Skip to main content

Location: India

For more information, contact CIMMYT’s India office.

Jharkhand tribal farmers adopt maize and conservation agriculture to battle drought

JharkhandBy S.P. Poonia/CIMMYT

A CIMMYT project working in the rural districts of Jharkhand, India, is encouraging farmers to grow maize and use conservation agriculture practices to adapt to decreased rainfall and a changing climate. CIMMYT’s Sustainable Intensification of Smallholder Maize-Livestock Farming Systems in Hill Areas of South Asia project is funded by the International Fund for Agricultural Development.

The project is working with scientists from Krishi Vigyan Kendras research and extension centers (KVKs), Birsa Agricultural University, the state agricultural department and farmers to promote maize as a viable alternative to rice in stress-prone and rain-dependent districts of Jharkhand. The rural farming population is vulnerable to rainfall fluctuations and drought is recurrent in Jharkhand. Almost 90 percent of the cultivated area is monocropped (mostly with rice), and only 9 percent of the cropped area is irrigated.

The local non-governmental organization Vikash Bharti Farm Science Centre and CIMMYT organized Maize Day on 29 August in Gumla district. The event brought together 400 farmers, state agricultural department scientists, district officials and extension agents to highlight the benefits of cultivating maize, using conservation agriculture to enhance productivity. They also discussed the need for better policies. “Quality protein maize (QPM) is nutritionally superior to normal maize and provides additional dietary benefits to the tribal farmers who consume maize. It’s also a nutritious feed for poultry,” said A.K. Singh, KVKs zonal director for the Indian Council of Agricultural Research.

In Basuwa village in Gumla district, farmers cultivated more than 80 hectares of the QPM hybrid HQPM 1 for the first time this year and have committed to increase maize cultivation to 323 hectares next year. “Earlier, farmers in my village were interested in growing only rain-fed rice because it’s their staple food,” said Joni Uraon, head of the Basuwa village council. “But now they are very happy with maize because it is giving them higher profits.” Farmers also asked for stronger market linkages to ensure competitive prices for their produce. Panai Uraon, the Gumla district government collector, welcomed the efforts of scientists and farmers to promote maize cultivation and announced additional funds will be allocated to the Basuwa village council for agricultural development activities and to supplement local irrigation systems. Ken Sayre, who has extensive knowledge of Turkey and the region, conducted the course. He also travelled to three key research institutes in Ankara, Eskisehir and Konya prior to the workshop to see the experimental fields and discuss how to reduce variability in the fields and enhance the precision of experiments.

Food security policies highlighted at training

By Surabhi Mittal/CIMMYT

Photo: Andrew S. Chamanza/ MoAFS, Malawi and S. Mittal/CIMMYT
Photo: Andrew S. Chamanza/ MoAFS, Malawi and S. Mittal/CIMMYT

CIMMYT’s Surabhi Mittal gave a lecture and met with policymakers from Kenya, Liberia and Malawi as part of the Chaudhary Charan Singh National Institute of Agricultural Marketing, Department of Agriculture & Cooperation, Government of India training program on 23 September. The three-month program is the first in a series of three trainings funded by the U.S. Agency for International Development in cooperation with Africa and India.

The training aimed to strengthen ties between India and Africa in learning about agricultural initiatives, challenges and success stories, as well as pointing to innovative marketing and policy solutions to address food security challenges in Africa. Presenters included senior officials from the three African countries and participants from organizations involved in cereal crops, horticulture, animal husbandry, dairy, fisheries, agribusiness, financial institutions and academia engaged in agromarketing. Mittal spoke about government food security policies and modern information and communications technologybased extension policies in India. The discussion covered fertilizer policies, price policies, coping mechanisms to mitigate climate change risk, conservation agriculture and food security programs.

New facility investigates the hidden half of maize

By P.H. Zaidi/CIMMYT

A new facility at CIMMYT-Hyderabad, India, will allow researchers to assess and quantify key root traits and their dynamics under various growing conditions. CIMMYT’s new root phenotyping facility is based on the lysimetric system, by which scientists can directly assess and quantify root traits and their dynamics under various growing conditions. It also allows high-precision phenotyping of various root traits.

A high-profile delegation from Groupe Limagrain, led by its CEO, visits the newly-established root phenotyping facility at CIMMYT-Hyderabad, India. Photo: T. Durga/CIMMYT
A high-profile delegation from Groupe Limagrain, led by its CEO, visits the newly-established root phenotyping facility at CIMMYT-Hyderabad, India. Photo: T. Durga/CIMMYT

The system revolutionizes the research, moving from a static assessment of roots through time-consuming extraction and scanning to a real-time measurement of water uptake, water use and an assessment of variation in roots under different growing conditions in the rhizosphere. Recent advances in high-precision weighing systems and information technology tools have greatly improved its efficiency and effectiveness as a root phenotyping system.

A representative from USAID observes maize root extracted from a minirhizotron. Photo: T. Durga/CIMMYT
A representative from USAID observes maize root extracted from a minirhizotron. Photo: T. Durga/CIMMYT

CIMMYT’s root phenotyping facility is specially designed for – but not restricted to – maize. The facility features 2,400 minirhizotron observation tubes placed in eight concrete pits. A wheeled stand is used to lift the rhizotrons for weighing. The weight of the cylinder, along with the entire plant, is monitored periodically and allows researchers to estimate the amount of water used and transpired as well as the transpiration efficiency of different genotypes. Roots are critically important to plants because they are the part first exposed to any soil-mediated stresses, such as drought, waterlogging, salt stress or nutrient stress. Root traits govern the overall performance of plants; however, this important hidden half is often avoided due to the complexity involved in studying root structure and functions.

