymer-coated urea, efficiency increased to 24 and 28 kg of grain per kg of nitrogen respectively. A higher efficiency also suggests a reduction in losses to the environment.

Overall, results show that briquetted urea and polymer-coated urea can allow reduced nitrogen inputs by as much as 30-40% while maintaining the same yield levels achieved using current government fertilizer recommendations.

Similar to the maize trials, the application of slow-release nitrogen at a lower amount than the recommended rate in wheat showed similar agronomic results to the application of traditional urea at higher rates. Reduced losses allowed 40-50% less nitrogen fertilizer application but maintained the same yield levels as the current recommendation.

A trial field to evaluate the performance of briquetted urea and polymer-coated urea on wheat, in Kailali district, Nepal. (Photo: Uttam Kuwar/CIMMYT)
A trial field to evaluate the performance of briquetted urea and polymer-coated urea on wheat, in Kailali district, Nepal. (Photo: Uttam Kuwar/CIMMYT)

Although the cost of polymer-coated urea is comparatively expensive in the market unless subsidized, farmers applying briquetted urea save money and labor and can obtain 54% more profits.

“Briquetted urea is easy to use compared with traditional urea application, since its one-time application method saves labor. Moreover the yield performance is better,” said Devi Sara Thapa, a farmer from Surkhet district.

Climate change is affecting the yield of crops due to increased exposure to higher temperature, water stress and delayed or reduced monsoons, all impacting farmers’ incomes. The NSAF project promotes early maturing crop varieties that are resilient to such climatic stresses and can yield a positive harvest. The project works with seed companies and Nepal’s Ministry of Agriculture, Livestock and Development to deploy stress resilient maize and rice varieties packaged with cost efficient and effective soil fertility management practices in the project areas.

Researchers are testing and promoting early and extra early maturing open-pollinated varieties that have tolerance to drought or water stress conditions. These varieties are found to yield up to 7.5 tons per hectare and are ready for harvest in less than 100 days. This allows farmers, particularly in the hills and mid hills, to have another crop in the growing season. Such varieties will enhance farmers’ productivity and ensure food security at times of stressful environmental conditions.

CIMMYT is sharing the benefits of adopting these technologies to farmers, cooperatives and ago-dealers, through field demonstrations and farmer field days.

Project staff and partners use seeds and fertilizers that are approved by the Government of Nepal and the United States Agency for International Development’s environmental regulations on pesticide use or support. The team is promoting seed varieties appropriate for specific agroecological conditions and applying best practices on the use and application of fertilizers and integrated soil fertility management.

Early maturing maize variety at a seed production site. (Photo: AbduRahmann Beshir/CIMMYT)
Early maturing maize variety at a seed production site. (Photo: AbduRahmann Beshir/CIMMYT)

The Nepal Seed and Fertilizer (NSAF) project, implemented by the  International Maize and Wheat Improvement Center (CIMMYT), aims to increase the availability of agriculture technologies to improve productivity in select value chains, including maize, rice, lentils, and high-value vegetables. Through the NSAF project, CIMMYT and its partners work to improve the capacity of the public and private sectors in their respective roles: to strengthen and develop commercial seed and fertilizer value chains and to develop markets systems to disseminate agricultural technologies throughout Nepal.

Looking forward, looking back

Participants in the five-year workshop for the SRFSI project in Kathmandu in May 2019 stand for a group shot. (Photo: CIMMYT)
Participants in the five-year workshop for the SRFSI project in Kathmandu in May 2019 stand for a group shot. (Photo: CIMMYT)

Over 50 stakeholders from the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project engaged in three days of reflection and planning in Kathmandu, Nepal, in early May 2019. Partners from four countries focused on identifying key learnings across a range of topics including value chains, business models, agricultural extension, capacity building, innovation platforms and policy convergence. After almost five years of project activities, there was naturally plenty of vibrant discussion.

The cross-cutting themes of gender and climate change were considered within each topic, to capture project outputs beyond participation and farm level impact. Discussions around gender confirmed the benefits of targeted women’s participation and ensuring that women’s availability was accommodated. Working within the SRFSI project, researchers have identified new business opportunities for women, with benefits for individuals and community groups. In terms of business models, it was highlighted that promoting gender-inclusive strategies for all partners, including the private sector, is necessary. Ensuring a wide range of partnership institutions, such as NGOs with women-centric programs, is also beneficial for reaching more women.

In the five-year SRFSI workshop, participants discussed research outputs and planned the year ahead. (Photo: CIMMYT)
In the five-year SRFSI workshop, participants discussed research outputs and planned the year ahead. (Photo: CIMMYT)

Conservation agriculture-based sustainable intensification techniques have been confirmed as contributing to climate-resilient farming systems, both in terms of mitigation and adaptation. Importantly, the project has demonstrated that these systems can be profitable, climate smart business models in the Eastern Gangetic Plains. They were also seen as fitting well with government plans and policies to address climate change, which was demonstrated by convergence with country and NGO programs that are focused on climate change adaptation.

