Skip to main content

Location: India

For more information, contact CIMMYT’s India office.

CSISA wheat breeders plan for future gains in South Asia

Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle
Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle

The growing interest of national agriculture research system (NARS) of South Asia in genetic gains and seed dissemination work in Cereal Systems Initiative for South Asia (CSISA) objective 4 (wheat breeding), 50 scientists from Bangladesh, Bhutan, India and Nepal assembled at Karnal, India on September 2-3, 2015 for the 7th Wheat Breeding Review Meeting of this project. The meeting was organized by CIMMYT’s Kathmandu office with support from CIMMYT-Delhi/Karnal office and led by Dr. Arun Joshi. Dr. Ravish Chatrath, IIWBR provided strong support as local organizer.

The other CIMMYT participants were Etienne Duveiller, Uttam Kumar and Alistair Pask. Participants included representatives of: the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Punjab Agricultural University, Ludhiana; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Khumaltar of Nepal Agricultural Research Council (NARC) and Renewable Natural Resources (RNR), Research and Development Centre (RDC), Bajo, Bhutan.

The CSISA meeting began with remarks by the chief guest, Dr. Indu Sharma, Director, IIWBR, Karnal along with Dr. Md. Rafiqul Islam Mondal, Director General, BARI; Etienne Duveiller, CIMMYT, Delhi and Arun Joshi, CIMMYT, Kathmandu. Within a wider framework of discussing issues concerning wheat improvement, the CSISA meeting reviewed the progress of the 2014-15 cycle, and established work plans for the coming crop cycle. Arun Joshi presented a summary of the achievements in wheat breeding over last 6 years and highlighted the impressive results obtained in varietal release, seed dissemination and impact in farmer fields. Dr. Etienne informed he challenges of climate change and the ways our program should be shaped to handle these issues. Dr. Mondal expressed his happiness that CSISA wheat breeding has been very successful in contributing to enhancement of wheat production and producitity in Bangladesh and other countries through a vigourous wheat breeding and seed dissemination with strong linkage with national centres.

Dr. Indu Sharma highlighted the significance of collaborative research with a regional perspective and told the audience about the successes being achieved by CSISA in wheat research especially in handling rust resistance and heat tolerance in south Asia. She expressed his appreciation for new research efforts under CSISA and said that “the South Asia-CIMMYT collaboration is paramount to the food security and livelihood of the farmers.” She also said that seeing new challenges there is much more need for such collaborative research efforts for the economic prosperity and good health of agriculture sector in south Asia.

Four review sessions were conducted, chaired by NARS colleagues Dr. Indu Sharma, Dr. Mondal, Dr. Ravi Pratap Singh and Dr. S.P. Khatiwada. Three sessions were used to present review reports and work plans from the 10 research centers, while two other sessions discussed progress in physiology, spot blotch and strengthening linkage of wheat breeding with seed dissemination and capacity building in South Asia. A major discussion was held to devise strategies to strengthen research to handle future threats to wheat such as yellow rust, early and late heat stress, water scarcity and to enable environment for fast track release of varieties so that new seed can reach to farmers as soon as possible.

Arun Joshi also highlighted major achievements in CSISA wheat breeding through very able collaboration by national centres in South Asia. He emphasized that breeding for biotic and abiotic stress tolerance gained momentum through CSISA by developing varieties with faster grain filling and flexibility to adapt to a range of sowing dates. Not only these new varieties were developed, improved networking with public and private sector seed hubs enabled fast track inclusion of these varieties in seed dissemination chain. The increase germplasm flow from CIMMYT, Mexico enriched Indian gene bank with a large reservoir of diverse set of genotypes for current and future used. The continued inclusion of resistance to Ug99 and other rusts in wheat lines kept diseases at bay and safeguarded farmers. There is increased use of physiological tools for heat and drought tolerance and stronger links were established between breeders, seed producers and farmers. Another significant achievement was strengthened capacity building in the region.

A talk on wheat research as Borlaug Institute for South Asia (BISA) was delivered by Uttam Kumar, CIMMYT. Likewise progress on CRP project on spot blotch was presented by Shree Pandey and Ramesh Chand, India. A talk on wheat breeding at Bhutan was presented by Sangay Tshewang. He was happy to inform that through this networking and collaboration with CIMMYT, Bhutan was able to release three new wheat varieties after a gap of 20 years.

