Skip to main content

Location: India

For more information, contact CIMMYT’s India office.

First international training workshop on farming systems analysis in India

The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.

Workshop participants and facilitators. Photo: CIMMYT
Workshop participants and facilitators. Photo: CIMMYT

Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.

The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago López Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.

“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”

D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.

A book on sustainable intensification was released. Photo: CIMMYT
A book on sustainable intensification was released. Photo: CIMMYT

Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.

The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.

Local innovations help meet farmers’ needs in Bihar

During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar nearly 350 women farmers were trained on operating the Diesel Engine Powered Open Drum Thresher. In this picture, Suryakanta Khandai (center), postharvest specialist, IRRI, is conducting a demonstration for two of the women’s self-help groups (SHGs) that have expressed interest in purchasing four machines next season.

In India, farmers with large landholdings from prosperous agricultural states like Punjab can buy expensive and sophisticated machines for farm operations. However, resource-poor farmers with smaller landholdings from states such as Bihar may not have funds to buy these machines. “A huge bottleneck exists in terms of time wasted in harvesting and threshing that is preventing timely sowing of crops,” said Scott Justice, agriculture mechanization specialist, CIMMYT.

The Cereal Systems Initiative for South Asia (CSISA) is working to ensure that farmers all along the spectrum of landholdings have access to differently priced and scale-appropriate machinery based on their specific requirements. One of the ways CSISA does this is by improving existing designs of harvest and postharvest machinery to better meet local needs.

For shelling maize, farmers in Bihar could either purchase a very large, highly productive machine that costs approximately US$ 786 or use a handheld maize sheller that is cheap but can only shell 15 – 20 kg per hour. A medium-sized mechanized single cob maize sheller brought to Bihar from Nepal broke the cobs because the sheller had been optimized for Nepal’s hybrid varieties that had longer and thinner cobs. Farmers in Bihar need their cobs to remain intact so they can be used as fuel for their stoves. According to Justice, “These lightweight and affordable shellers are relatively new entrants on the scene. Their simple designs mean that they can be made easily by local manufacturers.” More importantly, they can also be modified as required.

CSISA worked with a local fabricator to modify the existing design and created an electric motor powered double cob maize sheller, which can shell 150 kg maize per hour and consumes only 2 – 4 units of electricity. Priced at US$ 126, the machine is also fairly affordable. “In fact, half the cost of the machine is that of the electric motor alone. For farmers who already own one, the machine would merely cost US$ 63,” said Suryakanta Khandai, postharvest specialist, IRRI, who works for CSISA in Bihar.

Similarly, until recently, farmers in Bihar only had two options for mechanized rice threshing – the very large axial flow thresher that can cost up to US$ 2,700 after subsidy or the compact pedal-powered open drum thresher that has very low capacity and is difficult to operate for extended periods of time.

“Farmers clearly needed a medium-sized, affordable, efficient and portable mechanical rice thresher,” said Khandai. But to build a truly relevant product understanding the shortcomings of the existing options was critical. “The existing models also lacked winnowing or bagging functions, which were included in the new design. Besides giving it wheels, we also decided to use a diesel engine to power the machine to allow for threshing in the field immediately upon cutting, which would help reduce losses.” The result was the diesel engine powered open drum thresher.

It costs US$ 23.96 to hire one person to manually thresh 1 acre of rice in 7 days. Using the diesel engine powered open drum thresher, however, the same area can now be covered in just over four hours at a total cost of US$ 10.54.

Since modifying these medium-sized machines does not offer sufficient profit margin for larger manufacturers and retailers, CSISA approached local fabricators to fill this gap. The maize sheller was customized in cooperation with Dashmesh Engineering, which sells the machine at a profit of US$ 11–13. “Profits help ensure that the fabricators put in efforts on their own to scale out the machines. Other dealers have also expressed interest in the maize sheller, which is great because having multiple fabricators involved ensures that the pricing remains competitive,” said Khandai.

Justice added, “Equipment like powered open drum threshers for rice are very simple but they have not spread very widely. I feel these should now also be promoted with owners of two-wheel tractors and mini tillers in India and Nepal.” Since the thresher can easily be adapted again to be powered by those engines, the cost of the machine can be brought down even further.

CSISA mechanization meets farmers’ needs in Bihar, India

“A huge bottleneck exists in terms of time wasted in harvesting and threshing that is preventing timely sowing of crops,” said Scott Justice, agriculture mechanization specialist, CIMMYT. The Cereal Systems Initiative for South Asia (CSISA) is working to ensure smallholder farmers have access to machinery based on their specific requirements by improving existing designs to meet local needs.”

For shelling maize, farmers in Bihar can either purchase a very large, efficient machine that costs approximately US $786 or use a cheap handheld sheller that can shell only 15-20 kilograms per hour. According to Justice, “these lightweight, affordable shellers are relatively new on the scene. Their simple design means that they can easily be made by local manufacturers and can also be modified as required.”