Mini-rhizotrons with maize plants sit at the root phenotyping facility. Photo: T. Durga/CIMMYT
Mini-rhizotrons with maize plants sit at the
root phenotyping facility. Photo: T. Durga/CIMMYT

In maize, the genotypic variation in root traits and variation under stresses can be carefully selected in targeted breeding for stress tolerance, which can contribute significantly to genetic gains. Root traits are often judged on the basis of related characteristics, which may not accurately explain the stress-responsive — or adaptive — structural and functional changes in roots under sub-optimal or stressed conditions. The facility is used in phenotyping root traits of mapping populations developed for various molecular breeding projects on drought and heat stress tolerance as well as other traits usually observed in field conditions, including morphological traits and grain yield. It is located under a renovated rain shelter, protecting the trials from rain at the targeted crop stage and allowing for yearround use.

CIMMYT is grateful to the Syngenta Foundation for Sustainable Agriculture for its financial support of the facility and the International Crops Research Institute for the Semi- Arid Tropics for providing space and other logistic support in establishing this unique facility.

Bioversity, Borlaug Institute for South Asia and CIMMYT work more closely on climate resilient farming in eastern India

By M.L. Jat/CIMMYT

Visitors see a demonstration on greenhouse gas measurements in CIMMYT’s long-term trial on conservation agriculture in rice-wheat systems at the Rajendra Agricultural University farm, Pusa. Photo: Deepak Kumar Singh/CIMMYT
Visitors see a demonstration on greenhouse gas measurements in CIMMYT’s long-term trial on conservation agriculture in rice-wheat systems at the Rajendra Agricultural University farm, Pusa. Photo: Deepak Kumar Singh/CIMMYT

Increased access to seeds better suited for local conditions and climate-smart crop management technologies are two strategies Bioversity International and CIMMYT India are using to improve the climate change resilience of resource-poor farmers. With the 14 August visit of Bioversity International Director General Ann Tutwiler to the Borlaug Institute for South Asia (BISA) Pusa site and the climate-smart villages in the Vaishali district of Bihar, this partnership has strengthened and will work to improve farmers’ coping and adaptation to climate change in eastern India. The groups are working under Climate Change, Agriculture and Food Security (CCAFS).

Agriculture is affected by variable temperatures and erratic climate events. Smallholder farmers who are impacted suffer from low production and increasing costs. Tutwiler said that CIMMYT, BISA and Bioversity have common interests and should complement each other’s work in making smallholder farmers climatesmart through local adaptation of stress-tolerant seeds and integrating them with better agronomic management. The greatest need is in multi-stakeholder partnerships and to apply collective wisdom to address these challenges for farmers’ benefits, she said.

M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm, Pusa. Photo: Deepak Kumar Singh/CIMMYT
M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm, Pusa. Photo: Deepak Kumar Singh/CIMMYT

Tutwiler and other visitors saw strategic research on conservation agriculture at the BISA farm as well as collaborative research between CIMMYT and the Indian Agricultural Research Institute (IARI). Participants discussed the long-term benefits of conservation agriculture, such as increased productivity, improved soil fertility, cost savings and reduction of greenhouse gas emissions. “At Pusa, we have established long-term research on conservation agriculture in predominant cropping systems to monitor and devise resilient future cropping systems and their component technologies for the eastern Indo Gangetic Plains,” said M.L. Jat, a CIMMYT senior cropping systems agronomist. “These work as capacity-building platforms for various stakeholders.”

The team also saw climate-smart technologies promoted by CIMMYT in collaboration with other CGIAR centers and national agricultural research and extension services under CCAFS. Mamta Kumari, a woman farmer from the climate-smart village Rajapakar said, “Rainfall has been unreliable for the last few years. Our crops and livelihoods are at risk with changing weather. But we are now getting more information about new seed, methods and technologies; we can see a change.” With access to timely information on weather, better-adapted seeds and improved crop management, women farmers are now feeling more empowered. “We are saving around 5,000 Rupees (about US$79) on the cost of production using zero tillage in wheat cultivation,” Kumari said. Tutwiler met and shared her experiences with CIMMYT Director General Thomas Lumpkin and discussed common goals of Bioversity, BISA and CIMMYT to improve lives of farmers under changing climate conditions

Promoting biofortified wheat to women in India

By Arun Joshi/CIMMYT

Chhavi Tiwari of Banaras Hindu University talks with Mirzapur farmersabout biofortified wheat.
Chhavi Tiwari of Banaras Hindu University talks with Mirzapur farmers about biofortified wheat.

Women farmers in India are learning about the benefits of biofortified wheat from CIMMYT and other CGIAR researchers. Scientists met with 106 women on 8 August in the village of Pidkhir, in Mirzapur District of Uttar Pradesh, India, to advocate for the use of biofortified wheat and listen to feedback on nutrition and the impacts of nutritional deficiency on women and children.

The event was part of a program conducted in more than 50 villages in India’s Eastern Gangetic Plains. Collaborators included Banaras Hindu University (BHU) in Varanasi, Mahamana Krishak Samiti (a farmers’ cooperative in Mirzapur) and CIMMYT’s South Asia office in Kathmandu, Nepal. BHU’s Chhavi Tiwari led the meeting in Pidkhir, which was attended by women of different ages and occupations including farmers, housewives, daily wage workers, government organization workers and school teachers. Other participating scientists included B. Arun, Ramesh Chand and V.K. Mishra from the BHU HarvestPlus wheat team as well as Arun Joshi from CIMMYT.

