Skip to main content

Location: Nepal

For more information, contact CIMMYT’s Nepal office.

Small machinery provides affordable options for women farmers in Nepal

nepal
Farmer Sunita Baineya checking her maize as it comes out of a shelling machine powered by 4WT in Sirkohiya, Bardiya. Photo: P. Lowe/CIMMYT

EL BATAN, Mexico (CIMMYT) – Small-scale mechanization is becoming more important on smallholder farms in Nepal as young people, particularly men, migrate away from rural areas in large numbers, leaving women to take on even bigger responsibilities.

Some 13 million people – about 50 percent of Nepal’s population – live in the hills and mountains where most subsistence farming takes place. Women traditionally contribute more agricultural labor than men in these rural areas, typically undertaking time-consuming tasks such as weeding, harvesting, threshing and milling in addition to household chores. Two-thirds of women in Nepal are self-employed or engaged in unpaid family labor.

Nepal has the lowest ratio of men to women in all of South Asia and the proportion of rural households headed by women jumped from 15 to 25 percent between 2001 and 2011. As a result, rural women face many challenges, their potential curtailed in part due to the difficulty accessing credit. Despite a 2002 amendment to the country’s Land Act, the practice of male succession means that women only own property in a fifth of rural households.

“Almost everywhere there are changes, but maybe particularly so in the mountains,” said Scott Justice, a rural mechanization specialist with the Cereal Systems Initiative for South Asia project in Nepal (CSISA-NP), who works with smallholders as part of efforts to help improve livelihoods. “Tasks like the upkeep of terraces, plowing or service hiring are getting delayed or passed on to women, at the same time as the prices of hiring are going up.”

Following the April 2015 earthquake in Nepal, CSISA-NP was contracted by the United States Agency for International Development (USAID) to help affected farming communities recover by providing grain storage tools, farm machinery and training, reaching 33,150 earthquake-affected households.

CSISA-NP, a project led by the International Maize and Wheat Improvement Center (CIMMYT) with the International Rice Research Institute and the International Food Policy Research Institute and funded by USAID, aims to address the gender imbalance by increasing access to affordable machinery options to increase farm income while reducing drudgery for women.

An as yet unpublished study on the spread of mini-tillers has shown approximately 7,000 mini-tillers sold in hill districts, Justice said.

“A key priority for the government and projects like ours is getting owners to use the [mini-tiller] engine to power other machinery like wheat and rice threshers, mini-maize shellers, pumps and maybe even reapers and planter-seeder attachments,” said Justice.

“A small cadre of machinery importers who, along with CIMMYT’s market development efforts, are increasingly attuned to small farmers’ needs, bringing in a new generation of small and inexpensive machinery ideas and products emerging from China,” he said. “These qualities make it easier for women and their households to access and use such technologies.”

One of the technologies identified by CSISA-NP is a small, lightweight, precision hand cranked fertilizer spreader, which is growing in popularity because it can increase rice and wheat yields by 5 to 10 percent while cutting labor by half or more. CSISA has trained 150 service providers to use the fertilizer spreader, while cooperating private sector partners have imported over 500 of these spreaders in advance of the 2016-2017 wheat season.

CSISA focuses on the creation of a sustainable private machinery and service sector that serves farmers’ needs. A core group of approximately 15 to 20 (mostly) small businesses are constantly traveling and scouring the markets in China for new machinery and new ideas. One challenge is to encourage them to look more broadly in Asia for innovative scale appropriate technologies that meet the needs of both women and men in Nepal.

“Our activities are based on more than two decades of CIMMYT experience of small-scale mechanization in Nepal’s Terai area – rather than joining farmers’ experiments, we join in small and mid-sized machinery importers’ marketing experiments,” explained Justice.

CSISA is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute and funded by USAID. It was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. 

Rebuilding farmer livelihoods in earthquake-hit Nepal

An Earthquake Recovery Support Program beneficiary operates the lightweight and versatile mini-tiller, which is easier and more cost-effective than using bullocks to plough fields. Photo: P. Lowe/CIMMYT
An Earthquake Recovery Support Program beneficiary operates the lightweight and versatile mini-tiller, which is easier and more cost-effective than using bullocks to plough fields. Photo: P. Lowe/CIMMYT

KATHMANDU, Nepal – The International Maize and Wheat Improvement Center (CIMMYT)-led Cereal Systems Initiative for South Asia (CSISA)’s Earthquake Recovery Support Program has helped more than 40,000 farmers in earthquake-hit areas of Nepal for over a year.

Since the program’s beginning in June 2015 a suite of agricultural assets including mini-tillers and other farm machines, seed and grain storage facilities, agricultural hand tools, technical training and agronomy support have been implemented through its completion this September.  Beneficiaries came from across eight of the most risk-prone affected districts in Nepal.

Last year’s earthquake seriously undermined Nepal’s food security with losses estimated at more than $280 million in the agriculture sector alone. Nearly two-thirds of the country’s population relies on agriculture for their livelihood, which has made it even tougher for farmers affected by the earthquake. The quakes destroyed grain and seed stockpiles, killed and injured livestock, wrecked tools and implements and collapsed regional irrigation and agricultural markets’ infrastructure.

While the program’s monitoring and evaluation activities are still underway, initial estimated impacts show the storage bags and cocoons distributed are expected to save about 2,700 tons of grain and seed. In addition, agricultural hand tools have helped sustainable agriculture take hold, and agronomy guides have provided information on new production technologies and management practices. Distributed mini-tillers can also cover 700 hectares of land, reducing drudgery for women in particular due to their light weight. Mechanics trained by the program also ensure mini-tillers will be repaired and available locally, which encourages continued demand for the machines.

CIMMYT Director General Martin Kropff, observes a mini-tiller in operation during his visit in March this year to Nuwakot, one of the districts benefitting from the Earthquake Recovery Support Program in Nepal. Photo: A. Rai/CIMMYT
CIMMYT Director General Martin Kropff, observes a mini-tiller in operation during his visit in March this year to Nuwakot, one of the districts benefiting from the Earthquake Recovery Support Program in Nepal. Photo: A. Rai/CIMMYT

Subarna Bhandari, one of the recipients from Sindhupalchowk district, operated his mini-tiller for a total of 120 hours, earning approximately $540 within 3 months. The combined 8 machines that were distributed in his area would therefore help the recipients earn over $4,000. Another beneficiary previously needed three pairs of bullocks for two rounds of plowing at a cost of roughly $60. Thanks to the mini-tiller, the same activity now only costs $14.

“Keeping cattle for farm labor is costly and tedious because they need feed and fodder throughout the year, even when they are not in use,” says Mitra Shrestha, a farmer from Nuwakot district.  “However, the mini-tiller needs fuel only when it is being used. In one hour the machine can cultivate an area that would require a pair of cattle to work an entire day,” she adds.

