Skip to main content

Location: Nepal

For more information, contact CIMMYT’s Nepal office.

Climate change adds to woes of lentil farmers in Nepal

Once a world leading lentil producer, Nepal is now having to import them as farmers struggle with low productivity and warmer, wetter weather.

This could have serious implications in a country where lentils provide an important source of protein, especially for poor families.

Read more: https://www.thethirdpole.net/2020/11/25/climate-change-adds-to-woes-of-lentil-farmers-in-nepal/

Scientific opportunities and challenges

Maize and wheat fields at the El Batån experimental station. (Photo: CIMMYT/Alfonso Cortés)
Maize and wheat fields at the El Batån experimental station. (Photo: CIMMYT/Alfonso Cortés)

The first meetings of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) wheat and maize science and technical steering committees — WSC and MSC, respectively — took place virtually on 25th and 28th September.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) sit on both committees. In the WSC they are joined by wheat experts from national agricultural research systems (NARS) in Bangladesh, Ethiopia, Kenya, India, and Nepal; and from Angus Wheat Consultants, the Foreign, Commonwealth & Development Office (FCDO), HarvestPlus, Kansas State University and the Roslin Institute.

Similarly, the MSC includes maize experts from NARS in Ethiopia, Ghana, Kenya and Zambia; and from Corteva, the Foundation for Food and Agriculture Research (FFAR), the International Institute for Tropical Agriculture (IITA), SeedCo, Syngenta, the University of Queensland, and the US Agency for International Development (USAID).

During the meetings, attendees discussed scientific challenges and opportunities for AGG, and developed specific recommendations pertaining to key topics including breeding and testing scheme optimization, effective engagement with partners and capacity development in the time of COVID-19, and seed systems and gender intentionality.

Discussion groups noted, for example, the need to address family structure in yield trials, to strengthen collaboration with national partners, and to develop effective regional on-farm testing strategies. Interestingly, most of the recommendations are applicable and valuable for both crop teams, and this is a clear example of the synergies we expect from combining maize and wheat within the AGG project.

All the recommendations will be further analyzed by the AGG teams during coming months, and project activities will be adjusted or implemented as appropriate. A brief report will be submitted to the respective STSCs prior to the second meetings of these committees, likely in late March 2021.

Balanced fertilizer application boosts smallholder incomes

Agriculture is largely feminized in Nepal, where over 80% of women are employed in the sector. As a result of the skills gap caused by male out-migration, many women farmers are now making conscious efforts to learn techniques that can help improve yields and generate greater income — such as balanced fertilizer application — with support from the International Maize and Wheat Improvement Center (CIMMYT).

Studies have shown that many farmers lack knowledge of fertilizer management, but balanced fertilizer application using the right ratio of nutrients is key to helping crops thrive Through the Nepal Seed and Fertilizer (NSAF) project, CIMMYT researchers are working towards promoting precision nutrient management through multiple trials and demonstrations in farmers’ fields.

Through this initiative, Dharma Devi Chaudhary, a smallholder farmer from Kailali district, has been able to increase her annual earnings by adopting balanced fertilizer application in cauliflower cultivation — a key cash crop for the winter season in Nepal’s Terai region.

Her inspiration to use micronutrients such as boron came from the results she witnessed during a CIMMYT-supported demonstration conducted on her land in 2018. During the demonstration, Chaudhary learned the principles of the four ‘Rs’ of nutrient stewardship: the right rate, the right time, the right source and the right placement of fertilizers. She became familiar with different types of fertilizer and the amount to be used, as well as the appropriate time and place to apply urea top-dressing, diammonium phosphate (DAP) and muriate of potash (MoP) for optimal utilization by the plant.

Chaudhary also learned how boron application can increase crop yields while helping prevent plant diseases, especially in cauliflower, where boron deficiency can lead to a disorder known as ‘dead heart’ and cause significant yield loss. This is particularly useful knowledge for farmers in Nepal, where the boron content in soil is generally low.

A digital soil map developed by the NSAF project shows medium to high boron deficiency in Kailali district and the surrounding area. (Map: CIMMYT)
A digital soil map developed by researchers on the NSAF project shows medium-to-high boron deficiency in Kailali district. (Map: CIMMYT)

Benefitting from best practices

Cauliflower is cultivated on 615 hectares of land across Kailali and produces a yield of 15 tons per hectare — far less than the potential yield of 35-40 tons. As a standard practice, farmers in the area have been applying nitrogen, phosphorous and potassium (NPK) at a ratio of 27: 27.6: 9 kilograms per hectare and three tons of farmyard manure per hectare. During a CIMMYT-led demonstration on a small parcel of land, Chaudhary observed that balanced fertilizer application yielded about 64% more than when using her traditional practices, fetching her an income of $180 that season compared to her usual $109.

Following this demonstration, Chaudhary decided to independently cultivate cauliflower on a plot of 500 square meters, where she applied farmyard manure two weeks before transplantation and then used DAP, MOP, boron and zinc as a basal application during transplanting. She also applied urea in split doses, first at 25 days and then 50 days after transplantation. Using this technique, Chaudhary was able to yield 46 tons of cauliflower per hectare, nearly twice as much as was yielded by farmers using traditional practices. As a result, she was able to generate an income increase of $800 for her household, compared to the previous season’s earnings.

“I was able to buy education resources, clothing and more food supplies for my children with the additional income I earned from selling cauliflower last year,” said Chaudhary. “Learning about the benefits of using micronutrients is essential for smallholder farmers like me who are looking for ways to improve their farming business.”

Smallholder farmers tend to be risk averse, which can make technology adoption difficult. However, on-farm demonstrations help reduce the risks farmers perceive and facilitate new technology adoption easily by exhibiting encouraging results.

Chaudhary now serves as a lead farmer at Janasewa Krishak Multi-purpose Cooperative and supports the organization by disseminating knowledge on balanced fertilizer management practices to hundreds of farmers in her community. After seeing the impact of adopting the recommended techniques, the use of balanced fertilizer is reaping benefits for other farmers in her district, helping them achieve better income from higher crop yields and maintain soil fertility in their area.

