Dipak Kafle
Dipak Kafle is a Business Development Analyst with CIMMYT’s Global Maize Program, based in Nepal.
For more information, contact CIMMYT’s Nepal office.
Dipak Kafle is a Business Development Analyst with CIMMYT’s Global Maize Program, based in Nepal.
Darbin Joshi is an Assistant Research Associate with CIMMYT’s Global Maize Program, based in Nepal.
Aashif Iqubal Khan is an Assistant Research Associate with CIMMYT’s Nepal Seed and Fertilizer Project, based in Nepal.
Nepalese and CIMMYT wheat scientists, working at the Nepal Agricultural Research Council (NARC) and the International Maize and Wheat Improvement Centre (CIMMYT) suspect new races of stripe and leaf rust infected the wheat crop in the Nepal hills and terai in the recent 2020 wheat season. This was reported after detailed survey and surveillance activities of rust diseases in the terai and hill regions were carried out during March and April, before the COVID-19 pandemic forced the cessation of many field activities.
Read more here:Â https://www.seedquest.com/news.php?type=news&id_article=117729&id_region=&id_category=&id_crop=
The use of small-scale mechanization in smallholder farming systems in South Asia has increased significantly in recent years. This development is a positive step towards agricultural transformation in the region. Small-scale mechanization is now seen as a viable option to address labor scarcity and offset the impact of male outmigration in rural areas, as well as other shortages that undermine agricultural productivity.
However, most existing farm mechanization technologies are either gender blind or gender neutral. This is often to the detriment of women farmers, who are increasingly taking on additional agricultural work in the absence of male laborers. Minimizing this gender disparity among smallholders has been a key concern for policymakers, but there is little empirical literature available on gender and farm mechanization.
A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) addresses this gap, using data from six districts in the highlands of Nepal to assess the impact of the gender of household heads on the adoption of mini-tillers â small machinery used to prepare and cultivate land before planting.
Their findings reveal that, when it comes to mini-tiller adoption, there is a significant gender gap. Compared to male-headed households, explain the authors, the rate of adoption is significantly lower among female-headed households. Moreover, they add, when male- and female-headed households have similar observed attributes, the mini-tiller adoption rate among the food insecure female-headed households is higher than in the food secure group.
The authors argue that this gender-differentiated mini-tiller adoption rate can be minimized in the first instance by increasing market access. Their findings suggest that farm mechanization policies and programs targeted specifically to female-headed households can also help reduce this adoption gap in Nepal and similar hill production agroecologies in South Asia, which will enhance the farm yield and profitability throughout the region.
Read the full article in Technology in Society:
Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression.
See more recent publications from CIMMYT researchers:
The Asia Regional Resilience to a Changing Climate (ARRCC) program is managed by the UK Met Office, supported by the World Bank and the UKâs Department for International Development (DFID). The four-year program, which started in 2018, aims to strengthen weather forecasting systems across Asia. The program will deliver new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.
Since 2019, as part of ARRCC, CIMMYT has been working with the Met Office and Cambridge University to pilot an early warning system to deliver wheat rust and blast disease predictions directly to farmersâ phones in Bangladesh and Nepal.
The system was first developed in Ethiopia. It uses weather information from the Met Office, the UKâs national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.
Phase I: 12-Month Pilot Phase
Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories in the first 12 months as part of a proof-of-concept modeling and pilot advisory extension phase focused on three critical diseases:
Phase II: Scaling-out wheat rust early warning advisories, introducing wheat blast forecasting and refinement model refinement
Subject to funding approval the second year of the project will lead to validation of the wheat rust early warnings, in which researchers compare predictions with on-the-ground survey results, increasingly supplemented with farmer response on the usefulness of the warnings facilitated by national research and extension partners. Researchers shall continue to introduce and scale-out improved early warning systems for wheat blast. Concomitantly, increasing the reach of the advice to progressively larger numbers of farmers while refining the models in the light of results. We anticipate that with sufficient funding, Phase II activities could reach up to 300,000 more farmers in Nepal and Bangladesh.