Shrestha uses the surplus time she can now spare for vegetable farming and other household chores. “In fact, I now also use the mini-tiller for land preparation of potatoes, since it can till deeper and make ridges.”

Beyond the earthquake program, CSISA is moving some of its activities into these districts so that it can build upon the momentum created around scale-appropriate mechanization over the last year. The Nepal Seed and Fertilizer project, led by CIMMYT, also works in the earthquake zone.

facts-nepal

The Cereal Systems Initiative for South Asia (CSISA) is a CIMMYT-led regional initiative funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation. The Earthquake Recovery Support Program is Supported by USAID and implemented in cooperation with Nepal’s Ministry of Agricultural Development.

Expanding for faster and wider deployment of heat-tolerant hybrids in South Asia

 

Caption: Chetana Patil, Joint Director of Agriculture (left), discusses the strength of new heat-tolerant maize hybrids with farmers. Photo: UAS, Raichur
Caption: Chetana Patil, Joint Director of Agriculture (left), discusses the strength of new heat-tolerant maize hybrids with farmers. Photo: UAS, Raichur

KATHMANDU, Nepal (CIMMYT) —  Launched by CIMMYT in January 2013 in collaboration of five public sector institutions and three seed companies from four South Asian countries (Bangladesh, India, Nepal and Pakistan), the Heat Tolerant Maize for Asia (HTMA) project is a public-private partnership that targets resource-poor maize farmers in South Asia who face weather extremes and climate change effects.

Funded by the United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, HTMA receives significant contributions from various partner institutions and companies. As a result of meticulously planned research on fast-track development and deployment of heat tolerant maize hybrids in South Asia, within three years the first 18 heat resilient hybrids were licensed to HTMA partners for deployment and scale-out. The project’s outputs attracted the attention of other players in the region, especially private seed companies, who expressed their interest in becoming a part of HTMA. A total of 12 new partners (five seed companies each from Bangladesh and Pakistan and two from Nepal) formally joined the project. They participated for the first time in the project’s annual review and planning meeting jointly organized by the Nepal Agricultural Research Program (NARC) and CIMMYT in Kathmandu, Nepal, on 25-26 July 2016.

Executive Director Yamraj Pandey, NARC, Nepal, chaired the inaugural session of the fourth annual review and planning meeting. In his opening remarks, Pandey emphasized the importance of stress resilient maize hybrids for coping with climate change effects and highlighted the remarkable progress HTMA has made in such a short period, giving farmers in stress-prone maize growing Asian environments much-needed heat tolerant hybrids. B.M. Prasanna, Director of CIMMYT’s Global Maize Program and of CRP-MAIZE, gave an overview of the new CGIAR research program on Maize Agri-food Systems, its focus and priorities, and highlighted the importance of stress-resilient maize for improving food security and livelihoods, especially in regions vulnerable to climate change, such as the Asian tropics.

Hailu Tefera, Agricultural Resource Specialist, Bureau for Food Security, USAID, gave an update on the FTF initiative and highlighted its priorities, which include reducing poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. He also informed meeting participants that on 7 July 2016, the US Congress passed the Global Food Security Act (GFSA), which will make FTF into law. Senior CIMMYT maize physiologist and HTMA project leader P.H. Zaidi shared the latest progress made under HTMA including the identification of genomic regions for key heat tolerant traits, development of improved heat tolerant populations using genomic selection, testing of new hybrid combinations, identification of promising hybrids, and the latest capacity development efforts.

At a series of technical sessions, project objective leaders, including Mitch Tuinstra, Purdue University professor, Sudha Nair, CIMMYT molecular maize breeder, and M.T. Vinayan, CIMMYT maize stress specialist for South Asia, presented the latest research results in each objective. HTMA leaders from public and private sector partners presented results of HTMA trials conducted at their locations/countries, and shared a list of top-ranking, best-bet heat-tolerant maize hybrids that will be subjected to large-scale testing and then deployed. They also described efforts aimed at disseminating HTMA hybrids through on-farm demonstrations and farmer-participatory selection of final products.. Most impressive was that each partner has identified a second batch of promising hybrids suitable for their target markets/agro-ecologies.

Caption: HTMA team at 4th annual review and planning meeting during 25-26 July, 2016 in Kathmandu, Nepal. Photo: CIMMYT
Caption: HTMA team at 4th annual review and planning meeting during 25-26 July, 2016 in Kathmandu, Nepal. Photo: UAS, Raichur

The project started a unique initiative aimed at developing hybrids using elite maize lines from Pioneer and HTMA. Kamal Pandey from Pioneer highlighted the performance of CIMMYT x Pioneer hybrids, which revealed the significant heterosis between CIMMYT and Pioneer maize germplasm, and should help identify promising joint hybrids suitable for stress-prone ecologies of South Asia. Zaidi and Tuinstra jointly presented HTMA’s progress on capacity development and provided updates on student research projects, including nine Ph.D. and six M.Sc. students, plus a total of 10 workshops/training courses organized so far on subjects such as precision phenotyping, molecular breeding, data management and seed systems. A total 303 participants have been trained, including researchers from public sector institutions and seed companies in Bangladesh, India, Nepal and Pakistan.

The meeting was attended by over 50 program leaders, scientists and representatives from collaborating institutions in South Asia, including BARI (Bangladesh), Nepal’s National Maize Research Program (NMRP), Pakistan’s Maize and Millet Research Institute, Bhutan’s national maize program, and two of India’s state agricultural universities. Also in attendance were partner seed companies in the region, including Pioneer Hi-Bred, Kaveri Seeds and Ajeet Seeds (India), and new seed company partners including Sean Seeds and Hariyali Community Seeds (Nepal); Jullundhar Pvt. Ltd., Kanzo Quality Seeds, CKD Seeds & Fertilizers, Hisell Seeds, and Zamindara Seeds (Pakistan); and Lalteer Seeds, Krishibid, BRAC, ACI Ltd., and Supreme Seeds (Bangladesh). International institutions such as Purdue University, USAID and CIMMYT also participated in the event.

The project’s progress and updates were critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed great satisfaction with its overall progress and achievements. Speaking for USAID, Hailu Tefera said they are highly impressed with HTMA’s progress and consider it a model public-private partnership. Other PSC members also expressed their satisfaction and agreed that the HTMA team deserves special appreciation for the remarkable progress they have achieved within just four years.

receive newsletter

CIMMYT expands registered maize hybrids to western Nepal

CIMMYT is collaborating with national partners in Nepal to support the expansion of registered hybrid maize and to help increase the crop’s productivity throughout the country. Photo: Ashok Rai/CIMMYT
CIMMYT is collaborating with national partners in Nepal to support the expansion of registered hybrid maize and to help increase the crop’s productivity throughout the country. Photo: Ashok Rai/CIMMYT

Maize is the second most important food crop in Nepal, after rice. It contributes approximately 25 percent of Nepal’s food basket and occupies around 26 percent of the total cropped area. Maize productivity (2.3 tons per hectare) in Nepal is still quite low compared to the global average of 5.5 tons per hectare (t/ha).