Dharma Devi Chaudhary (right) stands next to her flourishing cauliflower crop in Kailali, Nepal. (Photo: Uttam Kunwar/CIMMYT)
Dharma Devi Chaudhary (right) stands next to her flourishing cauliflower crop in Kailali, Nepal. (Photo: Uttam Kunwar/CIMMYT)

Power of data: To enhance food security

Data has become a key driver of growth and change in today’s world.

There is growing recognition that data is indispensable for effective planning and decision-making in every sector. But the state of digital data in developing countries is far from satisfactory. In Asia, monitoring the Sustainable Development Goals (SDGs) remains a challenge due to a lack of accurate data.

Read more: https://thehimalayantimes.com/opinion/power-of-data-to-enhance-food-security/

Starting with a seed

Rural women in Nepal significantly contribute to food security, and when they are empowered, they can create avenues for agricultural growth. As seed producers are often disadvantaged in terms of accessing advanced agricultural knowledge and seed production skills, one opportunity for growth is strengthening the capacity of women seed producers.

“In more than 80% of households in Sindhupalchowk district, women have the final say on the selection of maize variety,” said D.B. Bhandari, managing director of Hairyali Community Seed Company (HCSC). “This urged me to engage women in seed production of preferred maize varieties for the mid-hills.”

HCSC, a partner company of the Nepal Seed and Fertilizer (NSAF) project implemented by the International Maize and Wheat Improvement Center (CIMMYT), is working to improve the business literacy of rural women to support their involvement in seed production and marketing of maize, wheat and rice seeds in Sindhupalchowk district, Bagmati province, Nepal.

Women attend seed production workshop
Seed producers attend an orientation on the production and marketing of hybrid seed. (Photo: Dharma Dawadi/CIMMYT)

A path to empowerment and income

Access to agricultural inputs such as seed and fertilizer is challenging in Thulosirubari village due to its rural location and absence of agrodealers or nearby markets. Progressive farmers Parbati Gautam and Kamala Gautam, who grew up in the village in a family that has cultivated maize for generations and now grow maize, rice, millet and vegetables, found a solution. They decided to establish a cooperative —Thulosirubari Mahila Krishi Sahakari Sanstha — that not only eases the supply of seed for farmers in their village but also engages in seed production. The cooperative has 45 female members so far.

In coordination with HCSC and the Government of Nepal’s Prime Minister Agriculture Modernization Project (PMAMP), orientation programs and women-only trainings were designed and organized by the NSAF project so farmers could boost their seed production efficiency and profitability at the grassroots level. The partnership between CIMMYT, HCSC and PMAMP provided technical and financial support to these groups, improved their entrepreneurship skills and business literacy, and created marketing linkages between the farmers and buyers. Thirty-five women were trained in the use of good agricultural practices in quality seed production and marketing of hybrid maize, rice and tomato seeds. HCSC supported the women with male and female lines of hybrid maize — Khumal hybrid-2 — to produce first generation seeds and build their skills on estimating ratios for sowing seeds, balanced fertilizer application, weeding, rouging and detasseling.

“I am so happy to learn about the importance of having different male and female lines and how to maintain their quality for crossing to produce first generation of hybrid maize seeds,” Kamala Gautam said.

After getting the required training and technical support, seven farmers from the cooperative, including Kamala and Parbati, collectively produced 1.1 mt of Khumal hybrid-2 with the value of $2,514, which was sold to HCSC in 2019. As the cooperative is a contract seed producer for HCSC, the women have market assurance and do not worry where and how to sell their seed.

“My husband and I are not educated,” Parbati Gautam explained. “However, I was able to sell the hybrid maize seed then use the money to buy decent clothes and offer a better education to my two daughters and son.”

Women stands in rice field.
A woman stands in her rice seed production field in Nepal. (Photo: Mohan Mahato/CIMMYT)

Women empowering women

Parbati Gautam has served as chairperson at the cooperative for eight years, where she has mentored other seed producers. Based on her experience, women who have access to information and seed production technologies tend to have better crop yields and make informed decisions to increase their incomes and livelihoods.

According to Bhandari, farmers’ preferences are gradually shifting from local to hybrid varieties which offer better yields, early maturity and resilience to the effects of climate change. Parbati and Kamala Gautam confirm this, sharing that hybrid seed production provides 4-5 times more monetary value per kilogram of seed than that of grain.

“Although the cost of parent lines is expensive for seed production, improved farming technology ensures better quality seeds, higher yields and attractive farm business opportunities,” Parbati Gautam explained.

Since 2017, NSAF project researchers have been working to establish linkages with partner seed companies for seed marketing. Altogether, about 300 mt of maize and rice seed was produced by women farmers engaged in the project with the value of $112,000, and 80 percent of this seed was sold to three private seed companies including HCSC. In 2019, the NSAF project team established partnerships with an additional three cooperatives in Banke, Dang and Sindhupalchowk districts, where over 800 women are members.

The project’s engagement of women’s seed producer groups is an example of an inclusive seed business model where farmers decide what to grow and how to sell. This intervention can be piloted in other parts of Nepal where women account for over 60 percent of the rural farming community. Targeted and sustained interventions to increase women’s business agility, technical capacity in quality seed production, and market linkages will help boost productivity at household level and the country at large.

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

En route to improved agronomic literacy

Masuriya, a rural village in Nepal’s Gauriganga municipality, was one of the villages affected during the country’s civil war which ran from 1996-2006. Since 2012, Bandana Joshi, chairperson of a local cooperative, has been encouraging women in her village to optimize fertilizer application to maximize plant growth and profitability, and improve livelihoods. However, her journey to this day was not an easy one.