Phase III: Demonstrating that climate services can increase farmersâ resilience to crop diseases
As experience is gained and more data is accumulated from validation and scaling-out, researchers will refine and improve the precision of model predictions. They will also place emphasis on efforts to train partners and operationalize efficient communication and advisory dissemination channels using information communication technologies (ICTs) for extension agents and smallholders. Experience from Ethiopia indicates that these activities are essential in achieving ongoing sustainability of early warning systems at scale. Where sufficient investment can be garnered to support the third phase of activities, it is expected that an additional 350,000 farmers will receive disease management warnings and advisories in Nepal and Bangladesh, totaling 1 million farmers over a three-year period.
Objectives
Heterogeneity in soils, hydrology, climate, and rapid changes in rural economies including fluctuating prices, aging and declining labor forces, agricultural feminization, and uneven market access are among the many factors that constrain climate-smart agriculture (CSA) in South Asiaâs cereal-based farming systems.
Most previous research on CSA has employed manipulative experiments analyzing agronomic variables, or survey data from project-driven initiatives. However, this can obscure the identification of relevant factors limiting CSA, leading to inappropriate extension, policy, and inadequate institutional alignments to address and overcome limitations. Alternative big data approaches utilizing heterogeneous datasets remain insufficiently explored, though they can represent a powerful alternative source of technology and management practice performance information.
In partnership with national research systems and the private sector in Bangladesh, India and Nepal, Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA) is developing digital data collection systems to crowdsource, data-mine and interpret a wide variety of primary agronomic management and socioeconomic data from tens of thousands of smallholder rice and wheat farmers.
The project team analyzes these data by stacking them with spatially-explicit secondary environmental, climatic and remotely sensed data products, after which data mining and machine learning techniques are used to identify key factors contributing to patterns in yield, profitability, greenhouse gas emissions intensity and resilience.
These approaches however must be practical in order for them to be useful in agricultural development and policy. As such, the projectâs analytical results will be represented through interactive web-based dashboards, with gender-appropriate crop management advisories deployed through interactive voice recognition technologies to farmers in Bangladesh, India and Nepal at a large-scale. Big Data2 CSA is supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Flagship 2 on Climate-Smart Technologies and Practices.
Objectives
An early warning system set to deliver wheat disease predictions directly to farmersâ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.
Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.
Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.
Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.
âWheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant â and field to field â in tiny particles called spores,â said Hodson. âDisease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.â
âThe early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.â
The system was first developed in Ethiopia. It uses weather information from the Met Office, the UKâs national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.
Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.
âIn the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,â the wheat expert said.
âNext season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.â
CIMMYTâs strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.
âPartnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,â Krupnik said. âThe forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.â
Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.
The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.
Strong scientific partnership champions diversity to achieve common goals
The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.
âDiverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,â she said.
The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.
âThe framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,â said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.
Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia
While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmersâ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.
Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.
Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC programâs target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.
The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asiaâs vast wheat lands.
In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.
The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.
The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.
Three years ago, farmers in the country were combatting the threats of a destructive tomato pest, Tuta Absoluta, and are now battling their way to manage the attack of fall armyworm on maize fields across the country. Since the governmentâs Plant Quarantine and Pest Management Centre (PQPMC) declared the arrival of fall armyworm on August 2019, this pest is reported to have infested almost half the districts of Nepal and continues to spread further.
âI wasnât able to gather even half the yields I used to get from my maize field following the fall armyworm outbreak last year,â said Pavitra, a farmer from Sindhupalchowk district, Nepal.
The level of incidence and damage varies from place to place, but farmers have reported up to 80% crop loss in extreme cases. In Nepal, the fall armyworm has the potential to cause maize yield losses of 20-25%, which translates to the loss of more than half a million tons of the annual maize production â estimated at around $200 million. If the pest is left unrestrained, its impact will be huge for farmers and the economy.