CSISA worked with a local manufacturer to modify the design of a medium-sized sheller and created a double cob maize sheller powered by an electric motor, which can shell 150 kg of maize per hour and consumes only 2-4 units of electricity. Priced at US $126, the machine is fairly affordable. “In fact, half the cost of the machine is that of the electric motor alone. For farmers who already own one, the machine would only cost US $63,” said Suryakanta Khandai, Postharvest Specialist at the International Rice Research Institute (IRRI), who works for CSISA in Bihar.

During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar, nearly 350 women farmers were trained to operate the diesel engine-powered, open-drum thresher. In this picture, Suryakanta Khandai (center), IRRI postharvest specialist, conducts a demonstration for two women’s self-help groups interested in purchasing four machines next season. Photo: CSISA
During a pilot program with members of the Kisan Sakhi Group in Muzzafarpur, Bihar, nearly 350 women farmers were trained to operate the diesel engine-powered, open-drum thresher. In this picture, Suryakanta Khandai (center), IRRI postharvest specialist, conducts a demonstration for two women’s self-help groups interested in purchasing four machines next season.
Photo: CSISA

Until recently, farmers in Bihar only had two options for mechanized rice threshing –a very large axial flow thresher that can cost up to US $2,700 with subsidies, or a pedal-powered, open-drum thresher that has very low capacity and is difficult to operate for extended periods.

“Farmers clearly needed a medium-sized, affordable, efficient and portable mechanical rice thresher,” said Khandai. “The existing models lacked grain-separating or bagging functions, which we included in the new design. In addition to giving it wheels, we also decided to use a diesel engine to power the machine to allow for threshing in the field immediately upon cutting, which helps reduce losses.” The result was a diesel-powered, open-drum thresher.

It costs US $23.96 to hire one person to manually thresh one acre of rice and it takes seven days. However, the diesel-powered, open-drum thresher covers the same area in just over four hours, at a total cost of US $10.54.

Since the modified machines do not offer an attractive profit for larger manufacturers and retailers, CSISA approached local companies to fill the gap. The maize sheller was customized in cooperation with Dashmesh Engineering, which sells the machine at a profit of US $11–13. “Profits help ensure that the manufacturers are motivated to scale out the machines,” said Khandai.

Justice added, “Equipment like the diesel-powered, open-drum rice thresher is very simple but has not spread very widely. I feel these should now also be promoted to the owners of two-wheel tractors and mini tillers in India and Nepal.”

Well-positioned for next phase, CSISA India plans for monsoon cropping season

As Phase II of the Cereal Systems Initiative for South Asia (CSISA) draws to a close in India, it is well positioned for a Phase III, according to Andrew McDonald, CIMMYT Cropping Systems Agronomist and CSISA Project Leader speaking at the Objective 1 planning and evaluation meeting for the 2015 monsoon cropping season held in Kathmandu, Nepal, on 22-24 April. The meeting was attended by CSISA’s Objective 1 teams from the Bihar, eastern Uttar Pradesh, Odisha and Tamil Nadu hubs, comprising diverse disciplinary experts from CIMMYT, the International Food Policy Research Institute (IFPRI), the International Livestock Research Institute (ILRI) and the International Rice Research Institute (IRRI).

Phase II began in October 2012 and will be completed in October of this year. The external evaluation report, commissioned by the United States Agency for International Development (USAID), commended the uniqueness of CSISA’s work with service providers and farmers, its staff’s dedication and the strong collaboration among CSISA partners. CSISA was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems, and operates rural “innovation hubs” throughout Bangladesh, India and Nepal.

The teams took a critical view of activities from the previous monsoon cropping season and highlighted priority areas for this year. “Sustainable intensification of cropping systems should be the centerpiece of our growth strategy. Rice followed by mustard followed by spring maize or green gram is a great system that can help us achieve 300% cropping intensity,” said R.K. Malik, CIMMYT Senior Agronomist and CSISA Objective 1 Leader. “We need to focus not only on how to create new service providers but also on how existing ones can be used as master trainers. This will help fill the gap of field technicians and further strengthen delivery,” Malik explained, regarding CSISA’s network of more than 1,800 service providers.

Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee
Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee

Leading discussions on the Odisha hub, Sudhir Yadav, IRRI Irrigated Systems Agronomist, emphasized the importance of identifying the non-negotiable steps for successful technology implementation. “The performance of zero tillage, for example, depends on soil type, date of seeding and whether the crop is rainfed or receives supplementary irrigation,” said Yadav. CSISA successfully introduced zero tillage in Odisha’s Mayurbhanj District, where it has enabled crop intensification thanks to the retention of residual soil moisture.

The meeting served as a platform for representatives from Catholic Relief Services’ (CRS) Improved Rice-based Rainfed Agricultural Systems project to showcase lessons in managing rainfed rice systems in northern Bihar.

CSISA is currently in discussions with USAID and the Bill & Melinda Gates Foundation (BMGF) to design the technical program, and determine the scope, geography, duration and budget of Phase III.