In the years of the civil war, women in the villages like Masuriya faced the burden to make ends meet for their children and elderly family members, as most men fled in fear of war or migrated to earn income. It was during this time that Joshi and a group of 24 women who were operating a savings and credit firm realized that more women in their village needed monetary support to carry out their livelihood activities. They decided to expand their services and formed a cooperative to empower rural women and make finance available in the village. Their cooperative, Sana Kisan Sahakari Sanstha Limited, now has 1,186 women members, more than half of whom belong to marginalized communities – 514 Janajatis and 154 Dalits.

Many of the members are small commercial farmers, owning about 1.4 ha of land for farming as their sole source of income. Most have traditionally grown cereals such as rice and wheat alongside a few vegetables and had limited knowledge on cash crop farming and soil fertility management. They would produce and sell their surplus rice and wheat when they needed cash to buy groceries or pay household bills.

Woman prepares cauliflower for marketing.
Cooperative member prepares cauliflower for marketing. (Photo: Uttam Kunwar/CIMMYT)

In October 2016, researchers from the International Maize and Wheat Improvement Center’s (CIMMYT) Nepal Seed and Fertilizer (NSAF) project and the International Fertilizer Development Center (IFDC), launched an integrated soil fertility management (ISFM) program and worked alongside the cooperative to disseminate and encourage the use of ISFM technologies among its members. The purpose was to show farmers the benefits of ISFM – an integration of organic inputs and inorganic fertilizers with improved seeds – for rice, wheat and cauliflower cultivation, that includes balanced fertilizer application to increase yield. The project team conducted research trials and on-farm demonstrations on these crops as part of the initiative and built capacity through farmer field days and trainings on best management practices.

As a strategic entry point, the cooperative in coordination with female community volunteers helped implement the ISFM program. Women received training on the right source and amount of fertilizer that matches crop needs, and the right time and place to apply these fertilizers to maximize nutrient uptake and improve crop yields. NSAF researchers engaged with lead farmers and the cooperative’s leadership to influence their acceptance of the new fertilizer application practices, and they in turn motivated the members to use balanced fertilizer application. In 2020, these activities have been critical in building awareness on balanced fertilizer application for more than 800 farmers on over 700 ha of land, with each household able to raise their crop productivity by at least 50% for vegetables and 25% for cereals.

Better soil, better harvest

So far, the use of balanced fertilizer application has benefited more than a hundred members of the cooperative by gaining an average income of $219 in a season from cultivating cauliflower – a cash crop in Nepal’s Terai region. This additional return has helped farmers to adequately feed an average family of 4.5 people for the entire year.

Dutrani Chaudhary, a cooperative member, said that she was able to raise cauliflower production by 64% by applying balanced fertilizers that supplied all the essential nutrients – nitrogen, phosphorus, potash and micro-nutrient boron. She earned about $238 from 0.033 ha of land, which is a much larger gain for any farmer from a single season. As well as boosting her pride and confidence, she can now contribute for her children’s school fees and household expenditures.

After witnessing positive results, many other farmers in the village started applying major nutrients using urea, DAP (Di-ammonium Phosphate) and MoP (Muriate of Potash) to increase crop productivity. In 2017, Joshi and her members noticed a sharp rise in fertilizer procurement from the cooperative among farmers resulting in almost double the sales compared to 2015. Prior to the project’s agronomic literacy programs on soil fertility management, she sold merely 15 tons urea and 10 tons of DAP. Thereafter, fertilizer sales increased to 32.6 tons and 27.9 tons, for urea and DAP respectively, in just two years.

“For the first time in 2018 we sold 500 kilograms of MoP since the cooperative established,” explained Joshi. MoP was never considered a priority by the farmers before and they rarely purchased it from the cooperative.

Women in field.
Women participating in farmer field day of cauliflower in Masuriya. (Photo: Uttam Kunwar/CIMMYT)

On the rise

Now more organized and well-equipped, the cooperative has started organizing programs this year on off-seasonal and seasonal vegetable cultivation on crops such as tomato, cauliflower and cucurbits that have aided around 150 member households. “We have prioritized balanced fertilizer application in our vegetable production program,” says Madhuri Chaudhary, manager of the cooperative.

The woman-led rural institution has achieved remarkable success over the years by learning and adopting best agronomic practices including fertilizer application, planting and cultivation methods that helped increase crop productivity and household income. Having seen the benefits, male family members now encourage them to participate in agronomic literacy programs to acquire advanced knowledge and skills.

Joshi and her team of visionary women have been successful in setting up an inclusive new movement in Masuriya village, which has led to their active participation in development activities and decision-making roles not only at the household level but also in societal issues around women’s rights. Passionate to learn new skills and grow financially independent, these rural women are confident in making their own decisions for themselves, their family and for the wider society. Although it started small, the cooperative has now boomed towards improving rural women’s economic empowerment and sparking better livelihood opportunities in the area.

Cover photo: Balanced nutrient management helps farmer Dharma Devi generate better household income from cauliflower cultivation. (Photo: Uttam Kunwar/CIMMYT)

See our coverage of the International Day of Rural Women.
See our coverage of the International Day of Rural Women.

Dyutiman Choudhary

Dyutiman Choudhary is a Project Coordinator with the Nepal Seed and Fertilizer (NSAF) project.

Retrospective quantitative genetic analysis and genomic prediction of global wheat yields

The process for breeding for grain yield in bread wheat at the International Maize and Wheat Improvement Center (CIMMYT) involves three-stage testing at an experimental station in the desert environment of Ciudad Obregón, in Mexico’s Yaqui Valley. Because the conditions in Obregón are extremely favorable, CIMMYT wheat breeders are able to replicate growing environments all over the world and test the yield potential and climate-resilience of wheat varieties for every major global wheat growing area. These replicated test areas in Obregón are known as selection environments (SEs).

This process has its roots in the innovative work of wheat breeder and Nobel Prize winner Norman Borlaug, more than 50 years ago. Wheat scientists at CIMMYT, led by wheat breeder Philomin Juliana, wanted to see if it remained effective.