This calls for a collective effort and broad mobilization to effectively manage fall armyworm and limit its spread across the country. Since the pest was expected to reach Nepal, partners have conducted workshops and community mobilization initiatives.
Experts at the International Maize and Wheat Improvement Center (CIMMYT) have been working with public and private partners before and after the arrival of the invasive pest in Nepal. The shared efforts have focused on creating awareness, disseminating appropriate technologies and management techniques, and strengthening the capacity of communities, institutions and governments.
The Ministry of Agriculture and Livestock Development has established a national taskforce to fight the pest. Most provinces have established similar taskforces that include researchers, agriculture extension agents, farmers and entrepreneur associations.
Gearing up to fight the very hungry caterpillar
In collaboration with national and provincial governments, CIMMYT has trained 426 agricultural professionals, including lead farmers, on how to identify and manage fall armyworm.
In February 2020, CIMMYT partnered with agricultural development directorates in two provinces to train 130 people on how to scout for fall armyworm and recommended solutions, based on integrated pest management principles.
In late 2019, CIMMYT engaged with the public and private sector through training workshops to disseminate proven practices to control the pest.
âBefore, I was unable to recognize the pest that had destroyed my maize field. The hands-on training has been very informative,â said Urmila Banjgayu, a lead farmer who participated in one of the trainings. âI am certain to share the knowledge and practices that I learned with other farmers in my locality. They need to know what to do and what not to.â
Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT staff is working closely with the Ministry of Agriculture and Livestock Development, the Nepal Agricultural Research Council (NARC), the PQPMC, provincial governments, and other USAID-funded projects and development partners in Nepal. Together, they have developed integrated pest management packages, informative factsheets and surveillance guidelines. CIMMYT researchers have shared experiences on pest management, surveillance and scouting techniques from other countries in Asia and Africa. They have also demonstrated digital tools that will help map the spread of the pest and build accurate interpretation for better management.
Fall armyworm awareness campaign
Farmers must learn how to identify and manage this pest. Bijaya Ghimire, a lead farmer from Kanchanpur district, had heard about fall armyworm from a nearby seed company and a few of his friends. He informed the Agriculture Knowledge Center about the symptoms he observed in his maize field, and verification of the larvae and damage confirmed the presence of fall armyworm. Luckily, Ghimire was able to control the pest before severe damage was done.
CIMMYT researchers collaborated with the Prime Minister Agricultural Modernization Project (PMAMP) to implement outreach campaigns in Banke district. This included a mobile information booth, local dissemination of audio messages, and distribution of posters and fact sheets about fall armyworm. The two-day campaign successfully raised awareness about the pest, reaching more than 1,000 farmers from four villages in maize growing areas.
Researchers also worked with Scientific Animations Without Borders (SAWBO) and adapted an educational video on how to identify and scout for fall armyworm in a field into Nepali. In collaboration with the PQPMC, the video was broadcast 42 times on three local TV channels, to an estimated audience of more than one million viewers in June 2019. The video has also received over 2,000 online views. The animated video is being shown to farmers using mobile phones and displayed on big screens during community events and workshops.
âSeamless collaboration is required among the major stakeholders in the country to collectively fight the pest,â said AbduRahman Beshir, CIMMYT seed systems lead for the NSAF project and member of the national fall armyworm taskforce. âThe potential impact of fall armyworm poses a fundamental challenge for smallholder farmers in Nepal. If unattended, it is going to be a food security issue and an equally daunting task to safeguard livelihoods.â
Dilli Bahadur K.C. is a project manager with CIMMYT’s Socioeconomics Program, based in Nepal. His work focuses primarily on agricultural project design and implementation, monitoring and evaluation, project impact assessment, agricultural marketing and value chain analysis.