The HarvestPlus project was started at BHU in 2005 as part of a collaborative effort with the Biofortification Challenge Program (HarvestPlus) at the International Center for Tropical Agriculture, the International Food Policy Research Institute and CIMMYT to identify biofortified wheat varieties adapted in South Asia. Five of the participants at the meeting participated in the HarvestPlus trials in Pidkhir that began in 2005 and said they were happy with the wheat variety. “I cannot believe that wheat with high zinc and iron could be grown in our fields in the near future,” said Sursati, a woman working with HarvestPlus wheat throughout the course of the project. Most participants were new to the subject and learned about the importance of biofortified wheat – particularly its importance to the health of women and children. Women also answered a questionnaire on their backgrounds and interests in biofortified wheat. Most were educated through primary school and some were given help by literate peers. Four male farmers from Pidkhir, including Harbans Singh, head of the Mahamana Krishak Cooperative, also facilitated the process.

All of the women were in favor of receiving biofortified wheat developed through the HarvestPlus project. They also expressed their desire to visit and see the BHU research farm, where wheat scientists from the university are conducting research with CIMMYT’s Global Wheat Program team. The farmers agreed to advocate for new biofortified wheat varieties and help the BHU team when needed.

ICAR-CIMMYT organize training in molecular tools in wheat

By Arun Joshi, CIMMYT

Twenty young scientists from India and Nepal learned about existing and up-and-coming wheat breeding tools during a training program last month. Continuing earlier training programs initiated during the last few wheat crop cycles in India, the Global Wheat Program in South Asia organized the three-day “ICAR-CIMMYT Molecular Breeding Course in Wheat” from 25 to 27 August. It took place at the Directorate of Wheat Research (DWR) of the Indian Council of Agricultural Research in Karnal.

ICAR-CIMMYTThe training was for young scientists from different wheat research stations of India involved in a BMZ-funded project to increase the productivity of wheat under rising temperatures and water scarcity in South Asia. The training program attendees’ enhanced understanding of existing molecular tools for wheat breeding as well as emerging tools such as genomic selection. “Molecular tools will play an increasing role in wheat breeding to meet challenges in coming decades,” said Indu Sharma, director of DWR in Karnal. The program covered both theory and practice on the use of molecular makers in wheat breeding, especially those related to vernalization, photoperiodism and earliness per se, which could be used to enhance early heat tolerance. Practical sessions in the molecular laboratory of DWR focused on extraction of DNA, quantification and quality control of DNA, polymerase chain reaction polymerase chain reaction amplification and electrophoresis.

During various sessions, the instructors explained the steps of molecular tools to be used for such work. The participants tested their new scoring skills during an exercise which involved scoring the bands and cross-verifying results. Laboratory procedures on safety were also explained. CIMMYT wheat breeder Arun Joshi and Vinod Tiwari, principal scientist and principal investigator of crop improvement for DWR in Karnal, coordinated the training under the WHEAT CRP Strategic Initiative 6 (enhanced heat and drought tolerance). Indian resource participants included Ratan Tiwari, P.K. Gupta, Vinod Tiwari and a team of molecular scientists including Rajender Singh, Rekha Malik, Sonia Sheoran and Pradeep Sharma from DWR, Karnal. The CIMMYT scientists involved were Susanne Dreisigacker and Arun Joshi while the practical lessons were organized and led by Tiwari and Dreisigacker. A laboratory manual “ICAR-CIMMYT molecular breeding course in wheat” was also developed for the course, which was later released in the All India Wheat and Barley Workers meeting.

Dr. Norman E. Borlaug statue unveiled in India

Left to right: Katharine McDevitt, Professor of Sculpture at Chapingo Autonomous University and sculptor of the statue of Dr. Norman E. Borlaug; Dr. Etienne Duveiller, BISA Director of Research for South Asia; Dr. Thomas A. Lumpkin, Director General of CIMMYT and BISA; and the Honorable Sri Sharad Pawar, Indian Minister of Agriculture. Photo credit: M. Shindler/CIMMYT
Left to right: Katharine McDevitt, Professor of Sculpture at Chapingo Autonomous University and sculptor of the statue of Dr. Norman E. Borlaug; Dr. Etienne Duveiller, BISA Director of Research for South Asia; Dr. Thomas A. Lumpkin, Director General of CIMMYT and BISA; and the Honorable Sri Sharad Pawar, Indian Minister of Agriculture. Photo credit: M. Shindler/CIMMYT

By Miriam Shindler, CIMMYT

The Honorable Shri Sharad Pawar, India’s Minister of Agriculture, and Jeanie Borlaug Laube, daughter of the late Dr. Norman E. Borlaug, unveiled a statue of Borlaug at the National Agricultural Science Complex in Delhi on 19 August. Working for its precursor and later CIMMYT, Borlaug developed semi-dwarf, disease-resistant wheat varieties and led the introduction of these high-yielding varieties combined with modern agricultural production techniques in Mexico, India and Pakistan. As a result, Mexico became a net exporter of wheat by 1963. Between 1965 and 1970, wheat yields nearly doubled in India and Pakistan, greatly improving food security in those nations. These collective increases in yield have been labeled the Green Revolution, and Borlaug is often called the “Father of the Green Revolution” and credited with saving more than 1 billion people worldwide from starvation. Borlaug was awarded the 1970 Nobel Peace Prize in recognition of his work and contributions to world peace through an increased food supply.