Growing demand from Nepal’s poultry industry cannot be met by growing only open-pollinated varieties. Because of their high productivity, quality and profitability, higher-yielding hybrids have become increasingly popular among farmers. However, most maize hybrids are only approved for sale and cultivation in the central and eastern Terai, east of the Narayani River. To meet market demand, farmers in many areas, especially in western Nepal, sometimes purchase non-approved hybrid seeds. These hybrid seeds are not registered at Nepal’s Seed Quality Control Centre and are traded through informal channels.

Not wishing to risk a government penalty for violating the seed policy, traders have not distributed many high-performing hybrids, thereby restricting their local production, fair distribution and widespread availability, which could benefit many farmers in Nepal. Of the estimated 2,500 tons of hybrid maize grown in Nepal annually, only 1,000 tons are registered hybrids.

In 2014 and 2015, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) and Nepal’s National Maize Research Program (NMRP) partnered to evaluate maize hybrids in six additional districts (Banke, Bardiya, Kailali, Kanchanpur, Surkhet and Dadeldhura) in western Nepal. Trials were conducted in spring in the Terai and in summer in the mid-hills; they were monitored by a team of NMRP stakeholders. Performance data for variety release and registration were shared with Nepal’s National Seed Board (NSB).

Of the ten hybrids evaluated, four (TX 369, Bioseed 9220, Rajkumar and Nutan) were found to be agronomically superior, producing more than 6 t/ha. They also had tight husk cover, which provides moderate resistance to northern leaf blight and grey leaf spot. Based on the evaluation results, the NSB has registered and approved the four hybrid varieties for sale in western Nepal.

Highlighting the need to increase farmers’ access to registered hybrids, Dilaram Bhandari, NSB member and Director of the Crop Development Directorate of Nepal’s Department of Agriculture, said, “We have to adopt this modality for other hybrids as well, since new hybrids expand outside the recommendation domains quite frequently.”

 

receive newsletter

CIMMYT delivers technology to public and private partners in Nepal

Puniram Chaudhary in Kailali District explains the advantages of growing new lentil variety Black Masuro over the local variety. Photo: Narayan Khanal
Puniram Chaudhary in Kailali District explains the advantages of growing new lentil variety Black Masuro over the local variety. Photo: Narayan Khanal

KATHMANDU, NEPAL (CIMMYT) – Farmers in Nepal are benefiting from the work done by the Cereal Systems Initiative of South Asia (CSISA) in Nepal, which  promotes public-private partnerships with small and medium enterprises in the seed sector to aid sustainable intensification of wheat- and maize-based cropping systems over the past two years.

Representatives of these enterprises have received business mentoring, participated in an exercise on creating business plans, collaborated with Indian seed companies and attended a “theory of change” workshop. Subsequently, two seed companies (GATE Nepal Pvt. Ltd. and Unique Seed Company) requested technical support from CIMMYT to organize field demonstrations of new wheat and lentil varieties for farmers in six strategic districts in the hills and terai (plains) of Nepal. In terai demonstrations were held in Banke, Bardiya, Kailali and Kanchanpur.  In hill districts demonstrations were held in Surkhet and Dadeldhura. Altogether, CIMMYT provided support for 60 wheat and lentil field demonstrations during the 2015-2016 winter season in collaboration with national agriculture research system partners.

A team of professionals, which included representatives from District Agriculture Development Offices (DADOs), Nepal Agriculture Research Council (NARC), CSISA-Nepal, seed companies and the media, attended the demonstrations from 13-17 March 2016. They observed three treatments: a farmers’ variety under farmers’ management; an improved variety under farmers’ management and an improved variety under improved management. The visitors also viewed seed production plots, interacted with farmers about key lessons learned and discussed possible strategies for scaling out wheat and lentil technology through public-private partnerships.

During the visit, it was clear that farmers understood the advantages of growing quality seed of recently released wheat varieties such as Vijay, compared to the local varieties. Some farmers asked for wheat varieties with physical features and cooking qualities similar to those of NL 297, an old variety. At one of the participatory variety selection (PVS) plots, senior wheat breeder Madan Bhatta proposed NARC’s pipeline variety BL4341 as an alternative to NL 297. Milan Paudel, GATE Nepal agriculture officer, became keenly interested in BL4341 and said he would collect seed from the trial plot so his company could multiply it.

Women farmers selected wheat variety Danfe at the PVS trial in Gadhi VDC, Surkhet District. Photo: Narayan Khanal
Women farmers selected wheat variety Danfe at the PVS trial in Gadhi VDC, Surkhet District. Photo: Narayan Khanal

The team also observed the wheat field of farmer Ram Chandra Yadav, who had planted Vijay on 3 ha using a zero-tillage seed drill. Yadav is also a local service provider of the zero-tillage seed drill promoted by the CSISA project. During the current wheat season, he has provided paid services on 18 hectares (44.5 acres) belonging to other farmers. The team also witnessed the success of new wheat varieties WK 1204, Dhawalagiri and Danphe in the hill district of Surkhet, where farmers planted a significant area with seed saved from their previous harvest.

Lentils were also in focus, most farmers liked the performance of new variety Black Masuro across districts in the terai. Rabendra Sah, senior technical officer of the National Grain Legume Research Program, said that to get higher yields, farmers should sow Black Masuro by 15 October.

DADO officials acknowledged CIMMYT’s contribution to seed system development and mechanization. They proposed an improved model for producing seed of major food crops in public-private partnerships. In this model, seed companies agree to make contractual arrangements with seed producer groups and cooperatives to produce and market truthfully labeled (TL) seed. Once the contract is signed, DADOs will provide source seed to the seed companies at a subsidized rate, and the seed will be multiplied by producer groups and cooperatives. The TL seed thus produced will then be distributed through different food security related projects.

Given that DADOs from Surkhet and Kanchanpur are keen to participate in this model, CIMMYT has agreed to further strengthen such partnership arrangements. There is a growing realization that the CIMMYT can mobilize private seed companies in Nepal to utilize the network of farmer groups and cooperatives to scale out technologies/varieties.

Helping Nepalese farmers adapt to climate change

This story appeared originally on the Borlaug Global Rust Initiative website to mark Earth Day on April 22, 2016. Linda McCandless is associate director for communications, International Programs, College of Agricultural and Life Sciences at Cornell University. She also oversees communications for the Delivering Genetic Gain in Wheat project.

SINDHULPALCHOWK, Nepal (BGRI) — Farming the terraced hillsides above the Indrawati River Valley of Nepal, Nabaraj Sapkota and his wife Muthu Dei experience the impacts of climate change on an almost daily basis. Erratic rains make planting difficult. Warm, misty conditions and prolonged winter temperatures increase the incidence of wheat rusts that reduce yield. Unpredictable hailstorms flatten wheat and rice before they can be harvested.