Nepalâs National Seed Vision 2013-2025 identified the critical skills and knowledge gaps in the seed sector, across the value chain. Seed companies often struggle to find skilled human resources in hybrid product development, improved seed production technology and seed business management. One of the reasons is that graduates from agricultural universities might be missing on recent advancements in seed science and technology, required by the seed industry.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) have been collaborating with Agriculture and Forestry University (AFU) to review and update the existing curriculum on seed science and technology, for both undergraduate and postgraduate students. This work is part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) through the Feed the Future initiative.
Realizing the need to increase trained human resources in improved seed technologies, CIMMYT researchers held discussions with representatives from the Department of Agronomy at AFU, to begin revising the curriculum on seed science and technology. Developed four years ago, the current curriculum does not encompass emerging developments in the seed industry. These include, for example, research and product development initiated by local private seed companies engaged in hybrid seed production of various crops, who want to be more competitive in the existing market.
Each year, approximately 200 bachelorâs and 10 masterâs students graduate from AFU. In collaboration with CIMMYT, the university identified critical areas that need to be included in the existing curriculum and drafted new courses for endorsement by the academic council. AFU also developed short-term certificate and diploma courses in the subject of seed science and technology.
Shared knowledge
On November 20, 2019, CIMMYT, AFU and Catholic Relief Services (CRS) organized a consultation workshop with seed stakeholders from the public and private sectors, civil society and academia. Participants discussed emerging needs within Nepalâs seed industry and charted out how higher education can support demand, through a dynamic and responsive program.
Sabry G. Elias, professor at Oregon State University (OSU), discussed recent advances in seed science and technology, and how to improve productivity of smallholder farmers in Nepal. He is supporting the curriculum revision by taking relevant lessons from OSU and adapting them to Nepalâs context. Sabry shared the courses that are to be included in the new program and outlined the importance of linking graduate research with the challenges of the industry. He also stressed the importance of building innovation and the continuous evolution of academic programs.
Professors from AFU, Nepal Polytechnic Institute, Tribhuvan University, and several private colleges introduced the current courses in seed science and technology at their institutions. Santosh Marahatta, head of the Department of Agronomy at AFU, discussed the limitations of the current masterâs and doctoral degree programs, and proposed a draft curriculum with integrated courses across the seed value chain. J.P. Dutta, dean of the Faculty of Agriculture at AFU, shared plans to create a curriculum that would reflect advanced practices and experiences in seed science and technology.
Scientists and researchers from Nepal Agricultural Research Council (NARC) presented their activities and suggested key areas to address some of the challenges in the countryâs seed sector.
âOur aim is to strengthen local capacity to produce, multiply and manage adequate quality seeds that will help improve domestic seed production and seed self-sufficiency,â said Mitraraj Dawadi, a representative from the Seed Entrepreneurs Association of Nepal (SEAN). âTherefore, we encourage all graduates to get hands-on experience with private companies and become competent future scientists and researchers.â
AbduRahmann Beshir, Seed Systems Lead for the NSAF project at CIMMYT, shared this sentiment. According to him, most current graduates lack practical experience on hybrid seed development, inbred line maintenance and knowledge on the general requirements of a robust seed industry. âIt is important that universities can link their students to private seed companies and work together towards a common goal,â he explained. âThis human resource development drive is part of CIMMYTâs efforts to help Nepal on its journey to self-reliance.â
Although the conventional wisdom in South Asian rural villages is that men are principally responsible for pulling their families out of poverty, our recent study showed the truth to be more subtle, and more female.
In our new paper we dig into focus groups and individual life stories in a sample of 32 farming villages from five countries of South Asia. Although we asked about both menâs and womenâs roles, focus groups of both sexes emphasized men in their responses â whether explaining how families escaped poverty or why they remained poor.
âWomen usually cannot bring a big change, but they can assist their men in climbing up,â explains a member of the poor menâs focus group from Ismashal village (a pseudonym) of Pakistanâs Khyber Pakhtunkhwa province.
The focus group testimonies presented rich examples of the strong influence of gender norms: the social rules that dictate differential roles and conducts for men and women in their society. These norms significantly influenced how local people conceived of movements in and out of poverty in their village and in their own lives.
