Skip to main content

Location: Myanmar

CGIAR Initiative: Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience

Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience aims to create resilient, inclusive and productive deltas — which maintain socio-ecological integrity, adapt to climatic and other stressors, and support human prosperity and wellbeing — by removing systemic barriers to the scaling of transformative technologies and practices at community, national and regional levels.

This objective will be achieved through:

  • Adapting deltaic production systems by identifying, synthesizing, evaluating, adapting and scaling interventions to ensure systems can adapt to and mitigate the effects of salinity, flooding, drought, terminal heat and sinking land.
  • Nutrition-sensitive deltaic agrifood systems, developed through the promotion of sustainable production and consumption of nutritious foods in Asian mega-deltas, by involving institutional stakeholders in the co-production of nutrition-sensitive interventions.
  • De-risking delta-oriented value chains by assessing the potential of digital climate advisory and complementing services to address climate risks among vulnerable groups, supporting development of improved and inclusive digital and bundled services, and identifying and developing financing models and partnerships to achieve scale.
  • Joined-up, gender equitable, inclusive deltaic systems governance, informed by transdisciplinary research evidence, local knowledge and political economy insights used to coordinate multi-stakeholder dialogues for more coherent water-agriculture-environment policies and strategies; collaborative, networked implementation practices; and gender-equitable and socially inclusive governance innovations.
  • Evidence-based delta development planning at the macro-level to ensure plans/policies incorporate inclusive and climate-proof approaches to food systems transformation.

AAA drought-tolerant maize now available in Myanmar

This month smallholder farmers in Myanmar’s central dry zones will be able to access drought-tolerant hybrid maize for the first time. The variety, known as TA5085, was jointly developed by the International Maize and Wheat Improvement Center (CIMMYT) and Syngenta, and has been commercially registered as ASC 108 by Ayeryarwady Seed in Myanmar. An initial, two-acre seed production pilot by Ayeyarwady Seed resulted in a yield of 1.2 tons per acre.

TA5085 was developed as an International Public Good as part of the decade-long Affordable, Accessible, Asian (“AAA”) Drought-Tolerant Maize project, a public-private partnership between CIMMYT and Syngenta and funded by the Syngenta Foundation. The project aims to make tropical maize hybrids accessible to Asian smallholders, especially those producing under rain-fed conditions in drought-prone areas.

An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)
An ear of the ASC 108 “AAA” drought-tolerant hybrid maize variety. (Photo: Soe Than/Ayeyarwady Seed)

“AAA maize is not just a product,” said B.S. Vivek, regional maize breeding coordinator and principal scientist at CIMMYT. “The development of affordable and accessible drought-tolerant maize hybrids helps drive the maize seed market in underserved maize markets in Asia.”

TA5084, the previous iteration of this variety, was first commercialized in central India, where climate change is driving rising temperatures and increasingly erratic rainfall. From 2018 to 2020, TA5084 adoption in the region grew from 900 to 8,000 farmers. In 2020, 120 metric tons of AAA-maize were planted on 6,000 hectares in central India. Farmers who switched to TA5084 earned an average of $100/ha more than those using conventional maize.

“Despite the unprecedented challenges we all faced in 2020, AAA hybrid maize sales more than doubled from the previous year, to 120 tons,” said Herve Thieblemont, head of Seeds2B Asia and Mekong Director at the Syngenta Foundation. “I’m delighted to report that the second country to introduce AAA maize is Myanmar. Our local seed partner Ayeyarwady Seed recently completed the registration and will proceed with the first sales this coming season.”

The AAA initiative is one of the few examples of a public-private partnership delivering International Public Goods benefiting smallholders in central India and now Myanmar. The chosen regions are rainfed and drought-prone. Seed marketing in these regions is considered risky and unpredictable, disincentivizing multinationals and large seed companies from entering the market.

A challenge solved

Wheat stalks grow in a in India. (Photo: Saad Akhtar)
Wheat stalks grow in a field in India. (Photo: Saad Akhtar)

For scientists, determining how best to increase wheat yields to meet food demand is a persistent challenge, particularly as the trend toward sustainably intensifying production on agricultural lands grows.

The United Nations projects that the current global population of 7.6 billion will increase to more than 9.8 billion by 2050, making higher grain yield potential vital, particularly as climate instability increases due to global warming. International efforts are also focused on meeting the Zero Hunger target detailed in the UN Sustainable Development Goals before they expire in 2030.

Now, a new landmark research survey on the grain yield potential and climate-resilience of bread wheat (Triticum aestivum L.) has brought scientists a few strides closer to meeting their ambitions.