SUPER WOMAN: Chhavi Tiwari aids women farmers with zinc-fortified wheat

ZINC DEFICIENCY IS ATTRIBUTED TO 800,000 DEATHS EACH YEAR

ChhaviInternational Women’s Day on March 8, offers an opportunity to recognize the achievements of women worldwide. This year, CIMMYT asked readers to submit stories about women they admire for their selfless dedication to either maize or wheat. In the following story, scientist Velu Govindan writes about his Super Woman of Wheat, Chhavi Tiwari, a senior research associate at Banaras Hindu University.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization (WHO).

It can lead to short stature, hypogonadism, impaired immune function, skin disorders, cognitive dysfunction and anorexia. Additionally, it causes approximately 16 percent of lower respiratory tract infections, 18 percent of malaria cases and 10 percent of diarrheal disease cases worldwide, WHO statistics show.

Enhancing the micronutrient content in wheat through biofortification is increasingly seen as an important tool to help improve the livelihoods of the most vulnerable, poorest and least educated sectors of society.

That is why Dr. Chhavi Tiwari, senior research associate from Banaras Hindu University in Varanasi, India, is my super woman of wheat.

She has been working with the HarvestPlus program with active collaboration and support from the International Maize and Wheat Improvement Center (CIMMYT) to empower women farmers by making them aware of the value of micronutrient-rich wheat.

Her on-farm training programs increase their understanding of crop and soil management techniques, aiding in the improved production of wheat varieties high in zinc content.

Working closely with women’s self-help groups, she demonstrates the importance of wheat varieties high in zinc content through a participatory variety-selection approach, increasing the potential agronomic and nutritional benefit of these varieties for fast-track adoption.

Through her inclusive approach, a great deal of interest in high zinc wheat varieties has been generated among women farmers. Her efforts have contributed to the adoption of nutritious wheat varieties the eastern part of India’s state of Uttar Pradesh, leading to the potential for technology dissemination in neighboring states.

Engaging with rural women farmers is a core interest of Chhavi’s. She consults women farmers on their views and gives them the opportunity to participate in a decision-making process that increases their investment in agriculture and nutrition.

Her activities play a crucial role in uplifting women by alleviating malnutrition and hunger through nutritious wheat.

Chhavi is the recipient of the 2010 CIMMYT- Cereal System Initiative of South Asia (CSISA) research fellowship and the Jeanie Borlaug Laube Women in Triticum Award from the Borlaug Global Rust Initiative in 2014.

Any views expressed are those of the author and not of the International Maize and Wheat Improvement Center

SUPER WOMAN: Suchismita Mondal develops climate change resilient wheat

Mondal
Wheat breeders Suchismita Mondal (L) and Ravi Singh, also distinguished scientist, at CIMMYT’s Toluca, Mexico, research station in 2014. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) — Suchismita Mondal was inspired by the humble flour tortilla to take up a career as an international wheat breeder.

Mondal’s original intention was to focus on plant genetics, so she moved from India, where she earned her undergraduate degree at Banaras Hindu University, to the United States to attend Texas A&M University.

Once there, her studies were focused on the application of genetics in breeding for wheat germplasm that would lead to improved tortilla quality, under the guidance of Dr. Dirk Hays, her master’s degree advisor.

“Being involved in the project, developing crosses and evaluating germplasm was my initial point of interest in breeding,” Mondal said, adding that she was also inspired by a conversation she had with Nobel Peace Prize laureate Norman Borlaug, who was teaching at the university.

Borlaug is known as the father of the Green Revolution due to the semi-dwarf wheat varieties he developed at the International Maize and Wheat Improvement Center (CIMMYT), which are credited with saving more than 1 billion lives in India, Pakistan and other parts of the developing world.

“Learning about the direct impact of a breeder’s work in the farmers’ fields and lives of millions of people was also a significant motivation, not only to become a breeder, but also to work at CIMMYT,” said Mondal.

Later, for her doctoral degree, she went on to research the function of genetic controls for heat-stress resilience in winter wheat.

Following her graduation in 2011, she realized her ambition and began working at CIMMYT. Since then, Mondal has developed her career at CIMMYT — working with distinguished scientist Ravi Singh — where she is now an associate scientist in the bread wheat breeding program and develops high-yielding heat and drought tolerant germplasm.

Her work in the Cereal Systems Initiative for South Asia (CSISA) project has led to the identification of early-maturing, high-yielding, heat-tolerant lines with 10- to 15-percent superior yields in the heat-stressed environments of South Asia, two of which were released in India while various others are at different stages of testing.

“Strive hard, stay motivated,” she advises her successors, the upcoming generation of women scientists.

Low-cost innovations to benefit smallholder farmers in Nepal

A new investment by the U.S. Agency for International Development (USAID) in the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP) was launched on 10 April, 2015 at a public event in Kathmandu. The investment by USAID India and USAID Washington, totalling US$ 4 million over four years, aims to work with the private and public sectors to benefit smallholder farmers by integrating scale-appropriate mechanization technologies with resource conservation and management best practices.