In keeping with the recently approved no-cost extension of the SRFSI project until June 2020, the final sessions identified remaining research questions in each location and scaling component, and project partners nominated small research activities to fill these gaps. The final year of SRFSI is an excellent opportunity to capture valuable lessons and synthesise project outputs for maximum impact.

The Sustainable and Resilient Farming Systems Intensification Project is a collaboration between the International Maize and Wheat Improvement Center (CIMMYT) and the project funder, the Australian Centre for International Agricultural Research (ACIAR).

New role in Nepal is “a dream come true”

Cynthia Carmona will always remember the directive her supervisor gave to a researcher panicked by mounting paperwork: You go and work on the science. We’ll take care of the admin part.

“They already have their hands full with research and building partnership strategies. They shouldn’t have to be concerned about whether or not an invoice has been sent,” she says.

Growing up in the Mexican state of Sonora, Carmona was aware of the International Maize and Wheat Improvement Center’s (CIMMYT) Obregon experimental station from a young age. “It was an organization that I knew existed, but all I knew was that they worked on wheat.”

After studying international relations at Tecnológico de Monterrey in Mexico City, Carmona spent a couple of years working in government and the private sector but she remained on the look-out for global-facing opportunities. Drawn to the opportunity to work with donors, Carmona joined CIMMYT’s Project Management Unit (PMU) six years ago.

“When I first arrived it was more of a grant management unit and we were divided by grant cycle. One person would work on proposals, another on contracts and so on, so you didn’t really get to see the whole process from start to finish.”

The unit has evolved since then, and growing responsibility means that the team is now divided by specialty, from donor relations and resource mobilization to grant management and monitoring and evaluation. “The structure we have now definitely gives you a broader understanding of each project.”

Carmona stresses that even though PMU staff don’t work in the field or in laboratories, they do make significant contributions to project implementation by encouraging smoother processes, alleviating administrative problems and ‘speaking a common language’ between researchers and management. When she took on the role of grant management coordinator, she impressed upon her team the extent to which their action or inaction could affect the projects they support. “Making things happen was my favorite part of the role, and I saw my job as that of an ‘issue solver’.”

Carmona is currently based in Kathmandu, Nepal, where she is serving as interim project manager on CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) project.

“I’m very excited about this new opportunity. CSISA has always been a flagship project for CIMMYT, so when they invited me to help them it was like a dream come true.”

She first visited Nepal in December 2018, where she spent time shadowing the outgoing manager who provided her with an introduction to the country, the region and the project itself.

“It was like a two-week bootcamp. But even though it was intense, I didn’t feel overwhelmed.”

Working in PMU, Carmona explains, provides a solid background for project management and an understanding of how CIMMYT projects work, from start to finish, as well as how to communicate with funders and build shared knowledge by bringing people together, from scientists and researchers to program and service unit staff.

Besides learning about how a project is run on-the-ground, Carmona is most looking forward to gaining field experience while in Nepal. “Talking to farmers and project teams, listening to their experiences and witnessing CIMMYT’s work on-the-ground really gives you a sense of belonging and a connection to our mission.”

Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI)

The Eastern Gangetic Plains region of Bangladesh, India, and Nepal is home to the greatest concentration of rural poor in the world. This region is projected to be one of the areas most affected by climate change. Local farmers are already experiencing the impact of climate change: erratic monsoon rains, floods and other extreme weather events have affected agricultural production for the past decade. The region’s smallholder farming systems have low productivity, and yields are too variable to provide a solid foundation for food security. Inadequate access to irrigation, credit, inputs and extension systems limit capacity to adapt to climate change or invest in innovation. Furthermore, large-scale migration away from agricultural areas has led to labor shortages and increasing numbers of women in agriculture.

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project aims to reduce poverty in the Eastern Gangetic Plains by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women. CIMMYT, project partners and farmers are exploring Conservation Agriculture-based Sustainable Intensification (CASI) and efficient water management as foundations for increasing crop productivity and resilience. Technological changes are being complemented by research into institutional innovations that strengthen adaptive capacity and link farmers to markets and support services, enabling both women and men farmers to adapt and thrive in the face of climate and economic change.

In its current phase, the project team is identifying and closing capacity gaps so that stakeholders can scale CASI practices beyond the project lifespan. Priorities include crop diversification and rotation, reduced tillage using machinery, efficient water management practices, and integrated weed management practices. Women farmers are specifically targeted in the scaling project: it is intended that a third of participants will be women and that at least 25% of the households involved will be led by women.