Flowers are placed at the statue of Dr. Norman Borlaug at the National Agricultural Science Complex in Delhi. Photo credit: M.Shindler/CIMMYT
Flowers are placed at the statue of Dr. Norman Borlaug at the National Agricultural Science Complex in Delhi. Photo credit: M.Shindler/CIMMYT

The CIMMYT-commissioned statue was donated to the people and scientists of India as a gift to mark 50 years of partnership (Dr. Borlaug introduced his new wheat varieties in India in 1963). The statue leaves a permanent reminder of Dr. Borlaug’s achievements and a legacy for the future. The statue was handmade by the artist Katharine McDevitt, professor of sculpture at Universidad Autónoma Chapingo (Chapingo Autonomous University) in the Mexican State of Texcoco. It is the oldest agricultural university in the Americas and is also where Dr. Borlaug started his research in Mexico in 1944, sleeping on the floor of a university barn. The Borlaug statue holds a book inscribed with the names of some of the leading visionaries who worked with him during the “Green Revolution” – M.S. Swaminathan, C. Subramaniam, B. Sivaraman, A.B. Joshi, S.P. Kohli, Glenn Anderson, M.V. Rao andV.S. Mathur. It also contains a list in Latin and Hindi script of the original Mexican wheat varieties that were so productive in India. Speaking at the event, Dr. Thomas Lumpkin, Director General of both CIMMYT and the Borlaug Institute of South Asia, said, “In his vigorous support for an agricultural revolution in South Asia and his passion for understanding their circumstances, Norm won the hearts of Indian farmers and helped deliver 50 years of food security to the region. The National Agricultural Science Complex, where Norm spent a lot of his time in India, is a fitting place for this statue, and hopefully will inspire a new generation of scientists to conquer the great new challenges facing the country and the region.”

CIMMYT launches mobile phone voice messaging for climate-smart villages in India

Photo credit: S. Mittal/CIMMYT
Photo credit: S. Mittal/CIMMYT

A new pilot program is trying to reach farmers in India with information on weather, pests and climate change — through their mobile phones. CIMMYT launched the “Dissemination of climate smart agro-advisories to farmers in CCAFS benchmark sites of India” project on 15 August in four villages of the Karnal District in the State of Haryana and in the Vaishali District in the State of Bihar on 1 September. The project is led by CIMMYT‘s Surabhi Mittal with IFFCO Kisan Sanchar Limited as the content partner and Kisan Sanchar as the dissemination and implementing agency.

The project has aims to help farmers clarify information about climate-smart technology; help them adopt technologies that could mitigate their risks due to climate change; and to measure how receiving information on mobile phones affects farmers. Its reach covers 1,200 male and female farmers in eight villages and will run for 8 months on a pilot level. Farmers whose mobile numbers are in the project database receive two voice messages every day along with detailed SMS messages – in Hindi when required. These messages give weather predictions, information about pests and remedies, details of climate smart technologies and general information about climate change and solutions. Some farmers belong to the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) climate smart villages and some belong to control villages in the Karnal and Vaishali districts.

Challenges building this mobile number database included farmers who could not receive messages from unknown numbers. The project team worked with farmers to authorize the messages and get permission from the Telecom Regulatory Authority of India to unblock them. Encouraging women to participate was another hurdle. Due to cultural barriers, men were not willing to share the contact numbers of their wives. Awareness and focus group discussions held in Karnal from 29 to 30 August helped solve the issue. Project Leader Mittal met the Sarpanch, or the elected head, of the villages as well as with government women health workers known as Anganwadi workers. The four villages in Karnal have women Sarpanch, helped mobilize women farmers and women in households headed by men. In Bihar, a female scout is working closely with women farmers and has created women’s groups to for the project.

Photo credit: S. Mittal/CIMMYT
Photo credit: S. Mittal/CIMMYT

Customized feedback is built into the project. First, a helpline allows farmers to give feedback and ask for responses to questions. Some questions are instantly sorted out, some are diverted to other experts and some responses are collected and the farmer is called later. The feedback is converted the next day into voice messages if it is relevant to a wider group of farmers. The other form of feedback is filtered back by field scouts who interact closely with the farmers, frequent focus group discussions and through a bi-weekly structured feedback form. Efforts are being made to make the information more relevant, timely, customized and useful for the farmers. The research and field teams have to work closely and proactively to meet the farmers’ diverse requests. Efforts to compile farmers’ correct phone numbers and to make farmers aware of the benefits of learning about new technologies are great challenges. But the enthusiasm of farmers – shown through an increased listening rate to the voice messages and an increasing number of calls to the helpline – is a great motivation for the project team.

Article author Surabhi Mittal was quoted in India’s Financial Chronicle on the subject. Read the story here.

Maize stover: an underutilized resource for rainfed India

Rastrojo-de-maízIntroducing maize stover into India’s commercial dairy systems could mitigate fodder shortages and halt increasing fodder costs, according to new research by CIMMYT and the International Livestock Research Institute (ILRI). The two organizations collaborated on the Cereal Systems Initiative for South Asia project (CSISA), which is funded by the Bill & Melinda Gates Foundation (BMGF), as well as the CGIAR Research Program on MAIZE. Their study shows that while significant variations exist among maize cultivars in terms of their stover quantity and fodder quality, stover from some high yielding popular hybrids is at par or even better value with the best sorghum stover traded. Sorghum stover, the above-ground biomass left after grain harvest, supports much of the urban and near-urban dairy production in peninsular India.