“When we need rain, there is no rain.  And when we don’t need rain, there is plenty of rain,” says Nabaraj. “We used to only have rain from May through July, now we have rain and mist from November.”

Khim lal Bastola grows wheat, maize and rice in rotation and sustains four generations in his 12-person household near Pokhara. “The change is obvious: man produces something with his hard labor but strong winds and hailstorms destroy it,” he said.

“The climate change scenario for Nepal — where temperature are likely to increase and precipitation is likely to be more erratic — will disproportionally affect smallholder farmers,” said Dhruba Thapa, a senior scientist with the Nepal Agricultural Research Council. “For Nepal, the cost of not adapting to climate change will be high.”

Like many farmers in Nepal, Bastola and the Sapkotas need technical assistance to help them adapt to climate change. They eagerly soak up the education offered by people like Thapa, Sarala Sharma, and Sunita Adhibari, NARC scientists who distribute disease resistant varieties of wheat and help farmers learn to identify diseases.

Scientists and farmers also soak up training from the Borlaug Global Rust Initiative (BGRI), and specialists like Dave Hodson, a wheat surveillance specialist with CIMMYT, who shows them how to scout for wheat rust and upload data into the global RustTracker monitoring system.

FARMING PERVASIVE BUT DIFFICULT IN NEPAL

Farming in Nepal is hard, backbreaking labor predominantly done by hand in fields rarely more than one-quarter of an acre in size. Men plow the small plots on the terraced hillsides with oxen. Women break up the clods with heavy adzes. Although rarely above subsistence level, small farms are of vital importance in sustaining the multi-generational communities scattered throughout the Himalayas in the high hills to the north, the temperate mid-hills, and the subtropical terai to the south.

The livelihoods of more than 75 percent of the people in Nepal are based on agriculture and forestry, and almost 65 percent of the agriculture is rainfed, Nepal is among the 25 nations in the world with the lowest GDP per person and also ranks among the 25 with the greatest decrease in forested land. Rural populations are heavily clustered in river basins whose annual monsoon-fed flood cycles are likely to be exacerbated by warming. Deforestation adds to the problem, intensifying flooding and contributing to the likelihood of landslides.

HELPING FARMERS ADAPT TO CLIMATE CHANGE

Using disease resistant and improved seeds, and adopting different planting and harvesting calendars helps farmers adapt to climate change.

In Chhampi, north of Kathmandu, Krishna Bahadur Ghimire and the local farmers’ cooperative of which he is president, are now producing improved rice, wheat and maize on 140 ropanis of land. Ghimere supplies beans, rice, eggplant, soybeans, wheat and vegetable seeds to his neighbors. He started farming on one ropani of land (~ 500 sq.m) in 1997 but switched to the seed business when he found himself having to drive two hours to Kathmandu to get the improved varieties he needed.

“Our local varieties were not climate smart. We went to Kathmandu to get improved seeds from the Nepalese Agricultural Research Center because their seeds are more disease resistant, higher yielding, and higher quality,” said Ghimire, who has worked with Thapa for 11 years.  “New varieties are less lodging and scattering during storms and high winds than the local ones.”

“Farmers need climate smart crops that have been improved for yield and disease resistance, but they also need seeds adapted for variable weather conditions whether we have drought or excess rainfall,” said Thapa. “NARC screens many lines and then provides seeds of promising lines to farmers for participatory variety selection trials, like with Ghimire’s group.”

Naparaj, the Sindhulpalchowk farmer, initially received 300 grams of seven varieties of improved wheat from Thapa. “I was thinking how I could uplift them (my neighbors),” said Naparaj. “I thought to myself, the lives of these people must be uplifted through improved seeds which would give them good production. We used to get one muri (~3.5 liters or 70 kg) of wheat per one ropani (~ 500 sq.m.). Now we are threshing three or four times more. It is a huge profit.”

Ghimere’s 25-year-old nephew Saroj Kumar Bista, speaks of another problem affecting farmers that requires gender-sensitive initiatves. “Many young men are going to the Middle East to work and not moving into the farming sector,” he said.

Nowhere is this more evident than in Godhavari, where Manju Khavas, Radha Basnet and Janaki Silwal’s sons have gone to the Middle East or Japan to work. Their husbands work off the farm, leaving them in charge. “At first we were overwhelmed,” said the 52-year-old Khavas. “We could not find someone to dig the fields. Now it is easier because of the handheld tractor.”

Thapa introduced improved eight or nine varieties of wheat to their community as well as agronomic practices like planting in rows, incorporating manure for fertilizer, and using handheld tractors (similar to heavy duty rototillers).

How does Khavas count improvement? “When we were 7 or 8 members in the family, the produce of this land was not enough. Now the produce is enough for 13 to 14 people,” she said. Wheat yields are so improved that she and her friends want a wheat threshing machine so they don’t have to thresh the greater quantities by hand.

Although the women said they have yet to “evaluate” climate change, they noted the “environment has been spoilt.”

“During the harvesting season of the wheat, we suffer from the fear of rain,” said Khavas. “Hailstorms also scare us. The moment the wheat becomes yellow, we begin to feel afraid whether we will be able to harvest it or not. And then when the wheat is harvested amid the fear of rain, in the paddy rice planting time, there is no rain.”

MORE TRAINING FOR CLIMATE CHANGE ADAPTATION

Dave Hodson, a surveillance expert with CIMMYT and the BGRI, travels to countries like Nepal to train scientists on using handheld tablets to scout for disease and input data into global disease tracking and monitoring systems that can help to predict disease outbreaks.

Since 2008, the BGRI has held five 2-week training sessions on the “Art and Science of Rust Pathology and Wheat Breeding” in Asia for scientists in the South Asian Association for Regional Cooperation (SAARC), including scientists from Nepal, India, Pakistan, Afghanistan, Bangladesh and Bhutan. The course is slated to be on-line this summer.

Nepalese farmers lack understanding of meteorological data and how to reduce risks in agriculture and farming. Sushila Pyakurel, who works with ICDO Lalitpur, has helped initiate Climate Field Schools in Nepal where farmers learn the effects of climate change, identifying crops most suitable to grow, seed selection, scheduling farm operations/farm management practices, and adaptation strategies/methodologies.

One of the new areas of expansion for the BGRI is the new Delivering Genetic Gain in Wheat project, a $24M effort funded by the Bill & Melinda Gates Foundation to make wheat for smallholder farmers around the world more heat tolerant and disease resistant in the face of climate change. It builds on the successes of the 2008-2015 Durable Rust Resistance in Wheat project, which initiated and funded the SAARC training courses.