The scientists conducted a large quantitative genetics study comparing the grain yield performance of lines in the ObregĂłn SEs with that of lines in target growing sites throughout the world. They based their comparison on data from two major wheat trials: the South Asia Bread Wheat Genomic Prediction Yield Trials in India, Pakistan and Bangladesh initiated by the U.S. Agency for International Development Feed the Future initiative and the global testing environments of the Elite Spring Wheat Yield Trials.

The findings, published in Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields, in Frontiers in Plant Science, found that the ObregĂłn yield testing process in different SEs is very efficient in developing high-yielding and resilient wheat lines for target sites.

The authors found higher average heritabilities, or trait variations due to genetic differences, for grain yield in the ObregĂłn SEs than in the target sites (44.2 and 92.3% higher for the South Asia and global trials, respectively), indicating greater precision in the SE trials than those in the target sites. They also observed significant genetic correlations between one or more SEs in ObregĂłn and all five South Asian sites, as well as with the majority (65.1%) of the Elite Spring Wheat Yield Trial sites. Lastly, they found a high ratio of selection response by selecting for grain yield in the SEs of ObregĂłn than directly in the target sites.

“The results of this study make it evident that the rigorous multi-year yield testing in Obregón environments has helped to develop wheat lines that have wide-adaptability across diverse geographical locations and resilience to environmental variations,” said Philomin Juliana, CIMMYT associate scientist and lead author of the article.

“This is particularly important for smallholder farmers in developing countries growing wheat on less than 2 hectares who cannot afford crop losses due to year-to-year environmental changes.”

In addition to these comparisons, the scientists conducted genomic prediction for grain yield in the target sites, based on the performance of the same lines in the SEs of ObregĂłn. They found high year-to-year variations in grain yield predictabilities, highlighting the importance of multi-environment testing across time and space to stave off the environment-induced uncertainties in wheat yields.

“While our results demonstrate the challenges involved in genomic prediction of grain yield in future unknown environments, it also opens up new horizons for further exciting research on designing genomic selection-driven breeding for wheat grain yield,” said Juliana.

This type of quantitative genetics analysis using multi-year and multi-site grain yield data is one of the first steps to assessing the effectiveness of CIMMYT’s current grain yield testing and making recommendations for improvement—a key objective of the new Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) project, which aims to accelerate the breeding progress by optimizing current breeding schemes.

This work was made possible by the generous support of the Delivering Genetic Gain in Wheat (DGGW) project funded by the Bill & Melinda Gates Foundation and the UK Foreign, Commonwealth & Development Office (FCDO) and managed by Cornell University; the U.S. Agency for International Development’s Feed the Future initiative; and several collaborating national partners who generated the grain yield data.

Read the full article: Retrospective Quantitative Genetic Analysis and Genomic Prediction of Global Wheat Yields

This story was originally posted on the website of the CGIAR Research Program on Wheat (wheat.org).

Cover photo: Wheat fields at CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón, Mexico. (Photo: CIMMYT)

How do I become a zero-till farmer?

“What you are now about to witness didn’t exist even a few years ago,” begins the first video in a series on zero tillage produced by the International Maize and Wheat Improvement Center (CIMMYT). Zero tillage, an integral part of conservation agriculture-based sustainable intensification, can save farmers time, money and irrigation water.

Through storytelling, the videos demonstrate the process to become a zero till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

All videos are available in Bengali, Hindi and English.

This videos were produced as part of the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project, funded by the Australian Centre for International Agricultural Research (ACIAR). The videos were scripted with regional partners and filmed with communities in West Bengal, India.

Conservation Agriculture Visual Syllabus (English):

 

Conservation Agriculture Visual Syllabus (Hindi):

 

Conservation Agriculture Visual Syllabus (Bengali):

“Better, faster, equitable, sustainable” – wheat research community partners join to kick off new breeding project

Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at the Campo Experimental Norman E. Borlaug (CENEB) near Ciudad ObregĂłn, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

More than 100 scientists, crop breeders, researchers, and representatives from funding and national government agencies gathered virtually to initiate the wheat component of a groundbreaking and ambitious collaborative new crop breeding project led by the International Maize and Wheat Improvement Center (CIMMYT).

The new project, Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods, or AGG, brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Funded by the Bill & Melinda Gates Foundation, the U.K. Department for International Development (DFID), the U.S. Agency for International Development (USAID), and the Foundation for Food and Agriculture Research (FFAR), the project specifically focuses on supporting smallholder farmers in low- and middle-income countries. The international team uses innovative methods — such as rapid cycling and molecular breeding approaches — that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest and disease resistant and highly nutritious, targeted to farmers’ specific needs.

The wheat component of AGG builds on breeding and variety adoption work that has its roots with Norman Borlaug’s Nobel Prize winning work developing high yielding and disease resistance dwarf wheat more than 50 years ago. Most recently, AGG builds on Delivering Genetic Gain in Wheat (DGGW), a 4-year project led by Cornell University, which ends this year.

“AGG challenges us to build on this foundation and make it better, faster, equitable and sustainable,” said CIMMYT Interim Deputy Director for Research Kevin Pixley.

At the virtual gathering on July 17, donors and partner representatives from target countries in South Asia joined CIMMYT scientists to describe both the technical objectives of the project and its overall significance.

“This program is probably the world’s single most impactful plant breeding program. Its products are used throughout the world on many millions of hectares,” said Gary Atlin from the Bill & Melinda Gates Foundation. “The AGG project moves this work even farther, with an emphasis on constant technological improvement and an explicit focus on improved capacity and poverty alleviation.”

Alan Tollervey from DFID spoke about the significance of the project in demonstrating the relevance and impact of wheat research.

“The AGG project helps build a case for funding wheat research based on wheat’s future,” he said.

Nora Lapitan from the USAID Bureau for Resilience and Food Security listed the high expectations AGG brings: increased genetic gains, variety replacement, optimal breeding approaches, and strong collaboration with national agricultural research systems in partner countries.

India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
India’s farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)

Reconnecting with trusted partners

The virtual meeting allowed agricultural scientists and wheat breeding experts from AGG target countries in South Asia, many of whom have been working collaboratively with CIMMYT for years, to reconnect and learn how the AGG project both challenges them to a new level of collaboration and supports their national wheat production ambitions.