“For a country where 75 percent of the population makes its livelihoods in agriculture, these partnerships are absolutely important. Agriculture development, as we know, is one of the surest routes out of poverty,” remarked Beth Dunford, Mission Director, USAID Nepal at the launch. Eight million Nepalis still live in extreme poverty and almost 3 million Nepalis live in recurring food insecurity. “We also know that growth tied to gains in agricultural productivity is up to three times more effective at raising the incomes of the poor than growth from any other sector,” Dunford added.

The new phase of CSISA-NP, an initiative led by the International Maize and Wheat Improvement Center (CIMMYT), will build on successes and lessons learned from the ongoing work of CSISA Nepal, currently funded by USAID Nepal, and will continue to focus on districts in the mid-West and far-West regions of Nepal. It will complement USAID’s Feed the Future program, KISAN, which works to improve agricultural productivity and incomes for over one million Nepalis.

Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP new phase launch. Photo: Anuradha Dhar/CIMMYT
Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP
new phase launch. Photo: Anuradha Dhar/CIMMYT

The new workplan will be implemented in close collaboration with the Ministry of Agriculture and Nepal Agricultural Research Council, to strengthen seed value chains for timely access to improved varieties by farmers, promote sustainable intensification of agricultural systems through increasing lentil cultivation and better-bet management, increase wheat productivity using new technologies and better farming practices and facilitate precise and effective use of nutrients to increase crop yield.

A specific component of the new investment is designed to support and build the capacity of change agents like medium-sized seed companies, agro‐dealers and mechanized service providers. “Building on its success of working with the Indian private sector, CSISA will expand the program in Nepal to facilitate application of specialized, commercially-viable equipment for small and marginal farmers,” highlighted Bahiru Duguma, Director, Food Security Office, USAID India.

“CSISA supports more than 1,600 service providers in eastern Uttar Pradesh and Bihar in India and we want to replicate that success in Nepal of working with local entrepreneurs to help reach farmers with mechanized technologies,” said Andrew McDonald, CSISA Project Leader.

Rajendra Prasad Adhikari, Joint Secretary, Policy and International Cooperation Co-ordination Division, Ministry of Agricultural Development welcomed this initiative and said that this launch is very timely as the agricultural ministry has just developed and endorsed an agricultural mechanization promotion policy and the Nepal Agricultural Development Strategy is in its final shape.

The launch was well attended by representatives from the Nepal Ministry of Agriculture, Nepal Agricultural Research Council, Agriculture and Forestry University and USAID officials and received positive media coverage in Nepal.

Maize workshop sets stage for doubling production in India by 2025

The 58th All India Coordinated Annual Maize Workshop was held at Punjab Agricultural University (PAU) in Ludhiana, India during 4-6 April. The workshop brought together nearly 200 scientists in India working on maize research and development, as well as representatives from seed companies. The All India Coordinated Research Project (AICRP) on Maize was the first crop research project established in India in 1957 and served as a model for all following crop projects in the country.

Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.
Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.

“We need to double maize production and productivity in India through multi-institutional, multi-pronged strategies,” said B.M. Prasanna, director of CIMMYT’s global maize program, during the workshop’s keynote lecture. He went on to explain how “this can be achieved through germplasm enhancement, broadening the phenotyping scale and precision and accelerating breeding through doubled haploid technology, among other improved technologies and management practices.”

“The partnership between the Indian Council of Agricultural Research (ICAR) and CIMMYT over the last several decades has benefited the Indian breeding program immensely, from providing germplasm to receiving support for human resource development,” said O.P. Yadav, Director of the Indian Institute of Maize Research (IIMR). Yadav presented AICRP-Maize’s 2014 achievements, such as the release of 17 new varieties and national maize production reaching its highest level (24 million tons).

A panel discussion co-chaired by Prasanna and J.S. Sandhu, Deputy Director General-Crop Science at ICAR, entitled “Doubling maize production in India by 2025: Opportunities and Challenges” drew representatives from several public and private institutions working on maize. Prasanna and A.S. Khehra, former PAU Vice-Chancellor, were congratulated for their outstanding achievements in maize research, including the release of several improved maize varieties and advances in genetics and molecular breeding.

Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)
Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)

“Genetic gains must also translate to yield gains in farmers’ fields,” Prasanna declared. “We must effectively integrate improved varieties that meet the needs of farming communities with sustainable intensification practices.”

The workshop closed with an overview of achievements and finalization of a 2015 work plan, with scientists from AICRP-Maize Centres and CIMMYT providing input. Also in attendance were Gurbachan Singh, Chairman of India’s Agricultural Service Recruitment Board; BS Dhillon, Vice-Chancellor of PAU; SK Sharma, Chairman of IIMR’s Research and Advisory Committee; IS Solanki, Assistant Director of ICAR’s General-Food Crops; and S.K. Vasal, retired CIMMYT Distinguished Scientist.