DEDICATION: April 25, 2016: For smallholder farmers in Nepal, the challenges of climate change are disastrous enough. A 7.8 magnitude earthquake devastated Nepal on 25 April 2015, less than one month after the Borlaug Global Rust Initiative team visited. More than 9,000 people died and almost 900,000 homes were destroyed. Some of the hardest hit areas were Sindhulpalchowk and Chhampi. This Earth Day blog is dedicated to the resilient farmers of Nepal. It is the BGRI’s sincerest hope that their families are well on their way to recovery.

Rebuilding livelihoods: CIMMYT helps Nepalese farmers recover from earthquake

A farmer uses a mini-tiller in the midwestern region of Nepal. Photo credit: CIMMYT/CSISA

The recent 7.6 magnitude earthquake that struck Nepal on 25 April, followed by a 7.3 magnitude aftershock on 12 May and several hundred additional aftershocks, has had huge negative impacts on the country’s agriculture and food security. Around two-thirds of Nepal’s population rely on agriculture for their livelihoods, and agriculture contributes 33% of Nepal’s GDP. It is estimated that about 8 million people have been affected by the earthquakes, with smallholders in hilly regions being the hardest hit.

The earthquakes damaged or destroyed agricultural assets, undermining the longer-term food production capacity of farm families and disrupting critical input supply, trade, and processing networks. Farmers lost grain and seed stocks, livestock, agricultural tools and other inputs, and are facing significant labor shortages. Widespread damage to seed and grain storage facilities has affected smallholder farmers’ ability to secure their harvested crops during the rainy season.

In response to the devastation, USAID-Nepal has provided US$1 million to the CIMMYT-led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP) for earthquake relief and recovery. The Earthquake Recovery Support Program will be implemented for a period of 13 months in close coordination with the Ministry of Agricultural Development (MoAD), Department of Agriculture, Department of Livestock Services, Nepal Agricultural Research Council, and District Disaster Relief Committee. The districts that will receive support include Dolkha, Kavre, Khotang, Makwanpur, Nuwakot, Ramechap, Sindhupalchowk, and Solukhumbu, which suffered particularly high levels of damage.

According to Andrew McDonald, CIMMYT Principal Scientist and CSISA Project Leader, “Even if seed is available, farmers’ ability to plant and harvest crops has been severely diminished due to the loss of draft animals and the exacerbation of labor shortages.” To aid them, the earthquake recovery program will provide more than 33,000 farming households with 50,000 grain storage bags, 30 cocoons for community grain storage, 400 mini-tillers and other modern agriculture power tools (e.g., seeders, reapers, and maize shellers), 800 sets of small agricultural hand tools, and 20,000 posters on better-bet agronomic practices for rice and maize.

“First we will focus on getting horse-powered mini-tillers into affected communities, and subsequently broadening the utility of these machines to power a host of essential agricultural activities including seeding, reaping, threshing, and shelling, as well as driving small pumps for irrigation,” said Scott Justice, Agricultural Mechanization Specialist, CSISA-NP.

CIMMYT scientists train farmers on how to use a power tiller in Dadeldhura, Nepal.
Photo credit: Lokendra Khadka/CSISA-Nepal

At the program’s inception workshop on 28 August, Beth Dunford, USAID-Nepal Mission Director, remarked that USAID-Nepal has arranged for a special fund to help earthquake-affected people. Beyond the devastation of houses and public infrastructure such as roads, the earthquake has seriously disrupted agriculture and the rural economy in the impacted districts. Re-establishing vital agricultural markets and services is key to how quickly these communities will recover from the earthquake, underlined Dunford.

To coordinate and monitor program activities effectively, management committees at the central, district, and local levels have been formed with the purpose of identifying the earthquake-affected areas within a district and ensuring efficient and transparent distribution of aid items.

MoAD Joint Secretary Rajendra Adhikari highlighted that the Ministry feels a real sense of ownership over this program and is committed to implementing program activities through its network. The farm machinery support program will be a perfect platform for MoAD to expand its farm mechanization program into other areas of the country. The Earthquake Recovery Support Program also aligns with the Nepalese Government’s agricultural development strategies, which focus on community-wide inclusive development.

Cereal Systems Initiative for South Asia enters Phase III: focus on scalability and strategic partnerships

In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.
In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.

Growth rates of staple crop yields in South Asia are insufficient to meet the region’s projected demands. Forty percent of the world’s poor live in South Asia, and the area comprising eastern India, Bangladesh, and Nepal has the world’s largest concentration of impoverished and food insecure people. At the same time, resource degradation, declining labor availability, and climate change (frequent droughts and rising temperatures) pose considerable threats to farming system productivity and rural livelihoods. By 2050, 30% of South Asia’s wheat crop is likely to be lost due to higher temperatures, experts say.

Continue reading

Supporting sustainable and scalable changes in cereal systems in South Asia

Srikanth Kolari/CIMMYT
Srikanth Kolari/CIMMYT

The rates of growth of staple crop yields in South Asia are insufficient to meet the projected demands in the region. With 40 percent of the world’s poor living in South Asia, the area composed of eastern India, Bangladesh and Nepal has the largest concentration of impoverished and food insecure people worldwide. At the same time, issues of resource degradation, declining labor availability and climate change (frequent droughts and rising temperatures) pose considerable threats to increasing the productivity of farming systems and rural livelihoods. Thirty percent of South Asia’s wheat crop is likely to be lost due to higher temperatures by 2050, experts say.

“These ecologies are regionally important for several reasons,” said Andrew McDonald, Project Leader, Cereal Systems Initiative for South Asia, CIMMYT. “First, they have a higher density of rural poverty and food insecurity than any other region. Second, yield gaps for cereal staples are higher here than elsewhere in South Asia – highlighting the significant growth potential in agriculture.”

According to McDonald, there has been some successes due to increased investment and focus on intensification in these areas over the past 10 years. A CIMMYT-led initiative, the Cereal Systems Initiative for South Asia (CSISA) has contributed to major outcomes such as rapid uptake of early-planted wheat, the use of zero-tillage seed drills and long-duration, high-yielding wheat varieties in eastern India.

CSISA, in close collaboration with national partners, has been working in this region since 2009 to sustainably enhance the productivity of cereal-based cropping systems, as well as to improve the livelihoods of millions of smallholder farmers.

“Climate-resilient practices are gaining confidence in the areas we are working. More than 500,000 farmers adopted components of the early rice-wheat cropping system in Bihar and eastern Uttar Pradesh last year,” said R.K. Malik, Senior Agronomist, CIMMYT. “Early sowing can protect the crop from late-season heat damage and increase yields. It’s a non-cash input that even smallholders can benefit from and is one of the most important adaptations to climate change in this region.”

To increase the spread of these innovations and increase farmers’ access to modern farming technologies, CSISA is working to strengthen the network of service providers.

“This region has a large number of smallholder farmers and ownership of machines by smallholders is often not economically viable,” highlighted Malik. “In Indian states of Bihar, Odisha and eastern Uttar Pradesh, CSISA has facilitated more than 2,100 progressive farmers to become local entrepreneurs through relevant skills, information and training during the last three years.”