The 9.7 million Australian dollar (US$7.2 million) SRFSI project is a collaboration between CIMMYT and the project funder, the Australian Centre for International Agricultural Research. More than 20 partner organizations include the Departments of Agriculture in the focus countries, the Bangladesh Agricultural Research Institute, the Indian Council for Agricultural Research, the Nepal Agricultural Research Council, Uttar Banga Krishi Vishwavidyalaya, Bihar Agricultural University, EcoDev Solutions, iDE, Agrevolution, Rangpur-Dinajpur Rural Services, JEEViKA, Sakhi Bihar, DreamWork Solutions, CSIRO and the Universities of Queensland and Western Australia.

OBJECTIVES

  • Understand farmer circumstances with respect to cropping systems, natural and economic resources base, livelihood strategies, and capacity to bear risk and undertake technological innovation
  • Develop with farmers more productive and sustainable technologies that are resilient to climate risks and profitable for smallholders
  • Catalyze, support and evaluate institutional and policy changes that establish an enabling environment for the adoption of high-impact technologies
  • Facilitate widespread adoption of sustainable, resilient and more profitable farming systems

 

Zero-tillage service provision is key to facilitating adoption.
Zero-tillage service provision is key to facilitating adoption.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT's SRSFI project.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT’s SRSFI project.
A zero-tillage multi-crop planter at work in West Bengal.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
CIMMYT's SRFSI team and the community walk through the fields during a field visit in Cooch Behar.
CIMMYT’s SRFSI team and the community walk through the fields during a field visit in Cooch Behar.

Hill Maize Research Project (HMRP)

The Hill Maize Research Project (HMRP), funded by the Swiss Agency for Development and Cooperation was initiated in 1999 with the objective of increasing the food security of farm families in the hills of Nepal by raising the productivity and sustainability of maize-based cropping systems. The HMRP went through three phases between 1999 and 2010, the fourth and final phase began in August 2010 and concluded in 2015. There are two key outcomes for the project.

First, farm households in the hills of Nepal, especially those belonging to women, poor and disadvantaged groups, have improved food security and income.

Second, the National Seed Board, the Nepal Agricultural Research Council and the Department of Agriculture enforce quality control in both public and private institutions.

OBJECTIVES

  • Farm households in the hills of Nepal, especially of poor and disadvantaged groups, have improved food security and income.
  • Available varieties and technologies are used
  • Poor and disadvantaged households have increased access to quality maize seed and proven technologies
  • Groups/cooperatives supply quality seeds at competitive market prices
  • Poor and disadvantaged maize producing households will have access to multiple agricultural interventions for enhanced productivity
  • The National Seed Board (NSB), NARC, and the DoA allow decentralization of the source seed production system
  • Public and private institutions obtain seed inspection mandate and license
  • CBSP/cooperatives manage supply of quality seed
  • The NSB and NARC consider HMRP’s experience in variety development, certification and release system

PRINCIPAL COORDINATOR

Nirmal Gadal

Improved Maize for Tropical Asia (IMTA)

The Improved Maize for Tropical Asia (IMTA) is employing modern maize breeding techniques to develop and deploy new, climate-resilient maize hybrids, including traits important for identified niche markets across tropical Asia.

Principal Coordinator: B.S. Vivek

Nepal Seed and Fertilizer Project (NSAF)

The Nepal Seed and Fertilizer (NSAF) project facilitates sustainable increases in Nepal’s national crop productivity, income and household-level food and nutrition security, across 20 districts, including five earthquake-affected districts.

Nepal’s agriculture is mostly small-scale and subsistence-oriented, characterized by a mix of crop and livestock farming. The agriculture sector represents about one-third of the country’s gross domestic product and employs 75 percent of the labor force.

Over half of Nepal’s farms operate on less than half a hectare, with the majority unable to produce enough to meet their household food requirements for the whole year. Combined with an increasing urban population, it will not be possible for the country to meet future food demand without increased agricultural productivity and competitiveness of domestic production.

Major cereal crops and vegetables currently have low yields, but there are significant prospects for increases through improved seed and soil fertility management practices. A large part of this yield gap results from a lack of knowledge, inadequate access to affordable improved technologies, extension services and markets due to weak public and private sector capacity to provide support services needed by small scale farmers.

NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective and efficient extension, including the use of digital and information and communications technologies. The project will specifically increase availability of technologies to improve productivity in cauliflower, lentils, maize, onions, rice and tomatoes. It will also build competitive seed and fertilizer systems that significantly expand seed production, marketing and distribution by enhancing the capacity of public and private sectors in seed and fertilizer value chains.