Climate-smart agriculture achievements inspire support for BISA-CIMMYT in Bihar, India

The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT
The Director of Agriculture (3rd from left) and the District Collector (2nd from right) view a demonstration of urea drilling in a standing wheat crop. Photo: Manish Kumar/CIMMYT

The Borlaug Institute for South Asia (BISA), CIMMYT and stakeholders are developing, adapting and spreading climate-smart agriculture technologies throughout Bihar, India. During the 2014-2015 winter season, BISA hosted visits for national and international stakeholders to view the progress of participatory technology adaption modules and climate-smart villages throughout the region.

“It is very encouraging to see the [BISA-CIMMYT’s] trials of new upcoming technology…We will be ready to support this,” wrote Dharmendra Singh, Bihar’s Director of Agriculture, in the visitor book during a state agriculture department visit to one of BISA’s research farms and climate-smart villages in Pusa. BISA, CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), in collaboration with local stakeholders and farmer groups, established 15 Borlaug climate-smart villages in Samastipur district and 20 in Vaishali district, as part of a 2012 research initiative to test various climate-smart tools, approaches and techniques.

Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT
Agriculture Production Commissioner (3rd from the left) discussing climate smart practices with farmers in Digambra village. Photo: Deepak/CIMMYT

“I could understand conservation agriculture better than ever after seeing the crop and crop geometry in the field today,” wrote Mangla Rai, former Director General of the Indian Council of Agricultural Research (ICAR) & Agriculture Advisor to the Chief Minister of Bihar. Raj Kumar Jat and M.L. Jat, CIMMYT cropping system agronomist and senior cropping system agronomist, respectively, showcased research trials on zero-tillage potato and maize, early-planted dual-purpose wheat, precision nutrient management in maize-wheat systems under conservation agriculture, genotype -by- environment interaction in wheat and crop intensification in rice-wheat systems through introduction of inter-cropping practices. Raj Kumar Jat also gave a presentation on how to increase cropping intensity in Bihar by 300% through timely planting and direct seeding techniques.

“Technologies like direct-seeded rice and zero-till wheat, which save both time and labor, should be adapted and transferred to Bihar’s farmers,” said Thomas A. Lumpkin, CIMMYT director general, at a meeting of the CIMMYT Board of Trustees with the Chief Minister of Bihar and other government representatives. “BISA is a key partner in building farmer and extension worker capacity, in addition to testing and promoting innovative agriculture technologies.”

The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT
The Agriculture Minister of Bihar visiting a zero tillage wheat field in a climate-smart village ( Bhagwatpur) of Samstipur district. Photo: Deepak/CIMMYT

“State agriculture officials should support BISA to hold trainings on direct-seeded rice for fast dissemination across Bihar,” agreed Vijay Chaudhary, Agriculture Minister of Bihar, at a BISA field day. Chaudhary along with 600 farmers and officials visited a climate-smart village where farmers plant wheat using zero tillage. Zero-till wheat is sown directly into soil and residues from previous crops, allowing farmers to plant seed early and to avoid losing yields due to pre-monsoon heat later in the season. Direct-seeded rice is sown and sprouted directly in the field, eliminating labor- and water-intensive seedling nurseries.

During the Bihar Festival, 22-24 March, BISA-CIMMYT showcased conservation agriculture practices and live demonstrations of quality protein maize-based food products, with over 10,000 famers and visitors participating. Vijoy Prakash, Agriculture Production Commissioner of Bihar, and other Bihar government officials discussed with farmers about new BISA-CIMMYT agriculture practices and emphasized the need to “introduce conservation agriculture in the state government’s agricultural technology dissemination program.” Prakash, along with government representatives, has approved two BISA proposals for a training hostel and research.

Innovation key to wheat yield potential advances, says in-coming CIMMYT DG

Photos: Alfredo Sáenz/CIMMYT
Outgoing CIMMYT Director General Thomas Lumpkin, incoming CIMMYT Director General Martin Kropff, Nynke Nammensma and Jeannie Laube Borlaug (L to R) chat during Visitors’ Week in Obregon, Mexico. CIMMYT/Alfredo Sáenz

CIUDAD OBREGON, Mexico (CIMMYT) — Martin Kropff, who will take the helm as director general of the International Maize and Wheat Improvement Center (CIMMYT) in June, joined scientists, and other members of the global wheat community at the CIMMYT experimental research station near the town of Ciudad Obregon in Mexico’s northern state of Sonora for annual Visitors’ Week.

Following a tour of a wide range of research projects underway in the wheat fields of the Yaqui Valley made famous around the world by the work of the late Nobel Peace Prize winner Norman Borlaug, who died in 2009 at age 95, Kropff shared his views.

Borlaug led efforts to develop high-yielding, disease-resistant, semi-dwarf wheat varieties in the mid-20th century that are estimated to have helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

“I’m very impressed by what I’ve seen in Obregon,” said Kropff, who is currently chancellor and vice chairman of the executive board of Wageningen University and Research Center in the Netherlands.

“From the gene bank in El Batan, the breeding and pre-breeding and the work with farmers on a huge scale, it’s extremely high quality and innovative,” added Kropff, who with his wife Nynke Nammensma also visited CIMMYT’s El Batan headquarters near Mexico City earlier in the week.