“With wheat blast and wheat rust problems evolving in Bangladesh, we welcome the partnership with international partners, especially CIMMYT and the funders to help us overcome these challenges,” said Director General of the Bangladesh Wheat and Maize Research Institute Md. Israil Hossain.

Director of the Indian Institute for Wheat and Barley Research Gyanendra P. Singh praised CIMMYT’s role in developing better wheat varieties for farmers in India.

“Most of the recent varieties which have been developed and released by India are recommended for cultivation on over 20 million hectares. They are not only stress tolerant and high yielding but also fortified with nutritional qualities. I appreciate CIMMYT’s support on this,” he said.

Executive Director of the National Agricultural Research Council of Nepal Deepak K. Bhandari said he was impressed with the variety of activities of the project, which would be integral to the development of Nepal’s wheat program.

“Nepal envisions increased wheat productivity from 2.84 to 3.5 tons per hectare within five years. I hope this project will help us to achieve this goal. Fast tracking the replacement of seed to more recent varieties will certainly improve productivity and resilience of the wheat sector,” he said.

The National Wheat Coordinator at the National Agricultural Research Center of Pakistan, Atiq Ur-Rehman, told attendees that his government had recently launched a “mega project” to reduce poverty and hunger and to respond to climate change through sustainable intensification. He noted that the support of AGG would help the country increase its capacity in “vertical production” of wheat through speed breeding. “AGG will help us save 3 to 4 years” in breeding time,” he said.

For CIMMYT Global Wheat Program Director Hans Braun, the gathering was personal as well as professional.

“I have met many of you over the last decades,” he told attendees, mentioning his first CIMMYT trip to see wheat programs in India in 1985. “Together we have achieved a lot — wheat self-sufficiency for South Asia has been secured now for 50 years. This would not be possible without your close collaboration, your trust and your willingness to share germplasm and information, and I hope this will stay. “

Braun pointed out that in this project, many national partners will gain the tools and capacity to implement their own state of the art breeding strategies such as genomic selection.

“We are at the beginning of a new era in breeding,” Braun noted. “We are also initiating a new era of collaboration.”

The wheat component of AGG serves more than 30 million wheat farming households in Bangladesh, Ethiopia, India, Kenya, Nepal and Pakistan. A separate inception meeting for stakeholders in sub-Saharan Africa is planned for next month.

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG)

Accelerating Genetic Gains in Maize and Wheat (AGG), a project led by the International Maize and Wheat Improvement Center (CIMMYT), brings together partners in the global science community and in national agricultural research and extension systems to accelerate the development of higher-yielding varieties of maize and wheat — two of the world’s most important staple crops.

Specifically focusing on supporting smallholder farmers in low- and middle-income countries, the project uses innovative methods that improve breeding efficiency and precision to produce varieties that are climate-resilient, pest- and disease-resistant, and highly nutritious, targeted to farmers’ specific needs.

The maize component of the project serves 13 target countries: Ethiopia, Kenya, Malawi, Mozambique, South Africa, Tanzania, Uganda, Zambia and Zimbabwe in eastern and southern Africa; and Benin, Ghana, Mali, and Nigeria in West Africa. The wheat component of the project serves six countries: Bangladesh, India, Nepal, and Pakistan in South Asia; and Ethiopia and Kenya in sub-Saharan Africa.

This project builds on the impact of the Delivering Genetic Gain in Wheat (DGGW) and Stress Tolerant Maize for Africa (STMA) projects.

Objectives

The project aims to accelerate the development and delivery of more productive, climate-resilient, gender-responsive, market-demanded, and nutritious maize and wheat varieties in support of sustainable agricultural transformation in sub-Saharan Africa and South Asia.

To encourage adoption of new varieties, the project works to improve equitable access, especially by women, to seed and information, as well as capacity building in breeding, disease surveillance, and seed marketing.

Funders

Project funding is provided by the Bill & Melinda Gates Foundation, the UK Foreign, Commonwealth & Development Office, the United States Agency for International Development and the Foundation for Food and Agricultural Research (FFAR).

Key partners

The primary partners for this project are the national agricultural research systems in the project target countries and, for the maize component, the International Institute for Tropical Agriculture (IITA) and small and medium enterprise (SME) seed companies.

Scientific and technical steering committees

We are grateful to our excellent maize and wheat scientific and technical steering committees for their suggestions and thoughtful question on key issues for the success of AGG. Read about the recommendations from the maize steering committee here and the wheat steering committee here.

Year 1 Executive Summary

In its first year of operation, AGG has made great strides in collaboration with our national partners towards the project goals –despite the unprecedented challenges of working through a global pandemic. For specific milestones achieved, we invite you to review our AGG Year 1 Executive Summary and Impact Report (PDF).

Year 2 Executive Summary

AGG has made progress towards all outcomes. Our scientists are implementing substantial modifications to breeding targets and schemes. AGG is also in a continuous improvement process for the partnership modalities, pursuing co-ownership and co-implementation that builds the capacities of all involved. For specific milestones achieved, we invite you to review our AGG Year 2 Executive Summary and Impact Report (PDF).

CIMMYT’s adult plant resistance breeding strategy

Download a summary of CIMMYT’s breeding strategy for adult plant resistance (PDF).

Subscribe to the AGG newsletter

Supporting smallholder farmers to better combat drought

A farmer in Banke district during monsoon season drought in 2017. (Photo: Anton Urfels/CIMMYT)
A farmer in Banke district during monsoon season drought in 2017. (Photo: Anton Urfels/CIMMYT)

Researchers from the Cereal Systems Initiative for South Asia (CSISA) project have been exploring the drivers of smallholder farmers’ underuse of groundwater wells to combat in-season drought during the monsoon rice season in Nepal’s breadbasket — the Terai region.

Their study, published in Water International, finds that several barriers inhibit full use of groundwater irrigation infrastructure.