Between 130 and 200 tons of sorghum stover are sold daily in the fodder markets of Hyderabad alone. Some of the stover is transported several hundred kilometers and costs, on a dryweight basis, about 50% of the price of sorghum grain, which is up from 20 to 30% just 15 years ago. Sorghum stover’s high monetary value can be explained by India’s demand for sorghum fodder, and possibly to a decline in the area of sorghum planted. The crop has been replaced with maize in some regions. Dairy farmers and fodder traders in India generally think maize stover is less suitable than sorghum stover as livestock feed. To challenge the negative perceptions about maize stover, maize stover of a popular high-yielding hybrid with high-quality stover fodder was provided to a commercial dairy producer in the state of Andhra Pradesh.

Rastrojo-de-maíz2This dairy producer had maintained his eight improved Murrah buffaloes on a diet typical of that of urban and near-urban dairy systems in peninsular India. It consisted of 60% sorghum stover and 40% a homemade concentrate mix of 15% wheat bran, 54% cotton seed cake, and 31% husks and hulls from threshed pigeon-pea. Each of the dairy producer’s buffaloes consumed about 9.5 kg of sorghum stover and 6.5 kg of the concentrate mix per day and produced an average of 8.9 kg of milk per day. This dairy producer purchased sorghum stover at 6.3 Indian rupees (Rs) per kilogram. Together with the cost for concentrates, his feed cost totalled 18.2 Rs per kg of milk while his sale price was 28 Rs per kg of milk. In this trial, the dairy farmer purchased maize stover at 3.8 Rs per kg. When he substituted sorghum stover with maize stover, his average yield increased from 8.9 to 9.4 kg of milk per buffalo per day while his overall feed costs decreased from 18.2 to 14.5 Rs per kg of milk per day. The substitution of sorghum stover with maize increased his profits from 3.7 Rs per kg of milk, apart from an additional 0.5kg milk per buffalo.

This study demonstrated the big potential benefits for India’s smallholder rainfed maize and dairy farmers of adopting dual-purpose, food-and-feed maize cultivars, which combine high grain yield with high fodder quality. In this way, farmers can help solve the problem of fodder scarcity while increasing the benefits of their maize cropping. “Poultry and animal feed has been the major driver for unprecedented increase in demand of maize in South & Southeast Asia. The dual-purpose maize, with high stover quality along with high grain yield, is emerging as another big driver that can further add in the increasing demand for maize in this region” says CIMMYT Maize Breeder P.H. Zaidi, who is actively collaborating with ILRI-Hyderabad, India.

Training on weed control in direct seeded rice will boost farmers’ confidence

CSISA scientists address farmers’ concerns on Direct Seeded Rice method in Haryana
The Dry Direct Seeded Rice (DSR) method is gaining popularity in north India, thanks to the researchers, agricultural departments, and enterprising farmers of Punjab and Haryana who have made efforts to implement it on a large scale. Faced with the threats of depleting groundwater, shortage of farm labor, rising production costs, and climate variability, more and more farmers are adopting this alternative method of sowing rice. It promises to be both environmentally friendly and cost efficient.

Compared to the more widely used method where seeds are first germinated in a nursery and then the rice seedlings are manually transplanted to the fields, DSR involves sowing seeds directly in the fields with the help of a machine called a Multi Crop Planter. This technique has been popular in some developed countries of the world, including the U.S., but is new for farmers in India. The Ministry of Agriculture of the Government of India has been promoting this technique through its two flagship schemes, the National Food Security Mission (NFSM) and Rashtriya Krishi Vikas Yojna (RKVY). DSR brings many benefits to farmers—it reduces cultivation costs by 5,100 rupees (78 USD) per hectare, reduces water consumption by 25%, and increases profitability up to 4,600 (70 USD) rupees per hectare. “Moreover, when wheat is grown after a crop of DSR, wheat productivity has been found 8 to 10% higher than when grown after a crop of conventional cultivated rice,” says Virender Kumar from CSISA.

Reports find DSR effective in reducing emissions of methane, a potent greenhouse gas responsible for global warming. CCAFS and Greenhouse Gas Emission quantification project are studying the benefits of conservation agricultural practices, like zero tillage DSR, on greenhouse gas emissions. “For each tonne of rice production with conservation agriculture based management practices, on average 400 kg CO2 equivalent was reduced compared to conventional puddled transplanted rice,” says ML Jat from CCAFS.

Haryana promotes direct seeded paddy
The State Agriculture Department, Haryana Agricultural University, and Farmers Commission are now promoting the use of DSR in Haryana because of its benefits. Four years ago, only 226 hectares of area was under DRS in Haryana. This number has increased to 8000 hectares in 2012 and is targeted to cover 20,000 hectares in 2013. However, access to effective weed management and cost-effective herbicides still remain a challenge and will affect the success of this technology in the long term.

As with any new technique, the phase of building awareness, training and responding to farmers’ concerns is integral to making DSR technique successful. Cereal Systems Initiative for South Asia (CSISA), a project funded by Bill & Melinda Gates Foundation and USAID along with other stakeholders, launched a campaign in May to encourage farmers to adopt DSR in Haryana. The campaign included technical trainings on DSR for farmers and service providers, meetings with different stakeholders to identify and solve the problems of availability of inputs including machinery and seed, mass-media programs like radio talks, and distribution of pamphlets in the local language. The campaign reached the farmer at the field and village level for their direct feedback and to understand their problems. “Synergy between different public-private stakeholders, feedback from farmers, and technical inputs to the farmers at the right time are necessary after a series of intensive trainings to make a transformation like Direct Seeded Rice technology a success,” says B.R. Kamboj from CSISA. CSISA, in collaboration with IFC-Dunar Foods Limited and the Haryana State Department of Agriculture, organized a travelling seminar on 14 August in different villages of the Asandh block of the Karnal district. Farmers highlighted their concerns, which included late availability of the subsidized inputs such as seeds, herbicides, and machinery, and weed problems even after the proper application of herbicides.