“The MasAgro program is very impressive because it takes the step of integrating scientific knowledge with farmers’ knowledge – it’s a novel way to aid farmers by getting new technology working on farms at a large scale. It is a co-innovation approach,” Kropff said.

The Sustainable Modernization of Traditional Agriculture, led by country’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) and known locally as MasAgro, helps farmers understand how minimal soil disturbance, permanent soil cover and crop rotation can simultaneously boost yields and sustainably increase profits.

“The program is an example of how farmers, scientists and other stakeholders can think about and create innovations through appropriate fertilizer applications, seed technologies and also through such instruments as the post-harvesting machines,” Kropff said.

“This is fantastic. That’s what the CGIAR is all about.”

Left to right: Tom Lumpkin, John Snape and Martin Kropff.
Thomas Lumpkin, John Snape and Martin Kropff (L to R). CIMMYT/Alfredo Sáenz

“The HarvestPlus program, which adds more zinc and iron into the crop through breeding, also plays a key role in CIMMYT’s research portfolio,” Kropff said.

Zinc deficiency is attributed to 800,000 deaths each year and affects about one-third of the world’s population, according to the World Health Organization. Enhancing the micronutrient content in wheat through biofortification is seen as an important tool to help improve the diets of the most vulnerable sectors of society.

The climate change adaptation work he observed, which is focused on drought and heat stress resilience is of paramount importance, Kropff said.

Findings in a report released last year by the Intergovernmental Panel on Climate Change state it is very likely that heat waves will occur more often and last longer throughout the 21st Century and that rainfall will be more unpredictable.

Mean surface temperatures could potentially rise by between 2 to 5 degrees Celsius or more, the   report said.

“To safeguard food security for the 9 billion people we’re expecting will populate the planet by 2050, we need innovations based on breeding, and solid agronomy based on precision farming,” Kropff said.

“There’s no other organization in the world that is so well designed as the CGIAR to do this type of work. CIMMYT is the crown jewel of the CGIAR together with the gene banks. No other organization can do this.”

“We’ve done a lot of work in getting higher yields, but not much through increased yield potential, and that’s what we have to work on now,” he added.

“If you raise the yield through agronomy, you still need to enhance yield potential and there’s very good fundamental work going on here.”

“The partnerships here are excellent – scientists that are here from universities are as proud as CIMMYT itself about all the work that is being done. I’m really honored that from 1 June, I have the opportunity to be the director general of this institution. I cannot wait to get started working with the team at CIMMYT and I’m extremely grateful for the warm welcome I’ve received – a smooth transition is already underway.”

Follow Martin Kropff on Twitter @KropffMartin

CIMMYT joins global move to adopt climate-smart agriculture

Photo: Marcelo Ortiz/CIMMYT
Photo: Marcelo Ortiz/CIMMYT

Climate-smart agriculture can be “an effective tool to address climate change and climate variability,” according to Kai Sonder, head of CIMMYT’s geographic information systems (GIS) unit, who was one of 754 participants from 75 countries, including 39 CIMMYT representatives, at the third annual Global Science Conference on Climate-Smart Agriculture, held in Montpellier, France, during 16-18 March.

“Challenges are different for developing and developed countries, but climate change is affecting all of us,” said Sonder. Millions of smallholder farmers in developing countries have less than one hectare of land, earn less than USD $1 per day and are highly vulnerable to extreme climatic events. Many farmers in developed countries struggle to make a living, are dependent on subsidies and insurance payouts and are also highly vulnerable to extreme climatic events.

Modern agriculture, food production and distribution are major contributors of greenhouse gases, generating about one-quarter of global emissions. Climate-smart agriculture addresses the interlinked challenges of food security and climate change by sustainably increasing agricultural productivity, building resilience in food-production systems and reducing greenhouse gas emissions in agriculture.

Challenges and areas where climate-smart agriculture has yet to take hold were addressed at the conference. “California has not practiced it for 50 years and is now dealing with the consequences of poor groundwater management,” said Sonder. “Likewise, Ciudad Obregón and Sinaloa in Mexico are fully-irrigated areas in the middle of a desert where climate-smart practices need to be implemented on a larger scale based on CIMMYT’s activities with local partners.”

Progress and exhibitions on climate-smart agriculture projects were also showcased. “This is becoming an integral part of CIMMYT work, as climate conditions increasingly disrupt growing seasons,” Sonder said. “MasAgro is looking at water and nutrient efficiency in Mexico, and CIMMYT is developing maize and wheat varieties that are tolerant to stresses like heat and drought and their combinations,” said Sonder. In collaboration with the CGIAR Research Program on Climate Change, Food Security and Agriculture (CCAFS), CIMMYT has also piloted 27 climate-smart villages in Haryana, India, which will disseminate key climate-smart agricultural interventions.