According to the womenâs focus group from Rangpur district in Bangladesh, women âcannot work outside the home for fear of losing their reputation and respect.â
However, in these same communities, menâs and womenâs productive roles proved far more variable in the mobility processes of their families than conveyed by the focus groups. We encountered many households with men making irregular or very limited contributions to family maintenance. This happens for a number of reasons, including menâs labor migration, disability, family conflict and separations, aging and death.
Whatâs more, when sharing their life stories in individual interviews, nearly every woman testified to her own persistent efforts to make a living, cover household expenses, deal with debts, and, when conditions allowed, provide a better life for their families. In fact, our life story sample captured 12 women who testified to making substantial contributions to moving their families out of poverty.
Movers and shakers
We were especially struck by how many of these women âmoversâ were employing innovative agricultural technologies and practices to expand their production and earnings.
âIn 2015, using zero tillage machines I started maize farming, for which I had a great yield and large profit,â reports a 30-year-old woman and mother of two from Matipur, Bangladesh who brought her family out of poverty.
Another 30-year-old mover, a farmer and mother of two from the village of Thool in Nepal, attests to diversification and adoption of improved cultivation practices: âI got training on vegetable farming. In the beginning the agriculture office provided some vegetable seeds as well. And I began to grow vegetables along with cereal crops like wheat, paddy, maize, oats. [âŠ] I learnt how to make soil rows.â
Among the women who got ahead, a large majority credited an important man in their life with flouting local customs and directly supporting them to innovate in their agricultural livelihoods and bring their families out of poverty.
Across the âmoverâ stories, women gained access to family resources which enabled them to step up their livelihood activities. For example, three quarters of the women âmoversâ spoke of husbands or brothers supporting them to pursue important goals in their lives.
Sufia, from a village in the Rajshahi district of Bangladesh, describes how she overcame great resistance from her husband to access a farm plot provided by her brother. The plot enabled Sufia to cultivate betel leaves and paddy rice, and with those profits and additional earnings from livestock activities, she purchased more land and diversified into eggplant, chilies and bitter gourd. Sufiaâs husband had struggled to maintain the family and shortly after Sufia began to prosper, he suffered a stroke and required years of medical treatments before passing away.
When Sufia reflects on her life, she considers the most important relationship in her life to be with her brother. âBecause of him I can now stand on my two feet.â
We also studied women and their families who did not move out of poverty. These âchronic poorâ women rarely mentioned accessing innovations or garnering significant benefits from their livelihoods. In these life stories, we find far fewer testimonies about men who financially supported a wife or sister to help her pursue an important goal.
The restrictive normative climate in much of South Asia means that womenâs capacity to enable change in their livelihoods is rarely recognized or encouraged by the wider community as a way for a poor family to prosper. Still, the life stories of these âmoversâ open a window onto the possibilities unlocked when women have opportunities to take on more equitable household roles and are able to access agricultural innovations.
The women movers, and the men who support them, provide insights into pathways of more equitable agricultural change. What we can learn from these experiences holds great potential for programs aiming to relax gender norms, catalyze agricultural innovation, and unlock faster transitions to gender equality and poverty reduction in the region. Nevertheless, challenging social norms can be risky and can result in backlash from family or other community members. To address this, collaborative research models offer promise. These approaches engage researchers and local women and men in action learning to build understanding of and support for inclusive agricultural change. Our research suggests that such interventions, which combine social, institutional and technical dimensions of agricultural innovation, can help diverse types of families to leave poverty behind.
Read the full study:
Gender Norms and Poverty Dynamics in 32 Villages of South Asia
In Nepal, it takes at least a year to collate the demand and supply of a required type and quantity of seed. A new digital seed information system is likely to change that, as it will enable all value chain actors to access information on seed demand and supply in real time. The information system is currently under development, as part of the Nepal Seed and Fertilizer (NSAF) project, funded by the United States Agency for International Development (USAID) and led by the International Maize and Wheat Improvement Center (CIMMYT).