On the 2nd day, a visit to IIWBR was organized. Dr. Indu Sharma and her team of scientists led by Dr. Ravish Chatrath facilitated this visit. The participants were taken to different laboratories and current research activities were explained. The participants from Nepal, Bangladesh and Bhutan expressed desire for increased exchange visits among research institutions of countries in south Asia.

The review meeting enabled CSISA wheat researchers to measure their achievements compared to the challenges being encountered and enabled an environment to discuss future strategies to augment research activities better tuned to future targets in the region. The participants were of the view that strong linkage and coordination between the national research program, the CIMMYT team and other stakeholders especially those in seed business is needed to achieve comprehensive progress towards increasing food availability and better livelihood of masses.

India visit: Dr. Martin Kropff, Director General, CIMMYT

Photos courtesy of Anu Raswant

From 28 September to 2 October, CIMMYT Director General Martin Kropff visited different research sites in several states of India. The following reports detail his visit.

CIMMYT Emeritus Director General Dr. Tom Lumpkin receives prestigious 8th MS Swaminathan Award

Dr. Tom Lumpkin receiving the M.S. Swaminathan Award from Dr. M.S. Swaminathan and Dr. Raj Paroda, Chair, Trust for Advancement of Agricultural Sciences. Dr. Martin Kropff, CIMMYT DG, attended the award ceremony.

Dr. Tom Lumpkin, former CIMMYT Director General, received 8th MS Swaminathan Award for Leadership in Agriculture in a glittering ceremony organized by the Trust for Advancement of Agricultural Sciences (TAAS) at the Indian Agricultural Research Institute (IARI), New Delhi, on September 28. This year’s award was a special occasion as the award was presented by Dr. Swaminathan himself. The Award is conferred on individuals “who have done outstanding research work in the field of agriculture, animal sciences, and fisheries.” The first award was given in 2005 by the President of India, Dr. A.P.J. Abdul Kalam, to Dr. Norman E. Borlaug, Nobel laureate who led the development and spread of high-yielding wheat varieties in the developing countries during 1960s and 70s, which culminated in Green Revolution that saved billions of people from starvation.

On this occasion, Dr. Lumpkin said, “I’m humbled and greatly honored by this award. Swaminathan and Borlaug were visionaries who worked together and made their case courageously to the political leaders to get appropriate technologies into farmers’ hands. We must do the same, if South Asia is to provide nutritious food for more than 1 billion people who will live here in 2050, without further degrading land or depleting groundwater.”

While addressing the gathering, Dr. Swaminathan praised the work of Dr. Lumpkin in strengthening wheat and maize research in India and lauded his efforts in establishing the Borlaug Institute for South Asia.

CIMMYT-India Office Inaugurated by Dr. Martin Kropff, CIMMYT Director General, and CIMMYT Senior Management

CIMMYT DG inaugurating the renovated regional office of CIMMYT in India.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier and B.S. Sidhu inaugurated the renovated CIMMYT-India office on September 30, 2015 by cutting a ribbon and unveiling a commemorative plaque. A large gathering of the staff from CG centers and ICAR along with Dr. S. Ayyappan, ICAR Director General, were present. Strategically located in the National Agricultural Science Center (NASC) complex, the renovated office can now accommodate 25 staff and has improved facilities. At the gathering, Kropff reiterated the importance of working as ‘One CIMMYT’ and ‘One CG’ to achieve food security in South Asia.

Visit to BISA Research Center at Ladhowal, Punjab

CIMMYT DG inaugurating the solar-powered micro-irrigation system at Ladhowal center of BISA.

CIMMYT DG Dr. Martin Kropf, accompanied by Drs. John Snape, Board Chair CIMMYT; Thomas A. Lumpkin, Ex-DG, CIMMYT; Marianne Banziger, DDG, CIMMYT, Etienne Duveiller, Director Research, CIMMYT-South Asia, and Dr. B.S. Sidhu, Commissioner, Agriculture, Punjab Government, visited BISA’s research center at Ladhowal on October 01, 2015. They were received by Dr. H.S. Gupta, BISA DG, and BISA staff members at the farm. They were taken around to see the research activities. The visiting team was impressed with the state-of-the-art facilities at the farm and the research work being conducted. Dr. Kropff and visiting dignitaries inaugurated a solar-powered micro-irrigation system installed with financial support from the Government of Punjab.