The conference also allowed potential partners to meet and identify areas for future cooperation. Sonder mentioned interactions with Jacob van Etten, Senior Scientist at Bioversity International, who works on climate change and climate-smart agriculture in Costa Rica and uses iButton sensors to measure climate data in the field. “Such cheap and effective devices can allow us to reach more places, and I’d like to use them to monitor storage and humidity conditions in metal silos for CIMMYT’s Effective Grain Storage Project in eastern and southern Africa, as well as in the postharvest activities of MasAgro in Mexico,” said Sonder

Tribute to Dr. Norman E. Borlaug on his 101st birth anniversary

BISA director general garlanding
Dr. Borlaug’s statue. Photo: Meenakshi Chandiramani

Borlaug Institute for South Asia (BISA) and CIMMYT India staff members gathered together at NASC Complex, New Delhi to pay tribute to the late Dr. Norman E. Borlaug on what would have been his 101st Birth Anniversary on 25 March. HS Gupta, director general, BISA, garlanded Borlaug’s statue, in front of the office block at NASC Complex. Staff members offered flowers in respect to the Nobel Laureate. Gupta apprised the staff members about Borlaug’s great contributions, including high-yielding wheat varieties which helped solve hunger around the world and particularly in South Asia. BISA and CIMMYT staff members resolved to work hard and follow Borlaug’s footsteps.

BISA and CIMMYT staff pay tribute to Norman Borlaug, in the shadow of his statue and accomplishments. Photo: Meenakshi Chandiramani
BISA and CIMMYT staff pay tribute to Norman Borlaug, in the shadow of his statue and accomplishments. Photo: Meenakshi Chandiramani

Mobile app will power GreenSeeker use in South Asia

On-field App launch. Photo: CIMMYT-BISA
On-field App launch. Photo: CIMMYT-BISA

CIMMYT and the Borlaug Institute for South Asia (BISA) have jointly developed and launched an application for Android called “N Calculator,” to support smallholder farmers using the GreenSeeker, a compact sensor to quickly assess crop vigour and calculate optimal fertilizer dosages. Held in the CIMMYT-CCAFS climate-smart village (CSV) Noorpur Bet of Ludhiana, Punjab, India, the launch was led by John Snape, CIMMYT Board Chair.

The Greenseeker ensures accurate and balanced nitrogen fertilizer applications, cutting farmers’ costs, reducing nitrification and nitrogen runoff into groundwater and water systems, and raising crop yields. But smallholder farmers often lack the training to interpret the raw data from the GreenSeeker. N Calculator automatically calculates the best nitrogen and urea rate using normalized difference vegetation index (NDVI) values from GreenSeeker, and right on a mobile handset.

“The application will help scale out GreenSeeker technology and precision nitrogen management in wheat-based systems in South Asia, among other things reducing emissions of nitrous oxide, a potent greenhouse gas,” said M.L. Jat, CIMMYT cropping systems agronomist. “It will also be critical for extension agents to scale out climate-smart agriculture practices across the region.”

Delegates including the BISA Executive Committee and national scientists interacted with farmers and members of farmer cooperatives who are actively disseminating climate-smart agriculture practices.

Participants included S. Ayyapan, DG (ICAR); Thomas A Lumpkin, director general, CIMMYT; Marianne Bänziger, deputy director general for research and partnerships, CIMMYT; Nicole Birrel, CIMMYT board member; Anthony De Sa IAS, Chief Secretary of Madhya Pradesh; B.S. Dhillon, Vice Chair of Punjab Agricultural University (PAU); Suresh Kumar, Additional Chief Secretary of Punjab; B.S. Sidhu, Agriculture Commissioner of Punjab; and H.S. Gupta, Director General, BISA.

“First Lady of Wheat” in Mexico to celebrate her father, Norman Borlaug

The late wheat breeder Norman Borlaug was so dedicated to his work that he was away from home 80 percent of the time, either travelling or in the field, recalls his daughter, Jeanie Borlaug Laube.

Photo: Alfredo Sáenz/CIMMYT

Scientist Borlaug, who died in 2009 at age 95, led efforts in the mid-20th century to develop high-yielding, disease resistant, semi-dwarf wheat varieties that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

Wheat breeders, scientists and members of the global food security community celebrated his birthday at a week-long meeting hosted by CIMMYT in the vast wheat fields of the Yaqui Valley near the town of Ciudad Obregón in Mexico’s northern state of Sonora.

Each year, CIMMYT Visitors’ Week serves as an opportunity to brainstorm, exchange ideas and celebrate Borlaug’s legacy on the anniversary of his birthday.

Borlaug, who would have been 101 this year, started work on wheat improvement in the mid-1940s near CIMMYT headquarters outside Mexico City.

He was awarded the Nobel Peace Prize in 1970 partly for his experimental work, much of which took place in the hot, dry conditions of Obregón, which resemble conditions in many developing countries where CIMMYT works.

This year, his daughter, who is co-chair of the Borlaug Global Rust Initiative, a partnership to study and and control devastating stem, yellow and leaf wheat rust disease, spoke on women and agriculture at the event. She is also involved with the Jeanie Borlaug Laube Women in Triticum Mentor Award, which honors mentors of both genders who aid women working in Triticum species and near relatives. Additionally, she sits on the board of directors of the Borlaug Training Foundation, established to provide agricultural education and guidance to scientists from developing nations.