Responding to various issues, representatives from the organizations suggested the application of preemergence herbicide, which prevent the germination of weed seeds such as pendimethalin, is necessary for effective weed management in DSR; on machinery, farmers could establish farmer cooperatives and pool resources to purchase the machinery; on less germination, sowing should be done by the expert service providers. It is also critical to use the proper setting of the sowing depth of the machine. The participants also visited the DSR fields of different villages including Balla, Salwan, Dupedi, and Padhana. While the crops looked very healthy, symptoms of zinc deficiency and excessive use of urea were seen. B. R. Kamboj demonstrated how to identify the weeds and advised on judicious use of pesticides for effective control of insects, diseases, and weeds. To ensure a good harvest from the DSR fields, the next step is timely control of insects and pests. Farmers must learn to identify the insect and pests and the right stage to control them. The Department of Agriculture will provide regular visits and trainings on insect pest management (IPM) in some identified DSR villages. “This will be a very important activity to build the confidence in the farmers to continue using DSR technique,” Kamboj says.

Are mobile phones helping farmers?

mobile-phones2Mobile phones promise new opportunities for reaching farmers with agricultural information, but are their potential fully utilized? CIMMYT’s agricultural economist Surabhi Mittal and IRRI’s economist Mamta Mehar argue that institutional and infrastructural constraints do not allow farmers to take full advantage of this technology. In India, agro-advisory service providers use text and voice messaging along with various mobile phone based applications to provide information about weather, market prices, policies, government schemes, and new technologies. Some service providers, such as IKSL, have reached more than 1.3 million farmers across 18 states of India. But what is the real impact of such services? Are messages available at the right time? Do they create awareness? Do they strengthen farmers’ capability to make informed decisions? Are they relevant to his or her farming context?

Mittal and Mehar say there is still a long way to go. While farmers get information through their mobile phones, it is often general information irrespective of their location and crops, which is information they cannot effectively utilize. In 2011, CIMMYT conducted a survey with 1,200 farmers in the Indo-Gangetic Plains; the survey revealed the farmers needed information on how to address pest attacks and what varieties better adapt to changing climatic conditions. Instead, they received standard prescriptions on input use and general seed varietal recommendations. To provide the information farmers really need, dynamic databases with farmers’ land size, cropping pattern, soil type, geographical location, types of inputs used, variety of seed used, and irrigation must be developed.

Sustainability is another problem. Such agro-advisory projects require continued financial assistance; when money runs out, the project ends and the people are again left without information, feeling cheated and without trust for any similar project that may come in the future. There is a need to assess the willingness of farmers to pay for these services and develop sustainable business models, say Mittal and Mehar. Furthermore, it has been shown that the benefits of mobile phone services are not reaching the poor, as they do not have access to the technology despite its increasing availability. The main beneficiaries of the mobile phone revolution are the ones with skills and infrastructure, and the poor are thus left even further behind.

mobile-phonesWhat can be done? Agro-advisory providers need to develop specific, appropriate, and timely content and update it as often as necessary. This cannot be achieved without a thorough assessment of farmers’ needs and their continuous evaluation. To ensure timeliness and accuracy of the provided information, two-way communication is necessary; Mittal and Mehar suggest the creation of helplines to provide customized solutions and enable feedback from farmers. The information delivery must be led by demand, not driven by supply. However, even when all that is done, it must be remembered that merely receiving messages over the phone does not motivate farmers to start using this information. The services have to be supplemented with demonstration of new technologies on farmers’ fields and through field trials.

For more information, see the full article published on the AESA website. This work is based on the ongoing research at CIMMYT’s Socioeconomics Program funded by CCAFS.

‘The 50 PACT’ Conference: collaborate for better food security in South Asia

The-50-PACTFarmers need to be more involved in developing and refining technology. This was one of the key conclusions of a technology working group comprised of leading Asian scientists, representatives of farmer groups and entrepreneurs who met during “The 50 Pact,” an international conference jointly organized by the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) to celebrate 50 years of Dr. Norman Borlaug’s first visit to India. Held in New Delhi during 16-17 August, the event brought together more than 200 participants from agriculture institutions, the government, think tanks, industry, and civil society of various countries including Afghanistan, Bangladesh, Belgium, Germany, India, Malaysia, Mexico, Nepal, Sri Lanka, and the United States.

South Asia is the most populous region in the world and several models predict that this region is going to be dramatically impacted by climate change. “We must devise new ways to feed more people with less land, less water and under more difficult climate change conditions,” said Thomas Lumpkin, Director General of CIMMYT, highlighting a significant challenge that requires critical innovations, collaborations and commitments to solve food insecurity and strengthen agriculture in South Asia. This sentiment was echoed by others in the opening session of the conference, including S. Ayyappan, director general of ICAR, government of India, R.S. Paroda, president of Trust for Advancement of Agricultural Sciences (TAAS), R.B. Singh, president of the National Academy of Agricultural Sciences (NAAS), Swapan Datta, ICAR and Marianne BĂ€nzinger of CIMMYT. Remembering their personal interactions with Dr. Borlaug, “the Nobel laureate with a heart for the poor,” and his association with CIMMYT and India, they also felt the need to make a pact to bring about a second green revolution in the South Asia region. M.S. Swaminathan, a legendary figure in Indian agriculture, paid tribute to Dr. Borlaug for his immense contribution in agriculture during the opening ceremony. “From Bengal famine to Right to Food Act of India, it has been a historic transition and Dr. Borlaug played a very important role in this transition through his work in the last 50 years,” Swaminathan said. Jeanie Laube Borlaug, chairperson of BGRI and the daughter of Dr. Norman Borlaug, presented Swaminathan with the Dr. Norman Borlaug Award.