In this system, a national database allows easy access to an online seed catalogue where characteristics and sources of all registered varieties are available. A balance sheet simultaneously gathers and shares real time information on seed demand and supply by all the stakeholders. The digital platform also helps to plan and monitor seed production and distribution over a period of time.
Challenges to seed accessÂ
Over 2,500 seed entrepreneurs engaged in production, processing and marketing of seeds in Nepal rely on public research centers to get early generation seeds of various crops, especially cereals, for subsequent seed multiplication.
âThe existing seed information system is cumbersome and the process of collecting information takes a minimum of one year before a seed company knows where to get the required amount and type of seed for multiplication,â said Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) and owner of a seed company in the far west of the country. Similarly, more than 700 rural municipalities and local units in Nepal require seeds to multiply under farmers cooperatives in their area.
One of the critical challenges farmers encounter around the world is timely access to quality seeds, due to unavailability of improved varieties, lack of information about them, and weak planning and supply management. Asmita Shrestha, a farmer in Surkhet district, has been involved in maize farming for the last 20 years. She is unaware of the availability of different types of maize that can be productive in the mid-hill region and therefore loses the opportunity to sow improved maize seeds and produce better harvests.
In Sindhupalchowk district, seed producer Ambika Thapa works in a cooperative and produces hybrid tomato seeds. Her problem is getting access to the right market that can provide a good profit for her efforts. A kilogram of hybrid tomato seed can fetch up to $2,000 in a retail and upscale market. However, she is not getting a quarter of this price due to lack of market information and linkages with buyers. This is the story of many Nepali female farmers, who account for over 60% of the rural farming community, where lack of improved technologies and access to profitable markets challenge farm productivity.
At present, the Seed Quality Control Center (SQCC), Nepal Agriculture Research Council (NARC), the Centre for Crop Development and Agro Bio-diversity Conservation (CCDABC) and the Vegetable Development Directorate (VDD) are using paper-based data collection systems to record and plan seed production every year. Aggregating seed demand and supply data and generating reports takes at least two to three months. Furthermore, individual provinces need to convene meetings to collect and estimate province-level seed demand that must come from rural municipalities and local bodies.
A digital technology solutionÂ
CIMMYT and its partners are leveraging digital technologies to create an integrated Digitally Enabled Seed Information System (DESIS) that is efficient, dynamic and scalable. This initiative was the result of collaboration between U.S. Global Development Lab and USAID under the Digital Development for Feed the Future (D2FTF) initiative, which aimed to demonstrate that digital tools and approaches can accelerate progress towards food security and nutrition goals.
FHI 360 talked to relevant stakeholders in Nepal to assess their needs, as part of the Mobile Solutions Technical Assistance and Research (mSTAR) project, funded by USAID. Based on this work, CIMMYT and its partners identified a local IT expert and launched the development of DESIS.
DESIS will provide an automated version of the seed balance sheet. Using unique logins, agencies will be able to place their requests and seed producers to post their seed supplies. The platform will help to aggregate and manage breeder, foundation and source seed, as well as certified and labelled seed. The system will also include an offline seed catalogue where users can view seed characteristics, compare seeds and select released and registered varieties available in Nepal. Users can also generate seed quality reports on batches of seeds.
âAs the main host of this system, the platform is well designed and perfectly applicable to the needs of SQCC,â said Madan Thapa, Chief of SQCC, during the initial user tests held at his office. Thapa also expressed the potential of the platform to adapt to future needs.
The system will also link farmers to seed suppliers and buyers, to build a better internal Nepalese seed market. The larger goal of DESIS is to help farmers grow better yields and improve livelihoods, while contributing to food security nationwide.
DESIS is planned to roll out in Nepal in early 2020. Primary users will be seed companies, agricultural research centers, the Ministry of Agriculture and Livestock Development, agrovets, cooperatives, farmers, development partners, universities, researchers, policy makers, and international institutions. The system is based on an open source software and will be available on a mobile website and Android app.