She shared her views in the following interview.

Q: What is your current involvement in agriculture?

I’m not officially in agriculture – I’m a Spanish teacher. I taught for 40 years in high school until I retired three years ago. In the last 25 years of my career I had started a community service program at two different schools in Dallas and ran it. This involves 750 kids a year out doing community service. I still taught one Spanish class but my basic job was community service director. I haven’t been involved in agriculture directly. Indirectly, I have been because I was Norman Borlaug’s daughter so I’ve been around it, but I wasn’t raised on a farm, never lived on a farm, didn’t study agriculture or science in school.

What is your current involvement with wheat?

I’m co-chair of the Borlaug Global Rust Initiative – I go to the conferences once a year where all the wheat scientists of the world get together. I go to all the conferences and sit and listen and try to learn and follow what is going on with rust and the different problems they are having with wheat. I’m involved with the Women in Triticum Award. I visit and follow up with them and they are the ones who are out in the field learning how to become scientists and continue the profession. That’s how I’m involved in wheat.

Q: What are your views on women in agriculture?

I was in Pakistan last year and the U.S. Department of Agriculture set up a meeting with women who were all scientists working on their doctoral degrees – or already had a Ph.D. in agriculture. The discussions were very interesting as far as the difficulties that women find in this field and the pluses and minuses that are involved with that. It was interesting to hear different aspects of what they were feeling. The academic studies were not a difficult thing for them, but the reality of raising a family and keeping a profession going and taking care of a husband or children at the same time as being away from home presented problems.

No matter what profession women are in, challenges confront them because we have to multi-task. It doesn’t matter whether you are an accountant, a geneticist or a teacher – as a mother or trying to run a family and a profession, I think it’s challenging for a lot of women.

Q: What impresses you about women in agriculture?

I’m always amazed at the women scientists who are out there working at these wheat conferences and out in the in the field and taking care of their families from afar or even before they get married or have children, just the dedication they have to helping feed the world.

Q: What are your views on food security?

I don’t think the general population has any clue as to what goes on with agriculture. As my dad used to say, everybody just thinks the food comes from the grocery store and that’s where it is – it just pops in there. The average person doesn’t have a clue about that.

Q: What has changed since your father’s time?

I imagine he’d be facing the same challenges. I think it would be really interesting if he were still around because he’d be going crazy right now with all of this fighting about gluten-free and over genetically modified plants. He was so dedicated. His mission was to feed the world.

I think it is still the same mission. I think it is probably just a little harder because you have more public opinion and lack of info for what you need. He was changing genes and they are still doing that and they need to because they need to find plants that require less fertilizer and less water and provide more protein. What is amazing to me is to think about how they are working with computers now and he did all this in his head with notebooks.

He’d leave home at five in the morning and get home at eight at night. When he was in town he was gone about 80 percent of the time. When he first started this shuttle breeding program he’d come to Sonora. That was in the 40s – he had to go up through Arizona and back down at first because there were no roads. He’d be up here for three months, then he’d go back down, then he’d go to Toluca and South America, then he started going to India and Pakistan. In later years he was going Africa, so he was never home.

Q: Where did you grow up?

I was raised in Mexico City. My brother was born in Mexico and I came here when I was 14 months old. I lived here until I went to college. I did my schooling down here.

 

Q: Did your father try and encourage women in science and agriculture?

Yes he did. Back then there weren’t very many women in agriculture and scence. I think he’d be very pleased to see the turn with what’s happening with women in agriculture.

Q: What is it like celebrating your father?

It’s really neat. When my dad realized that he was going to die he asked me to bring ashes back to Mexico so I did. The last two years we came before he died, we came in a private jet because he couldn’t travel. It was so hard to get here. I remember I looked at his face as we were approaching Obregón. His face was just pure relief. He loved this place and he’d see the wheat fields and it was magical for him. Coming back is kind of bittersweet, realizing how much he loved the farmers too as they loved him.

BISA and CIMMYT-India join in Agricultural Science Fair

India staff members (L-R) Anuradha Dhar, Meenakshi Chandiramani, Anu Raswant and Kailash Kalvaniya at the exhibit stall in the Mela at IARI, Pusa Campus.Photo: BISA/CIMMYT
India staff members (L-R) Anuradha Dhar, Meenakshi Chandiramani, Anu Raswant and Kailash Kalvaniya at the exhibit stall in the Mela at IARI, Pusa Campus.
Photo: BISA/CIMMYT

 

The Indian Agricultural Research Institute (IARI) organized the Pusa Krishi Vigyan Mela (Agriculture Science Fair) during 10-12 March. Initiated in 1972, the Mela is an important annual event for IARI to raise awareness about agricultural technological developments and for receiving feedback from farming communities. The Borlaug Institute for South Asia (BISA) and CIMMYT India mounted an exhibit on their work and staff discussed farming practices and mechanization with several farmers and scientific community members, as well as handing out printed materials to visitors.