Inconsistent rainfall has repeatedly damaged paddy crops in Nepal over the last years, even though most agricultural lands are equipped with groundwater wells. This has contributed to missed national policy targets of food self-sufficiency and slow growth in cereal productivity.

A key issue is farmers’ tendency to schedule irrigation very late in an effort to save their crops when in-season drought occurs. By this time, rice crops have already been damaged by lack of water and yields will be decreased. High irrigation costs, especially due to pumping equipment rental rates, are a major factor of this aversion to investment. Private irrigation is also a relatively new technology for many farmers making water use decisions.

After farmers decide to irrigate, queuing for pumpsets, tubewells, and repairs and maintenance further increases irrigation delays. Some villages have only a handful of pumpsets or tubewells shared between all households, so it can take up to two weeks for everybody to irrigate.

To address these issues, CSISA provides suggestions for three support pathways to support farmers in combatting monsoon season drought:

1. Raise awareness of the importance of timely irrigation

To avoid yield penalties and improve operational efficiency through better-matched pumpsets, CSISA has raised awareness through agricultural FM radio broadcasts on the strong relationship between water stress and yield penalties. Messages highlight the role of the plough pan in keeping infiltration rates low and encouraging farmers to improve irrigation scheduling. Anecdotal evidence suggests that improved pump selection may decrease irrigation costs by up to 50%, and CSISA has initiated follow-up studies to develop recommendations for farmers.

Social interaction is necessary for purchasing fuel, transporting and installing pumps, or sharing irrigation equipment. These activities pose risks of COVID-19 exposure and transmission and therefore require farmers to follow increased safety and hygiene practices, which may cause further delays to irrigation. Raising awareness about the importance of timely irrigation therefore needs to go hand in hand with the promotion of safe and hygienic irrigation practices. This information has been streamlined into CSISA’s ongoing partnerships and FM broadcasts.

2. Improve community-level water markets through increased focus on drought preparedness and overcoming financial constraints

Farmers can save time by taking an anticipatory approach to the terms and conditions of rentals, instead of negotiating them when cracks in the soil are already large. Many farmers reported that pump owners are reluctant to rent out pumpsets if renters cannot pay up front. Given the seasonality of cash flows in agriculture, pro-poor and low interest credit provisions are likely to further smoothen community-level water markets.

Quantified ethnographic-decision tree based on households’ surveys of smallholder decision to use groundwater irrigation in Nepal’s Terai. (Graphic: Urfels et al. (2020))
Quantified ethnographic-decision tree based on households’ surveys of smallholder decision to use groundwater irrigation in Nepal’s Terai. (Graphic: Urfels et al., 2020)

3. Prioritize regional investment

The study shows that delay factors differ across districts and that selectively targeted interventions will be most useful to provide high returns to investments. For example, farmers in Kailali reported that land access issues — due to use of large bullock carts to transport pumpsets — and fuel shortages constitute a barrier for 10% and 39% of the farmers, while in Rupandehi, maintenance and tubewell availability were reported to be of greater importance.

As drought is increasingly threatening paddy production in Nepal’s Terai region, CSISA’s research shows that several support pathways exist to support farmers in combatting droughts. Sustainable water use can only be brought up to a scale where it benefits most farmers if all available tools including electrification, solar pumps and improved water level monitoring are deployed to provide benefits to a wide range of farmers.

Read the study:
Drivers of groundwater utilization in water-limited rice production systems in Nepal

Gauging the impact of COVID-19 lockdown on farming communities and agribusinesses in Nepal

The agricultural market has been suffering since the government of Nepal imposed a lockdown from March 23, 2020 to limit the spread of COVID-19 in the country. A month after the lockdown, the International Maize and Wheat Improvement Center (CIMMYT) conducted a rapid assessment survey to gauge the extent of disruptions of the lockdown on households from farming communities and agribusinesses.

As part of the Nepal Seed and Fertilizer (NSAF) project, CIMMYT researchers surveyed over 200 key stakeholders by phone from 26 project districts. These included 103 agrovet owners and 105 cooperative managers who regularly interact with farming communities and provide agricultural inputs to farmers. The respondents served more than 300,000 households.

The researchers targeted maize growing communities for the survey since the survey period coincided with the primary maize season.

Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)

Key insights from the survey

The survey showed that access to maize seed was a major problem that farmers experienced since the majority of agrovets were not open for business and those that were partially open — around 23% — did not have much customer flow due to mobility restrictions during the lockdown.

The stock of hybrid seed was found to be less than open pollinated varieties (OPVs) in most of the domains. Due to restrictions on movement during the entire maize-planting season, many farmers must have planted OPVs or saved seeds.

Access to fertilizers such as urea, DAP and MOP was another major problem for farmers since more than half of the cooperatives and agrovets reported absence of fertilizer stock in their area. The stock of recommended pesticides to control pests such as fall armyworm was reported to be limited or out of stock at the cooperatives and agrovets.

Labor availability and use of agricultural machineries was not seen as a huge problem during the lockdown in the surveyed districts.

It was evident that food has been a priority for all household expenses. More than half of the total households mentioned that they would face food shortages if the lockdown continues beyond a month.

During the survey, around 36% of households specified cash shortages to purchase agricultural inputs, given that a month had already passed since the lockdown began in the country. The majority of the respondents reported that the farm households were managing their cash requirements by borrowing from friends and relatives, local cooperatives or selling household assets such as livestock and agricultural produces.

Most of the households said that they received food rations from local units called Palikas, while a small number of Palikas also provided subsidized seeds and facilitated transport of agricultural produce to market during the lockdown. Meanwhile, the type of support preferred by farming communities to help cope with the COVID-19 disruptions — ranging from food rations, free or subsidized seed, transportation of fertilizers and agricultural produce, and provision of credit — varied across the different domains.