âIt is highly secure, user friendly and easy to update,â said Warren Dally, an IT consultant who currently oversees the technical details of the software and the implementation process.
As part of the NSAF project, CIMMYT is also working to roll out digital seed inspection and a QR code-based quality certification system. The higher vision of the system is to create a seed data warehouse that integrates the seed information portal and the seed market information system.
Digital solutions are critical to link the agricultural market with vital information so farmers can make decisions for better production and harvest. It will not be long before farmers like Asmita and Ambika can easily access information using their mobile phones on the type of variety suitable to grow in their region and the best market to sell their products.
Over the last few decades, deteriorating soil fertility has been linked to decreasing agricultural yields in South Asia, a region marked by inequities in food and nutritional security.
As the demand for fertilizers grows, researchers are working with government and businesses to promote balanced nutrient management and the appropriate use of organic amendments among smallholder farmers. The Cereal Systems Initiative for South Asia (CSISA) has published a new policy brief outlining opportunities for innovation in the region.
Like all living organisms, crops need access to the right amount of nutrients for optimal growth. Plants get nutrients â like nitrogen, phosphorus, and potassium, in addition to other crucially important micronutrients â from soils and carbon, hydrogen, oxygen from the air and water. When existing soil nutrients are not sufficient to sustain good crop yields, additional nutrients must be added through fertilizers or manures, compost or crop residues. When this is not done, farmers effectively mine the soil of fertility, producing short-term gains, but undermining long-term sustainability.
Nutrient management involves using crop nutrients as efficiently as possible to improve productivity while reducing costs for farmers, and also protecting the environment by limiting greenhouse gas emissions and water quality contamination. The key behind nutrient management is appropriately balancing soil nutrient inputs â which can be enhanced when combined with appropriate soil organic matter management â with crop requirements. When the right quantities are applied at the right times, added nutrients help crops yields flourish. On the other hand, applying too little will limit yield and applying too much can harm the environment, while also compromising farmersâ ability to feed themselves or turn profits from the crops they grow.
Smallholder farmers in South Asia commonly practice poor nutrition management with a heavy reliance on nitrogenous fertilizer and a lack of balanced inputs and micronutrients. Declining soil fertility, improperly designed policy and nutrient management guidelines, and weak fertilizer marketing and distribution problems are among the reasons farmers fail to improve fertility on their farms. This is why it is imperative to support efforts to improve soil organic matter management and foster innovation in the fertilizer industry, and find innovative ways to target farmers, provide extension services and communicate messages on cost-effective and more sustainable strategies for matching high yields with appropriate nutrient management.
Cross-country learning reveals opportunities for improved nutrient management. The policy brief is based on outcomes from a cross-country dialogue facilitated by CSISA earlier this year in Kathmandu. The meeting saw researchers, government and business stakeholders from Bangladesh, India, Nepal, and Sri Lanka discuss challenges and opportunities to improving farmer knowledge and access to sufficient nutrients. Several key outcomes for policy makers and representatives of the agricultural development sector were identified during the workshop, and are included in the brief.
Extension services as an effective way to encourage a more balanced use of fertilizers among smallholder farmers. There is a need to build the capacity of extension to educate smallholders on a plantâs nutritional needs and proper fertilization. It also details how farmersâ needs assessments and human-centered design approaches need to be integrated while developing and delivering nutrient application recommendations and extension materials.
Nutrient subsidies must be reviewed to ensure they balance micro and macro-nutrients. Cross-country learning and evidence sharing on policies and subsidies to promote balanced nutrient application are discussed in the brief, as is the need to balance micro and macro-nutrient subsidies, in addition to the organization of subsidy programs in ways that assure farmers get access the right nutrients when and where they are needed the most. The brief also suggests additional research and evidence are needed to identify ways to assure that farmersâ behavior changes in response to subsidy programs.