The-50-PACT2Technology and innovations will play a key role
Bangladesh, India, Nepal, and Sri Lanka will have to work together to find regional solutions to food insecurity. Representatives from these countries talked about different agricultural developments during the post-green revolution period and emerging challenges and opportunities. They also highlighted how the BISA, with its mandate, furthers research on farming systems in addition to focusing on an eco-regional approach involving other CG centers. Utilizing all technologies, including molecular breeding, biotechnology, precision agronomy, and mobile-based decision making will be crucial. The session on technology highlighted this and also pushed for greater involvement of farmers at every step of new technology development. It is important to capture the process of adoption of innovation by farmers and use new technology to provide feedback to the researchers. The group advocated for increased political will and a better policy environment on the adoption of GM crops. Making agriculture profitable is important for producers and the entire agricultural value chain. Ramesh Chand of ICAR said that his recent analysis in India shows the real farm income is not declining, but the income gap between agricultural and non-agricultural income is widening. Agricultural infrastructure is not well developed, investments are low and land fragmentation is increasing. These are major concerns for this sector. The participants talked about a need for an enhanced cyber infrastructure for crop research, open access to agriculture database, and strengthening the value chain balancing the role of market, price, and technologies.

Greater regional synergy needed
More emphasis on synergy, partnerships, farmer’s welfare, productivity, profitability, and nutrition will be critical to address the problem of hidden hunger and food security in this region. Other areas to focus on include providing access to and the use of cutting edge research and new technologies that are not yet available in the region, ensuring commitments from governments and other donors for investments in agricultural research, advocating for a policy environment that embraces new technologies and invests in agricultural research, building a regional platform of collaboration with partners from all sectors, research centers, governments, the scientific world, and the farming community who share our mandate to transform farmers’ lives in the region.

Making villages ‘climate smart’

Making-villages1“Climatic extremes and variability are  becoming more frequent and resulting in losses for farmers. This issue cannot be addressed in isolation; it needs collective participation of all stakeholders, at all levels,” stated Clare Stirling, leader of the CIMMYT component of the Climate Change, Agriculture and Food Security (CCAFS) CRP, at a stakeholder consultation on ‘Climate Smart Agricultural Technologies for Smallholder Farmers of Bihar’ held on 22 July 2013.

The talks were organized by CIMMYT and BISA, under the aegis of CCAFS, and in collaboration with national research and extension partners such as the Indian Council of Agricultural Research (ICAR), Indian Agricultural Research Institute (IARI), Rajendra Agriculture University, the State Department of Agriculture, and the Government of Bihar; international centers Bioversity International, the International Water Management Institute, and the International Food Policy Research Institute; local NGO and private sector partners; and farmer groups of the Climate Smart Village (CSV) clusters, Vaishali district, Bihar.

Making-villages3The lively discussions included almost 200 participants, including innovative CSV farmers from Bhatthadasi, Rajapakar, and Mukundpur (Vaishali district); agriculture advisors from various Village Panchayats; climate smart farmer groups, research students, and local service providers. M.L. Jat, CIMMYT-CCAFS South Asia Leader, explained the concept of CCAFS CSVs in South Asia, and the key climate smart activities they are implementing for the benefit of smallholder farmers in Bihar’s Vaishali district. Participants visited demonstration plots where R.K. Jat, CIMMYT-BISA Cropping Systems Agronomist, showed how mechanization and conservation agriculture-based management practices are being implemented even on small, fragmented land holdings. By effectively ‘pooling’ their land for operational purposes, farmers have improved efficiency, reduced costs, and established timely crop management even with uncertain rainfall. R.K. Jat also explained the main advantages of the key climate smart interventions such as zero tillage, Direct Seeded Rice (DSR), raised bed planting, residue management, crop diversification, and nutrient management in managing climate risks and optimizing resources for higher profitability for the smallholders.

Making-villages2The active participation of about 80 female farmers allowed for a balanced and varied consultation. All the farmers expressed their concerns regarding climate variability and how it is affecting their livelihoods. They shared their experiences of turning their villages into CSVs, and how the new practices have benefitted them; after planting their wheat under zero till in the winter of 2012-13, farmers were initially skeptical of these changes to age-old practices, but having now reaped higher yields with less input costs, all the farmers have committed to planting under zero tillage next season. DSR has also been recently introduced, and the farmers thought the technology seemed promising in that it would reduce cultivation costs and provide some security under the increasing uncertainties of rainfall and labor shortages. The women farmers praised the intoduction of the ZT machine by CIMMYT under CCAFS. With many men migrating to cities, the women highlighted the reduced labor load with the increased availability of machinery and bed planting of maize and legumes.

I.S. Solanki, IARI Regional Station Head, emphasized the need for farmers to work with scientists in adopting resilient farm technologies and locally-adapted seed. This was reiterated by Stirling: “The concept of CSVs is just one example of making synergies among different programs, investments, institutions, and stakeholders, for adaptation, risk management, and mitigation of climate change effects,” she said.