Grain yield has traditionally been an elusive trait in genomic wheat breeding because of its quantitative genetic control, which means that it is controlled by many genomic regions with small effects.

Challenges also include a lack of good understanding about the genetic basis of grain yield, inconsistent grain yield quantitative trait loci identified in different environments, low heritability of grain yield across environments and environment interactions of grain yield.

To dissect the genetic architecture of wheat grain yield for the purposes of the research, which appeared in Scientific Reports, researchers implemented a large-scale genome-wide association study based on 100 datasets and 105,000 grain yield observations from 55,568 wheat breeding lines developed by the International Maize and Wheat Improvement Center (CIMMYT).

They evaluated the lines between 2003 and 2019 in different sites, years, planting systems, irrigation systems and abiotic stresses at CIMMYT’s primary yield testing site, the Norman E. Borlaug Experimental Research Station, Ciudad Obregon, Mexico, and in an additional eight countries — including Afghanistan, India and Myanmar — through partnerships with national programs.

The researchers also generated the grain-yield associated marker profiles and analyzed the grain-yield favorable allele frequencies for a large panel of 73,142 wheat lines, resulting in 44.5 million data points. The marker profiles indicated that the CIMMYT global wheat germplasm is rich in grain yield favorable alleles and is a trove for breeders to choose parents and design strategic crosses based on complementary grain yield alleles at desired loci.

“By dissecting the genetic basis of the elusive grain-yield trait, the resources presented in our study provide great opportunities to accelerate genomic breeding for high-yielding and climate-resilient wheat varieties, which is a major objective of the Accelerating Genetic Gain in Maize and Wheat project,” said CIMMYT wheat breeder Philomin Juliana.

“This study is unique and the largest-of-its-kind focusing on elucidating the genetic architecture of wheat grain yield,” she explained, “a highly complex and economically important trait that will have great implications on future diagnostic marker development, gene discovery, marker-assisted selection and genomic-breeding in wheat.”

Currently, crop breeding methods and agronomic management put annual productivity increases at 1.2% a year, but to ensure food security for future generations, productivity should be at 2.4% a year.

So, the extensive datasets and results presented in this study are expected to provide a framework for breeders to design effective strategies for mitigating the effects of climate change, while ensuring food-sustainability and security.

Improved Maize for Tropical Asia (IMTA)

The Improved Maize for Tropical Asia (IMTA) is employing modern maize breeding techniques to develop and deploy new, climate-resilient maize hybrids, including traits important for identified niche markets across tropical Asia.

Principal Coordinator: B.S. Vivek

Researchers set new climate services strategy in Bangladesh

CSRD workshop participants. Photo: M. Asaduzzaman/CIMMYT
CSRD workshop participants. Photo: M. Asaduzzaman/CIMMYT

DHAKA, Bangladesh (CIMMYT) – Scientists from across South and Southeast Asia launched a new agenda earlier this week to boost community involvement in developing climate information and extension messaging services across the region.

“Key to climate services is emphasis on the service,” said Timothy Krupnik, a systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and South Asia project leader for Climate Services for Resilient Development (CSRD).

Researchers know how the region’s farmers will be affected by climate change thanks to the development of climate models and other analyses, but there still is a lack of a strong support system that allows farmers to practically use this information.

“We must be able to rapidly extend information to farmers and others who require climate information to inform their decision making, and to assure that research outputs are translated in an easy to understand way that communicates to farmers, extension workers and policy makers,” said Krupnik. “Equally important is feedback from farmers on the quality of climate services so they can be adapted and improved over time.”

The researchers, who gathered in Dhaka, Bangladesh for a three-day workshop from September 17-19, 2017, evaluated how climate and agricultural extension advisories are currently produced and conveyed, and identified opportunities on how to improve these services for farming communities across Bangladesh, India, Indonesia, Myanmar, Nepal, Philippines, Sri Lanka and Vietnam.

“CSRD’s activities are relevant to the U.S. government’s commitment to building resilience of smallholder farmers and to ensure increased production, as well bolster country resilience,” said David Westerling, acting economic growth office director and Feed the Future team leader for the United States Agency for International Development’s mission in Bangladesh. “That is why we are behind this effort.”

During the workshop, delegates assessed different ways to incorporate seasonal climate forecasts into farmer decision making, using several African countries as examples.  For example, participants learned how to simply but effectively depict probabilistic forecasts in graphs to farmers during a group work discussion.

There were also experience sharing sessions on information and communication technology (ICT) in agricultural climate services. Giriraj Amarnath, researcher at the International Water Management Institute, Ishwor Malla, service director for ICT at Agri Private Limited and Md. Nadirruzzaman, assistant professor at the Independent University, Bangladesh indicated that ICT can be a cost-effective approach to transfer information to farmers who can, in turn, improve crop productivity using climate information shared their observation and experiences.