Market, policy, and product innovations in the fertilizer industry must be encouraged. It describes the need for blended fertilizer products and programs to support them. A blend is made by mixing two or more fertilizer materials. For example, particles of nitrogen, phosphate and small amounts of secondary nutrients and micronutrients mixed together. Experience with blended products are uneven in the region, and markets for blends are nascent in Bangladesh and Nepal in particular. Cross-country technical support on how to develop blending factories and markets could be leveraged to accelerate blended fertilizer markets and to identify ways to ensure equitable access to these potentially beneficial products for smallholder farmers.
Download the CSISA Policy and Research Note:
Development of Balanced Nutrient Management Innovations in South Asia: Lessons from Bangladesh, India, Nepal, and Sri Lanka.
The CSISA project is led by CIMMYT with partners the International Rice Research Institute (IRRI) and the International Food Policy Research Institute (IFPRI) and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.
In an historical first, during the 2018-19 season Nepalâs National Maize Research Program (NMRP) coordinated the production of 4 tons of seed of a leading maize hybrid, as part of national efforts to boost maize production and meet rising demand for the crop.
NMRP oversaw production of Rampur Hybrid-10 seed, in collaboration with the Heat Tolerant Maize for Asia (HTMA) project funded by the USAID Feed the Future Initiative and led by the International Maize and Wheat Improvement Center (CIMMYT), the Nepal Seed and Fertilizer (NSAF) project, and local seed companies and farmer cooperatives.
âProducing hybrid maize seed and getting quality seed to farmers at a reasonable price involves multiple stakeholders,â said P.H. Zaidi, CIMMYT maize physiologist and HTMA leader. âNMRP is pursuing a public-private partnership model to have key value chain components in place for this. The success this year may encourage other companies to switch from producing seed of open-pollinated maize varieties to that of hybrids, which are higher yielding.â
Lumbini Seed Company alone harvested 2.5 tons of hybrid seed from one hectare of land, helping to debunk the common myth that production of maize hybrid seed was impossible in Nepal, according to Zaidi.
âLumbini did good groundwork to identify a suitable season and site for seed production, helping them to achieve a good hybrid seed harvest in their first-ever attempt,â said Zaidi. âThe NMRP and other seed companies contributed valuable knowledge and advice to improve and scale up hybrid maize seed production.â
Maize is a critical food, feed and fodder crop in Nepal, providing nearly 20% of peopleâs food energy and accounting for around 33% of all cereal production in the high hills regions, 39% in the mid-hills region, and 9% in the Terai. Over two-thirds of hill-region maize is eaten directly as food on farm homesteads, whereas 80% of maize in the Terai and neighboring regions is used as feed.
Demand for feed maize is skyrocketing, as consumers switch from starch-based foods to animal protein and dairy products. Current national maize production satisfies less than a third of feed industry demand, requiring maize grain imports that reached 4.8 million tons in 2017-18.
Against this backdrop, many smallholder farmers still grow local or open-pollinated maize varieties, which are usually low yielding.
Based in Rampur, Chitwan, and established in 1972, the NMRP has developed and released 29 open-pollinated and 5 hybrid maize varieties, including Rampur Hybrid-10, with technical support from CIMMYT. Multinational companies have registered 54 other maize hybrids for marketing in Nepal. To date, nearly all hybrid seed is imported.
Other partners in efforts to produce hybrid seed in Nepal include the farmer cooperatives Namuna Sahakari and Jhapa, as well as the companies SEAN Seed in Kathmandu and Unique Seed Company in Dhangadi. NMRP is also developing and registering new high-yielding hybrids. Some nucleus and breeders seed is being produced by the Agricultural Research Station (ARS) and Regional Agricultural Research Station (RARS) of the Nepal Agricultural Research Council (NARC).
The NMRP and participating seed companies expect to meet half of Nepalâs hybrid maize seed requirements through such domestic seed production within five years, with the objective to achieve complete seed self-sufficiency later on.