The survey also assessed the effect of lockdown on agribusinesses like agrovets who are major suppliers of seed, and in a few circumstances sell fertilizer to farmers in Nepal. As the lockdown enforced restrictions on movement, farmers could not purchase inputs from agrovets even when the agrovets had some stock available in their area. About 86% of agrovets spoke of the difficulty to obtain supplies from their suppliers due to the blockage of transportation and product unavailability, thereby causing a 50-90% dip in their agribusinesses.

Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)
Seed company staff harvesting maize during the lockdown. (Photo: Darbin Joshi/CIMMYT)

Immediate actions to consider

Major takeaways from this survey are as follows:

  • Currently, food access is a priority and households are spending more money on food. However, as and when the lockdown eases, the need for cash to buy agricultural inputs and services is likely to emerge and may require attention.
  • Accessing maize seed and fertilizer was a problem in many communities during the maize season. Similarly, a shortage of rice seed, particularly hybrids, can be an issue for farmers unless efforts are made right away.
  • To help cope with the COVID-19 disruptions, a one-size-fits-all relief package would not be effective for farming communities living in different domains. Major support should be on facilitating transport and distribution of seed and fertilizers, access to food supplies through the local government’s schemes, and provision of soft loans.
  • Agrovets have an important contribution as the last mile service providers and they were hit hard by the lockdown. Therefore, facilitating agrovet businesses to operate and transport seeds, fertilizers, and pesticides from suppliers to agrovet business points will be essential to restore businesses and deliver agri-inputs to farmers.

The survey findings were presented and shared with the government, private sector, development partner organizations and project staff over a virtual meeting. This report will serve as a resource for the project and various stakeholders to design their COVID-19 response and recovery strategy development and planning.

Mechanized harvesting fuels rural prosperity in Nepal

In response to increasing labor scarcity and costs, growth in mechanized wheat and rice harvesting has fueled farm prosperity and entrepreneurial opportunity in the poorest parts of Nepal, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have recorded.

Farmers are turning to two-wheeled tractor-mounted reaper-harvesters to make up for the lack of farm labor, caused by a significant number of rural Nepalese — especially men and youth — migrating out in search of employment opportunities.

For Nandalal Oli, a 35-year-old farmer from Bardiya in far-west Nepal, investing in a mechanized reaper not only allowed him to avoid expensive labor costs that have resulted from out-migration from his village, but it also provided a source of income offering wheat and rice harvesting services to his neighbors.

“The reaper easily attaches on my two-wheel tractor and means I can mechanically cut and lay the wheat and rice harvests,” said Oli, the father of two. “Hiring help to harvest by hand is expensive and can take days but with the reaper attachment it’s done in hours, saving time and money.”

Oli was first introduced to the small reaper attachment three years ago at a farmer exhibition hosted by Cereal Systems Initiative for South Asia (CSISA), funded through USAID. He saw the reaper as an opportunity to add harvesting to his mechanization business, where he was already using his two-wheel tractor for tilling, planting and transportation services.

Prosperity powers up reaper adoption

Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019
Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019

Over 4,000 mechanized reapers have been sold in Nepal with more than 50% in far and mid-west Nepal since researchers first introduced the technology five years ago. The successful adoption — which is now led by agricultural machinery dealers that were established or improved with CSISA’s support — has led nearly 24,000 farmers to have regular access to affordable crop harvesting services, said CIMMYT agricultural economist Gokul Paudel.

“Reapers improve farm management, adding a new layer of precision farming and reducing grain loss. Compared to manual harvesting mechanized reapers improve farming productivity that has shown to significantly increase average farm profitability when used for harvesting both rice and wheat,” he explained.

Nearly 65% of Nepal’s population works in agriculture, yet this South Asian country struggles to produce an adequate and affordable supply of food. The research indicated increased farm precision through the use of mechanized reapers boosts farm profitability by $120 a year when used for both rice and wheat harvests.

Oli agreed farmers see the benefit of his harvesting service as he has had no trouble finding customers. On an average year he serves 100 wheat and rice farmers in a 15 kilometer radius of his home.

“Investing in the reaper harvester worked for me. I earn 1,000 NRs [about $8] per hour harvesting fields and was able to pay off the purchase in one season. The added income ensures I can stay on top of bills and pay my children’s school fees.”

Farmers who have purchased reapers operate as service providers to other farms in their community, Paudel said.

“This has the additional benefit of creating legitimate jobs in rural areas, particularly needed among both migrant returnees who are seeking productive uses for earnings gained overseas that, at present, are mostly used for consumptive and unproductive sectors.”

“This additional work can also contribute to jobs for youth keeping them home rather than migrating,” he said.

The adoption rate of the reaper harvester is projected to reach 68% in the rice-wheat systems in the region within the next three years if current trends continue, significantly increasing access and affordability to the service.

Private and public support for mechanized harvester key to strong adoption

Achieving buy-in from the private and public sector was essential to the successful introduction and uptake of reaper attachments in Nepal, said Scott Justice, an agricultural and rural mechanization expert with the CSISA project.

Off the back of the popularity of the two-wheel tractor for planting and tilling, 22 reaper attachments were introduced by the researchers in 2014. Partnering with government institutions, the researchers facilitated demonstrations led by the private sector in farmers’ fields successfully building farmer demand and market-led supply.

“The reapers were introduced at the right place, at the right time. While nearly all Terai farmers for years had used tractor-powered threshing services, the region was suffering from labor scarcity or labor spikes where it took 25 people all day to cut one hectare of grain by hand. Farmers were in search of an easier and faster way to cut their grain,” Justice explained.

“Engaging the private and public sector in demonstrating the functionality and benefits of the reaper across different districts sparked rapidly increasing demand among farmers and service providers,” he said.

Early sales of the reaper attachments have mostly been directly to farmers without the need for considerable government subsidy. Much of the success was due to the researchers’ approach engaging multiple private sector suppliers and the Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA) and networks of machinery importers, traders, and dealers to ensure stocks of reapers were available at local level. The resulting competition led to 30-40% reduction in price contributing to increasing sales.