While ICT can serve as an important tool, participants emphasized the need for more face-to-face extension and interaction with farming communities to build trust in forecasts that would otherwise not be fully understood by downloading a mobile application or receiving an SMS message.

An analysis to identify strengths, weaknesses, opportunities and threats for climate services in each country and across countries was completed to examine how participants can collaborate in south-south exchanges to support ongoing work in agricultural climate services.

On the last day of the workshop, climate index-based agricultural insurance was also discussed, after which participants proposed new institutional arrangements to improve agricultural climate information flow to farmers in each of their countries.

Elisabeth Simelton, climate change scientist at the World Agroforestry Centre in Vietnam and project manager at the Consortium Research Program on Climate Change, Agriculture, and Food Security (CCAFS), said the workshop provided an interesting platform where scientists and climate service providers from different countries were able to meet and exchange their experiences and ideas through interactive formats, so that everybody can take something new and useful back to their respective countries.

The Climate Services for Resilient Development (CSRD) is a global partnership that connects climate science, data streams, decision support tools, and training to decision-makers in developing countries.The workshop was sponsored by the United States Agency for International Development on behalf of CSRD and is collaboratively organized by CIMMYT and CSRD through the SERVIR Support Team. This work was also implemented as part of the CGIAR Research Program on CCAFS. Read more about the workshop, participants and sponsors here. 

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Follow @CIMMYT on Twitter and Facebook for the latest updates.

Myanmar and CIMMYT assess needs and joint maize and wheat research

Aye Aye Win, Senior Researcher at Zaloke Research Farm in Mongwa, was the last CIMMYT GWP trainee from Myanmar in Mexico (2002) and is currently the only wheat breeder in the country. Photos: Fabiola Meza/CIMMYT
Aye Aye Win, Senior Researcher at Zaloke Research Farm in Mongwa, was the last CIMMYT GWP trainee from Myanmar in Mexico (2002) and is currently the only wheat breeder in the country. Photos: Fabiola Meza/CIMMYT

Given growing demand for maize and wheat in Myanmar and the increasing challenges to produce both crops, officials of the Myanmar Ministry of Agriculture and Irrigation’s (MOAI) Department of Agricultural Research (DAR) and CIMMYT representatives met at DAR headquarters at Yezin during 24-27 January, to strengthen collaboration, with a focus on increasing farm productivity and training a new generation of Myanmar scientists.

Maize area, output and demand are growing with increased use of the grain in poultry and livestock feeds. Nine-tenths of the 450,000-hectare (ha) national maize area is rain-fed and grown with few inputs. It suffers from erratic precipitation among other things. Nearly one-third is sown to hybrid seed imported from Thailand. Small- and medium-scale local seed producers need stimulation and support.

Wheat is important for subsistence farmers in the eastern hills but also to meet the rising demand of a growing population with more urban inhabitants. National consumption yearly exceeds 0.5 million tons, only 0.18 million of which is produced in Myanmar (the rest is imported from Australia). Yields are low due to lack of inputs or new seed varieties. Farmers particularly need heat tolerant, rust resistant wheat varieties and resource-conserving cropping technologies.

Drying maize in Myanmar.
Drying maize in Myanmar.

CIMMYT germplasm and other support are crucial for both crops in the country, but interactions have grown less frequent. The last Myanmar maize researcher to participate in training courses in Mexico came in 1999; the last wheat trainee, in 2002.

Participating in discussions were Dr. Tin Htut, director general, MOAI Department of Agricultural Planning, and DAR senior staff including Dr. Ye Tint Tun, DAR director general and U. Thant Lwin Oo, director for Maize & Other Cereals, Oil Seeds and Legumes.

CIMMYT was represented by Thomas A. Lumpkin, director general; Etienne Duveiller, regional representative for Asia; and administrative assistant Fabiola Meza. In addition to taking part in high-level discussions, they visited Dr. Win Win New, Director of the Aung Ban Agricultural Research Farm and Maize Breeder who conducts maize and wheat trials in southern Shan State and accompanied the team for field tours.

Collaboration discussion with DAR officials in Yezin.
Collaboration discussion with DAR officials in Yezin.

These interactions grew out of visits in 2014 to Myanmar by Duveiller and Dan Jeffers, a CIMMYT maize breeder based in Yunnan, China.

Opportunities to address Myanmar’s concerns include regional collaboration with CIMMYT maize research in Yunnan and Hyderabad and training at BISA farms in India, for conservation agriculture and small-scale mechanization. CIMMYT and DAR are developing an agreement to facilitate collaboration.