The U.S. Agency for International Development and the Bill & Melinda Gates Foundation have recently approved Phase III of CSISA, running from December 2015 to November 2020. Building on the momentum and achievements of Phase I and II, Phase III will work to scale up innovations, strengthen local capacity and expand markets to support the widespread adoption of climate-resilient agricultural technologies in partnership with the national and developmental partners and key private sector actors.

“CSISA has made its mark as a ‘big tent’ initiative that closes gaps between research and delivery, and takes a systems approach that will continue to be leveraged in Phase III through strategic partnerships with national agricultural systems, extension systems and agricultural departments and with civil society and the private sector,” said McDonald.

Implemented jointly with International Rice Research Institute and International Food Policy Research Institute, the main four outcomes of Phase III focus on technology scaling, mainstreaming innovation into national systems, development of research-based products and reforming policies for faster technology adoption.

Photo Feature: Major Impacts of CSISA

Small farmers sow maize with a push row planter in Khyber Pukhtunkhwa Province, Pakistan

Farmer Jalees Ahmed planting maize with a push row planter in Nowshera, Pakistan. Photo: Ansaar Ahmed
Farmer Jalees Ahmed planting maize with a push row planter in Nowshera, Pakistan. Photo: Ansaar Ahmed

In Pakistan, maize is planted on 0.97 million hectares, of which 0.42 million are located in the province of Khyber Pakhtunkhwa (KP). The maize crop in KP is sown predominantly by hand and farmers practice a variety of methods such as broadcast and line sowing. Small farmers broadcast the maize seed and then do a shallow cultivation; however, seed is wasted with this method.

Maize is also line-planted, which involves placing rope or string lengthwise with marks at specific distances. The maize seed is then planted with a hoe in what is known as the Thapa method, which is very labor intensive.

Continue reading

CSISA wheat breeders plan for future gains in South Asia

Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle
Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle

The growing interest of national agriculture research system (NARS) of South Asia in genetic gains and seed dissemination work in Cereal Systems Initiative for South Asia (CSISA) objective 4 (wheat breeding), 50 scientists from Bangladesh, Bhutan, India and Nepal assembled at Karnal, India on September 2-3, 2015 for the 7th Wheat Breeding Review Meeting of this project. The meeting was organized by CIMMYT’s Kathmandu office with support from CIMMYT-Delhi/Karnal office and led by Dr. Arun Joshi. Dr. Ravish Chatrath, IIWBR provided strong support as local organizer.

The other CIMMYT participants were Etienne Duveiller, Uttam Kumar and Alistair Pask. Participants included representatives of: the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Punjab Agricultural University, Ludhiana; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Khumaltar of Nepal Agricultural Research Council (NARC) and Renewable Natural Resources (RNR), Research and Development Centre (RDC), Bajo, Bhutan.

The CSISA meeting began with remarks by the chief guest, Dr. Indu Sharma, Director, IIWBR, Karnal along with Dr. Md. Rafiqul Islam Mondal, Director General, BARI; Etienne Duveiller, CIMMYT, Delhi and Arun Joshi, CIMMYT, Kathmandu. Within a wider framework of discussing issues concerning wheat improvement, the CSISA meeting reviewed the progress of the 2014-15 cycle, and established work plans for the coming crop cycle. Arun Joshi presented a summary of the achievements in wheat breeding over last 6 years and highlighted the impressive results obtained in varietal release, seed dissemination and impact in farmer fields. Dr. Etienne informed he challenges of climate change and the ways our program should be shaped to handle these issues. Dr. Mondal expressed his happiness that CSISA wheat breeding has been very successful in contributing to enhancement of wheat production and producitity in Bangladesh and other countries through a vigourous wheat breeding and seed dissemination with strong linkage with national centres.

Dr. Indu Sharma highlighted the significance of collaborative research with a regional perspective and told the audience about the successes being achieved by CSISA in wheat research especially in handling rust resistance and heat tolerance in south Asia. She expressed his appreciation for new research efforts under CSISA and said that “the South Asia-CIMMYT collaboration is paramount to the food security and livelihood of the farmers.” She also said that seeing new challenges there is much more need for such collaborative research efforts for the economic prosperity and good health of agriculture sector in south Asia.

Four review sessions were conducted, chaired by NARS colleagues Dr. Indu Sharma, Dr. Mondal, Dr. Ravi Pratap Singh and Dr. S.P. Khatiwada. Three sessions were used to present review reports and work plans from the 10 research centers, while two other sessions discussed progress in physiology, spot blotch and strengthening linkage of wheat breeding with seed dissemination and capacity building in South Asia. A major discussion was held to devise strategies to strengthen research to handle future threats to wheat such as yellow rust, early and late heat stress, water scarcity and to enable environment for fast track release of varieties so that new seed can reach to farmers as soon as possible.

Arun Joshi also highlighted major achievements in CSISA wheat breeding through very able collaboration by national centres in South Asia. He emphasized that breeding for biotic and abiotic stress tolerance gained momentum through CSISA by developing varieties with faster grain filling and flexibility to adapt to a range of sowing dates. Not only these new varieties were developed, improved networking with public and private sector seed hubs enabled fast track inclusion of these varieties in seed dissemination chain. The increase germplasm flow from CIMMYT, Mexico enriched Indian gene bank with a large reservoir of diverse set of genotypes for current and future used. The continued inclusion of resistance to Ug99 and other rusts in wheat lines kept diseases at bay and safeguarded farmers. There is increased use of physiological tools for heat and drought tolerance and stronger links were established between breeders, seed producers and farmers. Another significant achievement was strengthened capacity building in the region.

A talk on wheat research as Borlaug Institute for South Asia (BISA) was delivered by Uttam Kumar, CIMMYT. Likewise progress on CRP project on spot blotch was presented by Shree Pandey and Ramesh Chand, India. A talk on wheat breeding at Bhutan was presented by Sangay Tshewang. He was happy to inform that through this networking and collaboration with CIMMYT, Bhutan was able to release three new wheat varieties after a gap of 20 years.

On the 2nd day, a visit to IIWBR was organized. Dr. Indu Sharma and her team of scientists led by Dr. Ravish Chatrath facilitated this visit. The participants were taken to different laboratories and current research activities were explained. The participants from Nepal, Bangladesh and Bhutan expressed desire for increased exchange visits among research institutions of countries in south Asia.

The review meeting enabled CSISA wheat researchers to measure their achievements compared to the challenges being encountered and enabled an environment to discuss future strategies to augment research activities better tuned to future targets in the region. The participants were of the view that strong linkage and coordination between the national research program, the CIMMYT team and other stakeholders especially those in seed business is needed to achieve comprehensive progress towards increasing food availability and better livelihood of masses.