Research battles wheat spot blotch disease

wheat-spot-blotch-diseaseAfter screening some 500 wheat lines and varieties at 6 sites in Bangladesh, India, and Nepal, a group of scientists were able to identify 35 genotypes that resist spot blotch. This is the number-one disease of wheat in the Eastern Gangetic Plains, seriously damaging the crops of farmers—who are mostly smallholders—on some 9 million hectares.

The results were reported at a meeting of participants in two projects of WHEAT, the CGIAR Research Program on this crop, at Mohanpur Campus of IISER-Kolkata, India, on 24 June 2013. Funded through multi-year competitive grants from WHEAT, the two project are “Deciphering phytohormone signaling in modulation of resistance to spot blotch disease for identification of novel resistance components for wheat improvement,” led by Shree P. Pandey, IISER-Kolkata, and “Spot blotch of wheat: Delivering resistant wheat lines and diagnostic and molecular markers for resistance,” led by Ramesh Chand of Banaras Hindu University, Varanasi. Among other things, participants discussed year-one outcomes and laid plans for the coming crop cycle.

Chand reported on the seedling stage resistance found in the wheat tested. In this type of resistance, the pathogen is present on wheat seedlings for up to 25 days without any infection, exhibiting responses such as lesion mimic and tissue necrosis, which appear to attenuate pathogen effects. The resistance gene Sr2 was also found in most of the resistant seed.

Exciting moments in the meeting were the discussions of biochemical and histo-pathological parameters and their possible integration in the resistance screening. Pandey and his team reported novel research to understand phytohormone signals that regulate wheat’s resistance against Bipolaris sorokiniana–the causal pathogen of spot blotch—and which are synthesized in response to the pathogen’s attack. The IISER group is assembling a dictionary of signaling genes that can serve as genomic tools for resistance breeding in wheat. “Expression of these DNA ‘words’ changes when plants are attacked by the spot blotch pathogen,” said Pandey. “Deciphering this word choice can elucidate the chain of command in plants in to the pathogen, helping breeders to design plants better-equipped with resistance genes.”

Finally, there was a report on the field performance of the 500 lines at two other locations, UBKV Coochbehar and RAU Pusa.

In addition to the scientists mentioned above, participants included WHEAT manager Victor Komerell; CIMMYT researcher Arun Joshi; Prof. V.K. Mishra, BHU, Varanasi; Prof. Apurba Chowdhury; Dr. P.M. Bhattacharya, UBKV; and Dr. Rajiv Kumar, Rajendra Agricultural University, Pusa, Bihar; as well as other wheat researchers from IISER-K.

“The partners here submitted separate proposals for the projects,” said Komerell. “This meeting furnishes an example of how WHEAT has encouraged them to collaborate.”

CIMMYT/CCAFS in India: Gender, action, research

CIMMYT_CCAFSIn June 2013, ML Jat (Global Conservation Agriculture Program) and research teams in Bihar and Haryana, India, welcomed CIMMYT gender specialist Tina Beuchelt and gender consultant Cathy Farnworth to discuss integration of gender perspectives into their daily research routine. The visit was triggered by the request from the CRP on Climate Change, Agriculture and Food Security (CCAFS) to enhance women’s access to and use of agricultural and climate-related services and information (IDO5).

The visit began with discussions held with individual researchers on how to include a gender perspective in their work plans and field experiments, demonstration plots, out-scaling efforts, and surveys. The team visited farmers participating in CIMMYT/CCAFS projects in Bihar and Haryana, where lively small group discussions helped the visitors to gain a deeper understanding of the situation of women and men, their roles and responsibilities, and gender-related constraints existing in their small-scale farming systems. The team met with smallholder and better-off farmers, as well as landless workers and female-headed households to obtain a representative picture of those involved in agriculture in CIMMYT/CCAFS target areas. Men and women were interviewed separately, and CIMMYT staff helped to explain the production systems and the basket of climate-smart farming options currently available, and shared their thoughts on how to respond to specific gender challenges.

Given the varying agro-ecological environments and socioeconomic characteristics of farmers in each state, it was agreed that in order to address IDO5 successfully, new partners, new allies, and new ideas are needed. While the discussions proceeded well, one of the female participants made a timely and heart-felt warning: “You ask us to take risks, but where will you be if we fail?”

The trip culminated with a workshop on “Pathways of gender-equity led climate-smart farming: learning from stakeholders” organized jointly by the Directorate of Wheat Research (DWR), the Indian Council of Agricultural Research (ICAR), and CIMMYT/CCAFS in Haryana on 7 June 2013. A wonderful mix of male and female farmers; farmer organizations; researchers from ICAR, Haryana Agricultural University, and CGIAR; extension and developmental organizations, including the State Department of Agriculture, NGOs; private sector organizations; and politicians – about 65 participants in total – joined the workshop and contributed with great enthusiasm to discussions on advantages and disadvantages of different climate-smart technologies for women, more effective types of institutional support required to support women etc. Participants then formed small groups to discuss concrete ideas for action to support women in agriculture, which was followed by presentations and discussions in a plenary session chaired by DRW director Indu Sharma.

The workshop was concluded with dinner wherein Suresh Gahalawat, Deputy Director for Agriculture in Karnal at the Government of Haryana, who had showed great enthusiasm regarding the topic during the workshop, announced that: “Gender will become part of the agricultural policies of Haryana”. “To start with, we will include the gender component in all schemes operated in the district,” he added, confirming the importance and success of the workshop.

The Indian research team is strongly committed to integrating gender into their research activities

CIMMYT_CCAFS2.