Agriculture development needs to be locally owned and led through inclusive business models involving women and disadvantaged groups and farmers institutions. There is a need to further the development of Nepal’s cereals, legumes and vegetable sector by:

  • Strengthening public-private coordination mechanisms
  • Developing market systems that are agile, resilient, and adaptive
  • Propelling agricultural growth through evidence-based policy change and harmonization.

Food security in Ukraine

Supplemental funds released in 2022 will be used to respond to the impact of the Ukraine war at the household level. CIMMYT and its partners will develop food security and resilient agriculture market systems, to advance the delivery of improved agriculture input management knowledge and technologies, application of best crop management practices, and development of local capacity to apply improved technologies.

The objective is to build resilience of smallholder farmers in four areas:

  • Protecting and sustaining crop production for strengthening local food production and consumption systems.
  • Supporting efficient agriculture supply chain.
  • Strengthening local cooperatives and micro, small- and medium-sized agribusiness enterprises.
  • Addressing the impact of global fertilizer shortages by exploring innovative products, novel application techniques and local market development.

Heat Stress Tolerant Maize for Asia (HTMA)

The Heat Stress Tolerant Maize (HTMA) for Asia project is a public-private alliance that targets resource-poor people and smallholder farmers in South Asia who face weather extremes and climate-change effects. HTMA aims to create stable income and food security for resource-poor maize farmers in South Asia through development and deployment of heat-resilient maize hybrids.

South Asian farmlands have been increasingly experiencing climate change-related weather extremes. If current trends persist until 2050, major crop yields and the food production capacity of South Asia will decrease significantly – by 17 percent for maize – due to climate change-induced heat and water stress.

In response, CIMMYT and partners are developing heat stress-resilient maize for Asia. The project leverages the germplasm base and technical expertise of CIMMYT in breeding for abiotic stress tolerance, coupled with the research capacity and expertise of partners.

OBJECTIVES

  • Future climate data obtained from the recent CIMP5 database, and future and current heat stress hot-spots in South Asia are mapped
  • Genome-wide association studies revealed multiple haplotypes significantly associated heat tolerance, including nine significant haplotype blocks (~200 kb) for grain yield explaining 4 to 12% phenotypic variation individually with the effect size varied up to 440 kg/ha.
  • A total of 17 first generation heat tolerant hybrids formally licenced to project partners for deployment and scale-out in their targeted geographies/market in stress-prone ecologies of South Asia
  • New base germplasm, including early generation lines and pedigree populations, with enhanced levels of heat tolerance shared with partners to use in their own breeding programs.
  • Over 130 maize researchers and technical staff from India, Nepal, Pakistan and Bangladesh, including 32 women and 99 men, were trained on various aspects of developing stress-resilient maize through four training course workshops organized under the project.
  • Strong phenotyping network for heat stress in South Asia, with well-equipped locations and trained representatives.

FUNDING INSTITUTIONS

  • United States Agency for International Development – Feed the Future

PRINCIPAL COORDINATOR

Pervez Haider Zaidi

 

Cereal Systems Initiative for South Asia (CSISA)

Intensive cereal cropping systems that include rice, wheat and/or maize are widespread throughout South Asia. These systems constitute the main economic activity in many rural areas and provide staple food for millions of people. The decrease in the rate of growth of cereal production, for both grain and residue, in South Asia is therefore of great concern. Simultaneously, issues of resource degradation, declining labor availability and climate variability pose steep challenges for achieving the goals of improving food security and rural livelihoods.

The Cereal Systems Initiative for South Asia (CSISA) was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

The project’s aim is to enhance the productivity of cereal-based cropping systems, increase farm incomes and reduce the environmental footprint of production through sustainable intensification technologies and management practices.

Operating in rural “innovation hubs” in Bangladesh, India and Nepal, CSISA complements regional and national efforts and involves public, civil society and private sector partners in the development and dissemination of improved cropping systems, resource-conserving management technologies, policies and markets. CSISA supports women farmers by ensuring their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills that can help them become informed and recognized decision makers in agriculture.

The project is led by CIMMYT with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

OBJECTIVES

  • Promote resource-conserving practices, technologies and services that increase yield with less water, labor and input costs
  • Impart new knowledge on cropping management practices, from applied research
  • Improve access to market information and enterprise development.
  • Strengthen policy analysis to remove constraints to the adoption of new technologies
  • Build strategic partnerships and capacity to help sustain and enhance the scale of benefits of improved cereal growth

Core research to impact themes within CSISA include:

  • Coping with climate extremes in rice-wheat cropping systems
  • Accelerating the emergence of mechanized solutions for sustainable intensification
  • Strengthening the foundations of agro-advisory and precision management through knowledge organization and data integration at scale
  • Increasing the capacity of partners to conduct participatory science and field reconnaissance to target and prioritize development interventions