Setting the stage for delivering high zinc wheat in South Asia

Delivering-High-Zinc
HarvestPlus pioneers at the off-season seed production site in Dalang Maidan, Himachal Pradesh, India. Photo: HarvestPlus

Public and private sector partners in HarvestPlus’ biofortified wheat research and dissemination network in South Asia got together at ICRISAT, Hyderabad, on 10-11 September to discuss progress on breeding research, producing seed for target populations, and strategies for accelerating seed production and fast-tracking commercialization of biofortified zinc-rich wheat varieties.

Partners from India, Nepal, Bangladesh and Pakistan, as well as delegates from the Indian Council of Agricultural Research (ICAR), various state agricultural universities, NGOs, small and medium-size private seed companies, processors, millers, and progressive farmers discussed topics such as critical gaps and opportunities in outreach strategies, priority upscaling interventions, and policy incentives for fast-track adoption of improved high Zn wheat varieties.

ICAR Deputy Director General (Crop Science) J.S. Sandhu inaugurated the workshop with a formal presentation on India’s Consortia Research Platforms (CRP) for improving nutritional quality of major staples and emphasized the extraordinary nutritional challenges that country faces, e.g., some of the highest rates of childhood stunting and malnutrition in the world. Wolfgang Pfeiffer, HarvestPlus Director (Product Development and Deployment), highlighted the success of HarvestPlus partners in disseminating nutrient-dense wheat, reaching 50,000 farm households and providing biofortified wheat to a quarter of a million household members by 2015. Parminder Virk, Product Development Manager at HarvestPlus, urged participants to set up a fast-track commercialization pipeline to enable nutrient rich wheat varieties to reach smallholder farmers fast.

CIMMYT Wheat Breeder Velu Govindan discussed advances in the development of competitive high Zn wheat germplasm at CIMMYT, Mexico, to satisfy the needs of national program partners, while Arun Joshi, Senior Wheat Breeder, CIMMYT-South Asia, emphasized the crucial role of public and private sector partners in ensuring farmers have rapid and long-term access to nutrient rich wheat seed. Ravish Chatrath, IIWBR, summarized the results of a special biofortified wheat trial conducted across locations in India.

HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.
HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.

V.K. Mishra, Banaras Hindu University, reported that farmer-participatory varietal selection trials have enabled the identification and release of competitive high Zn wheat varieties for fast-track commercialization in the eastern Gangetic Plains (EGP) of India. The new varieties are not only nutritionally superior, but also drought tolerant and resistant to rusts and other foliar diseases. They are being commercialized in India as truthfully-labeled seed under different names by private companies and farmers’ seed production networks.

CIMMYT helps the Seed Entrepreneurs’ Association of Nepal devise its organizational strategy

In response to the interest expressed by the Seed Entrepreneurs’ Association of Nepal (SEAN), CIMMYT-Nepal organized a meeting with SEAN and the Nepal Agricultural Research Council (NARC) on 29 July 2015 at NARC’s Agriculture Botany Division, Khumaltar, as an activity of the CIMMYT-led Cereal System Initiative for South Asia-Nepal (CSISA-NP).

Following its interaction with the National Seed Association of India (NSAI) and Indian seed businesses during an event organized by CSISA-NP in the first and second week of June, SEAN decided to devise a strategic roadmap and upgrade its organizational strategy. The specific purpose of the July meeting, which was attended by 19 participants from SEAN, 3 from NARC and 4 from CIMMYT-Nepal, was to study SEAN’s vision, mission and goal, and how they could be updated in the current era of globalization, technological innovation and deregulation.

Increasing farmers’ access to quality seed is important for enhancing Nepal’s food security. To this end, CSISA-NP has been helping small and medium seed enterprises accelerate their growth in an integrated manner. To facilitate their growth, the current situation of seed enterprises, the challenges they face and their potential for growth were recently documented, and the outcomes will be presented at the National Seed Summit on 14-15 September 2015. In addition, representatives of 15 Nepali seed enterprises visited Indian seed companies in May 2015 to learn from their experience, and a memorandum of understanding (MoU) was signed between NSAI and SEAN to foster partnership between them.

Speaking on behalf of SEAN, its president, Laxmi Kanta Dhakal, said that to catalyze the implementation of the MoU between their organization and NSAI, SEAN needs to develop appropriate strategies to address its internal issues as well as reshape partnership modes with potential national and international stakeholders.

Initiated in 1989, SEAN was registered in Nepal in 1991 as a non-profit organization and now comprises 500 members, including seed entrepreneurs engaged in producing, processing and marketing seeds and other agricultural inputs. SEAN’s main purpose has been to organize individual entrepreneurs and private companies to foster capacity building, lobbying and advocating on behalf of seed entrepreneurs, thereby strengthening the national seed industry.

At the meeting, Gurbinder Singh Gill gave a lecture on how to develop the strategic roadmap and facilitated the session where SEAN started working on its mission, vision and goal statements. Gill also shared case studies from different countries and organizations to encourage SEAN’s leadership team to start working at the organizational level. Once these themes are discussed and detailed by SEAN at the organizational level, CSISA-NP will hold a workshop to decide on the way forward. This should lead to an implementable strategic plan for the next five or ten years.

NARC, SEAN and CIMMYT colleagues engaged in establishing a strategic road map for seed enterprises in Nepal.

Towards the end of the meeting, NARC Director (Crops and Horticulture) Shanbhu Prasad Khatiwada said that strong linkage and coordination between the national research program, SEAN, seed enterprises and the CIMMYT team are needed to achieve comprehensive progress towards solving Nepal’s food security issues. He said that this was the first meeting of its kind in Nepal where SEAN, NARC and CIMMYT came together to reshape the organizational strategy of the only seed association of Nepal.
The event was opened by Arun Joshi, Country Representative of CIMMYT-Nepal, facilitated by CIMMYT consultants Narayan Khanal and Gurbinder Singh, and by K.C. Dilli, Monitoring and Evaluation Specialist, CIMMYT-Nepal.

Rebuilding livelihoods: CIMMYT supports agricultural recovery in Nepal

Farmer-uses-minitiller-in-Nepal
Farmer uses a mini-tiller in mid-west region of Nepal CSISA

The recent 7.6 magnitude earthquake that struck Nepal on 25 April, followed by a 7.3 magnitude aftershock on 12 May and several hundred additional aftershocks to date, has had huge negative impacts on the country’s agriculture and food security. Around two-thirds of Nepal’s population relies on agriculture for their livelihood and agriculture contributes to 33 percent of Nepal’s GDP. It is estimated that about 8 million people have been affected by the earthquakes, with smallholders in hilly regions being most hard-hit.

The earthquake damaged or destroyed agricultural assets, undermining the longer-term food production capacity of farm families and disrupting critical input supply, trade and processing networks. Farmers lost grain and seed stocks, livestock, agricultural tools and other inputs, and are facing significant shortages of agricultural labour. Widespread damage to seed and grain storage facilities have affected smallholder farmers’ ability to secure their harvested crops through the rainy season.