“With the technical support of researchers through the CSISA project we were able to import reaper attachments and run demonstrations to promote the technology as a sure investment for farmers and rural entrepreneurs,” said Krishna Sharma from Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA).

From 2015, the private sector capitalized on farmers’ interest in mechanized harvesting by importing reapers and running their own demonstrations and several radio jingles and sales continued to increase into the thousands, said Justice.

 Building entrepreneurial capacity along the value chain

Through the CSISA project private dealers and public extension agencies were supported in developing training courses on the use of the reaper and basic business skills to ensure long-term success for farmers and rural entrepreneurs.

Training was essential in encouraging the emergence of mechanized service provision models and the market-based supply and repair chains required to support them, said CIMMYT agricultural mechanization engineer Subash Adhikari.

“Basic operational and business training for farmers who purchased a reaper enabled them to become service providers and successfully increased the access to reaper services and the amount of farms under improved management,” he said.

As commonly occurs when machinery adoption spreads, the availability of spare parts and repairs for reapers lagged behind sales. Researchers facilitated reaper repair training for district sales agent mechanics, as well as providing small grants for spare parts to build the value chain, Adhikari added.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The Cereal Systems Initiative for South Asia (CSISA) aims to sustainably increase the productivity of cereal based cropping systems to improve food security and farmers’ livelihoods in Nepal. CSISA works with public and private partners to support the widespread adoption of affordable and climate-resilient farming technologies and practices, such as improved varieties of maize, wheat, rice and pulses, and mechanization.

Cover photo: A farmer uses a two-wheel tractor-mounted reaper to harvest wheat in Nepal. (Photo: Timothy J. Krupnik/CIMMYT)

Small but mighty

Nearly 65,000 farmers in Nepal, 40% of which were women, have benefited from the Agronomy and Seed Systems Scaling project, according to a comprehensive new report. This project is part of the Cereals Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by USAID.

One of the project’s most recent successes has been in accelerating the adoption of the nutritious and stress-tolerant mung bean in rice-wheat farming systems.

Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)
Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)

Rice-wheat is the dominant cropping system in the lowland region of Nepal. Farmers typically harvest wheat in March and transplant rice in July, leaving land fallow for up to 100 days. A growing body of evidence shows, however, that planting mung bean during this fallow period can assist in improving farmers’ farming systems and livelihoods.

“The mung bean has multiple benefits for farmers,” says Narayan Khanal, a researcher at CIMMYT. “The first benefit is nutrition: mung beans are very rich in iron, protein and are easily digestible. The second benefit is income: farmers can sell mung beans on the market for a higher price than most other legumes. The third benefit is improved soil health: mung beans fix the nitrogen from the atmosphere into the soil as well as improve soil organic content.”

Commonly used in dishes like dahl, soups and sprout, mung beans are a common ingredient in Asian cuisine. However, prior to the project, most farmers in Nepal had never seen the crop before and had no idea how to eat it. Encouraging them to grow the crop was not going to be an easy task.

Thanks to dedicated efforts by CIMMYT researchers, more than 8,000 farmers in Nepal are now cultivating mung bean on land that would otherwise be left fallow, producing over $1.75 million of mung bean per year.

The newfound enthusiasm for growing mung bean could not have been achieved without the help of local women’s farming groups, said Timothy J. Krupnik, CIMMYT senior scientist and CSISA project leader.

Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)

Bringing research and innovations to farmers’ fields

Introducing the mung bean crop to farmers’ fields was just one of the successes of Agronomy and Seed Systems Scaling, which was an added investment by USAID in the wider CSISA project, which began in 2014. The project aims to move agronomic and crop varietal research into real-world impact. It has helped farmers get better access to improved seeds and machinery and strengthened partnerships with the private sector, according to Khanal.

CSISA support in business mentoring and capacity building of seed companies to popularize newly released, biofortified and stress-tolerant wheat varieties has led to seed sales volumes tripling between 2014 to 2019. The project also led to a 68% increase in the number of new improved wheat varieties since the inception of the project.

Nepal’s National Wheat Research Program was able to fast track the release of the early maturing variety BL 4341, by combining data generated by the project through seed companies and the Nepal Agricultural Research Council (NARC) research station. Other varieties, including Borlaug 100 and NL 1327, are now in the pipeline.

Empowering women and facilitating women’s groups have been critical components of the project. Nepal has seen a mass exodus of young men farmers leaving the countryside for the city, leaving women to work the farms. CIMMYT worked with women farmer groups to expand and commercialize simple to use and affordable technologies, like precision seed and fertilizer spreaders.

Over 13,000 farmers have gained affordable access to and benefited from precision agriculture machinery such as two-wheel ‘hand tractors’ and ‘mini tillers.’ This is a major change for small and medium-scale farmers in South Asia who typically rely on low horsepower four-wheel tractors. The project also introduced an attachment for tractors for harvesting rice and wheat called the ‘reaper.’ This equipment helps to reduce the costs and drudgery of manual harvesting. In 2019, Nepal’s Terai region had almost 3,500 reapers, versus 22 in 2014.

To ensure the long-term success of the project, CSISA researchers have trained over 2,000 individuals from the private and public sector, and over 1,000 private organizations including machinery manufacturers and agricultural input dealers.

Researchers have trained project collaborators in both the public and private sector in seed systems, resilient varieties, better farming practices and appropriate agricultural mechanization business models. These partners have in turn passed this knowledge on to farmers, with considerable impact.

“The project’s outcomes demonstrates the importance of multi-year and integrated agricultural development efforts that are science-based, but which are designed in such a way to move research into impact and benefit farmers, by leveraging the skills and interests of Nepal’s public and private sector in unison,” said Krupnik.

“The outcomes from this project will continue to sustain, as the seed and market systems developed and nurtured by the project are anticipated to have long-lasting impact in Nepal,” he said.

Download the full report:
Cereal Systems Initiative for South Asia: Agronomy and Seed Systems Scaling. Final report (2014-2019)

The Cereal Systems Initiative for South Asia (CSISA) is led by the International Maize and Wheat Center (CIMMYT), implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)