In response to the devastation, USAID-Nepal has provided US$1 million for earthquake relief and recovery to the CIMMYT-led Cereal Systems Initiative for South Asia in Nepal (CSISA-NP). The Earthquake Recovery Support Program, for a period of 13 months, will be implemented in close coordination with the Ministry of Agricultural Development (MoAD), Department of Agriculture (DoA), Department of Livestock Services (DoLS), Nepal Agricultural Research Council (NARC) and District Disaster Relief Committee (DDRC). The districts that will receive support include Dolkha, Kavre, Khotang, Makwanpur, Nuwakot, Ramechap, Sindhupalchowk, and Solukhumbu, which have suffered particularly high levels of damage.

“Even if seed is available, the capacity for farmers to plant and harvest crops has been severely diminished due to the loss of draft animals and the exacerbation of labor shortages,” said Andrew McDonald, CIMMYT Principal Scientist and CSISA Project Leader. “We will reach more than 33,000 farming households through seed and grain storage facilities, mini-tillers and other farm machines, agricultural hand tools, technical training and agronomy support,” added McDonald.

The program will provide 50,000 grain storage bags, 30 cocoons for community grain storage, 400 mini-tillers and other modern agriculture power tools (e.g., reapers, maize shellers, seeders), 800 sets (5 items in a set) of small agricultural hand tools, and 20,000 posters on better-bet agronomic practices for rice and maize. “We will first focus on getting small horsepower mini-tillers into affected communities, and subsequently broadening the utility of these machines to power a host of essential agricultural activities including seeding, reaping, threshing and shelling, as well as powering small pumps for irrigation,” said Scott Justice, Agricultural Mechanization Specialist, CSISA-NP.

At the program’s inception workshop held recently on 28 August, Dr. Beth Dunford, Mission Director, USAID Nepal, remarked that USAID-Nepal has arranged a special fund to help earthquake-affected people. Beyond the devastation of houses, public infrastructure like roads, the earthquake has seriously disrupted the agriculture and rural economy throughout the impacted districts. Re-establishing vital agricultural markets and services in the aftermath of the earthquake is key to how quickly these communities will recover, underlined Dunford.

For effective coordination and monitoring of activities in the program, Central Level Management Committee, District Level Management Committee and Local Level Management Committee have already been formed. They aim to identify most earthquake affected areas within a district and will ensure efficient and transparent distribution of support items.

Dr. Adhikari, Joint Secretary, MoAD, highlighted that the Ministry feels a real sense of ownership over this program and is committed to implementing the activities through its network. He said the farm machinery support program will be a perfect platform for MoAD to expand its farm mechanization program into other areas of the country. The Earthquake Recovery Support Program also aligns with the Agriculture Development Strategies of the Government of Nepal, which focuses on community-wide inclusive development.

The first heat tolerant maize hybrids are licensed for deployment in Bangladesh, India and Nepal

Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur
Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur

The Bangladesh Agricultural Research Institute (BARI), Bangladesh’s ACI Seeds, India’s Bihar Agricultural University, Sabor, and the University of Agricultural Sciences, Raichur, Ajeet Seeds, and Nepal’s Hariyali Community Seeds and Sean Seeds are the first proud institutions/companies to receive a license for the deployment of heat tolerant maize hybrids. B.M. Prasanna, Director of CIMMYT’s Global Maize Program, formally presented the product licensing certificates to the heads/representatives of these organizations during the Heat Tolerant Maize for Asia (HTMA) project’s 3rd Annual Progress Review and Planning Meeting held from 10-12 August 2015 in Hyderabad, India. Other project partners, including national program and seed companies from Pakistan, Nepal and Bangladesh, have shared their choice of hybrids, and asked to submit them for formal licencing. The hybrids were developed under the HTMA project funded by United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, a public-private alliance that targets resource-poor people of South Asia who face weather extremes and climate-change effects.Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal.

At the event’s inaugural session, Nora Lapitan, Senior Science Advisor, Bureau for Food Security, USAID, gave an update on the FTF initiative and highlighted its priorities, which include reducing poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. This was followed by an overview by B.M. Prasanna of the new CGIAR research program on Maize Agri-food system, its focus and priorities and the importance of stress-resilient maize in food security and livelihoods, especially in climate-change vulnerable regions, such as the Asian tropics.

The inaugural session was followed by technical sessions, during which Raman Babu, CIMMYT molecular maize breeder, M.T. Vinayan, CIMMYT maize stress specialist for South Asia, A.R. Sadananda, CIMMYT maize seed system specialist, and CIMMYT socioeconomist Christian Boeber presented their latest research results.

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna. Photo: CIMMYT-India

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna.P.H. Zaidi, HTMA project leader and senior maize physiologist at CIMMYT, described the progress achieved at the end of the project’s third year. Representatives from public and private sector partners presented the results of the HTMA trials conducted at their locations, and shared a list of top-ranking, best-bet heat-tolerant maize hybrids to take forward for large-scale testing and deployment. Collaborators from Pakistan’s Maize and Millet Research Institute (MMRI) and Bhutan’s Maize Program could not participate in the meeting but their progress reports were presented by K. Seetharam and Zaidi, respectively. It is quite impressive that within the first three years of the project, each partner has identified promising and unique maize hybrids suitable for their target markets/agro-ecologies.

Participants visited a demonstration of elite HTMA hybrids and their parents, where they observed the performance of their selected hybrids under Indian conditions. They were able to see the hybrids and their parents side by side, assess their performance and request seed of parental lines.

The project is also involved in capacity building, including providing support to a total of nine M.Sc./Ph.D. students, as well as workshops and in-country training courses in Nepal, Bangladesh and India, where over 100 researchers have been trained on developing stress resilient maize. In a special session dedicated to student research projects, four HTMA students, including Mahender Tripathi from Nepal, Ashraful Alam from Bangladesh and Akula Dinesh and C.N. Ranganath from India, presented their research projects.

The project’s progress was critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed great satisfaction with its overall progress and acheivements. Speaking for USAID, Lapitan said they are highly impressed with the progress of the HTMA project and consider it a model project. Other PSC members also expressed their satisfaction and agreed that the HTMA team deserves special appreciation for remarkable achievements within a period of just three years.

The HTMA project meeting was attended by program leaders, scientists and representatives from collaborating institutions in South Asia, including BARI, Nepal’s National Maize Research Program (NMRP) and two of India’s state agriculture universities. Seed companies operating in the region, including Pioneer Hi-bred, Kaveri Seeds and Ajeet Seeds from India, and Sean Seeds and Hariyali Community Seeds from Nepal, and international institutions such as Purdue University, USAID and CIMMYT also participated in the event.

The HTMA team at CIMMYT, Hyderabad, India. Photo: CIMMYT-India