The visiting team evinced keen interest in the experiments on subsurface irrigation in the water-smart block where farmers can save 50-60% water without yield penalty. Kropff was pleased to learn that the latest technology in phenotyping in collaboration with Kansas State University is being used at BISA

DG CIMMYT with staff members of BISA at Ladhowal farm in Ludhiana

and that wheat lines with a 15-17% yield advantage have been selected and passed on to national partners under GWP. This will help increase the overall productivity of wheat in India in general and Punjab state in particular.

Dr. H.S. Sidhu, Senior agricultural engineer, showed various agricultural implements that have been developed at BISA center and have contributed to the adoption of conservation agriculture. Some of them are in great demand not only in India but in neighboring countries like Pakistan and many countries of Africa. At the end of the visit, a presentation summarized the development of Ladhowal farm since it was handed over to BISA. Dr. Kropff commented, “I am impressed with the facilities and high quality of research being conducted at BISA.”

Visit to Farmers’ Fields near BISA’s Ladhowal Center

CIMMYT DG Dr. Martin Kropff and Commissioner, Agriculture, Govt. of Punjab, Dr. B.S. Sidhu interacting with farmers in a climate-smart village near Ladhowal.

During visit to BISA Research Center at Ladhowal, Dr. Martin Kropff, along with CIMMYT’s senior management team, visited farmers’ fields near Ladhowal village and talked with farmers about climate-smart agricultural practices. The farmers showed use of the Green Seeker in rice crop and briefed the team on the conservation agriculture practices adopted by them. Dr. B.S. Sidhu, Commissioner, agriculture, Govt. of Punjab, shared that Punjab Govt. subsidizes the purchase of the Green Seeker so that farmers are encouraged to buy this instrument and save nitrogen.

DG Martin Kropff and Senior Management Visit Punjab Agricultural University, Ludhiana, Punjab

CIMMYT DG visiting rice fields with Dr. B.S. Dhillon, Vice Chancellor, Punjab Agricultural University, Ludhiana.

Dr. Martin Kropff, along with Drs. John Snape, Tom Lumpkin, Marianne Banziger, H.S. Gupta, Etienne Duvellier, and B.S. Sidhu, visited Punjab Agricultural University, Ludhiana, on October 1, 2015. He was received by the Vice Chancellor, Dr. B.S. Dhillon, who took the delegation around the farm and showed the research being conducted at this premiere university of India that was one of the major players in ushering the Green Revolution in India.

Directors of research and extension briefed the team on research on cereals, pulses, oilseeds, and horticultural crops. Dr. Kropff and members of the team showed keen interest in the quality research being pursued at the University.

Visit to Climate-Smart Villages in Haryana, India

CIMMYT DG visiting climate-smart villages in Karnal, Haryana, India.

Dr. Martin Kropff, CIMMYT DG, visited the CIMMYT-CCAFS participatory strategic research and learning platform in Taraori, Haryana, along with Drs. John Snape, Board Chair CIMMYT, Dr. Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, DDG, CIMMYT, H.S. Gupta, BISA DG, and Etienne Duveiller, Director of Research, CIMMYT-South Asia, on October 02, 2015. Dr. M.L. Jat, Senior Cropping System Agronomist and Coordinator of CCAFS South Asia, explained the research portfolio of CIMMYT’s Sustainable Intensification Program in northwest India. He explained how layering of resource-efficient technologies can help in adaptation to frequent climate and biological changes under a particular set of agroecological conditions. During the visit to the climate-smart villages, the overall approach of developing, adapting, and scaling CSA through innovation and learning platforms in a participatory mode involving youth and women was highlighted. The portfolios of CSA interventions (water, energy, carbon, nutrient, weather and knowledge based) are chosen to suit local agroclimatic conditions and are being implemented through innovative partnerships with farmers and farmer cooperatives, to build resilience to climate change, and increase productivity and income. Dr. Martin Kropff sent a message to Dr. Bruce Campbell, CCAFS Director, saying:

“Dear Bruce, I just visited the climate-smart village project of M.L. Jat of CIMMYT in Haryana. Very impressive and a great enthusiasm with the farmers. Really exceptional work. I hope we can keep up the good work in the new phase of CCAFS.” In his immediate response, Bruce said, “Hi, Martin, I agree. It is great work.”

CIMMYT DG Martin Kropff and CIMMYT Senior Management Meet the Honorable Chief Minister, Government of Punjab

CIMMYT DG apprising the Hon’ble Chief Minister, Govt. of Punjab, about the research activities undertaken at BISA Center in Ladhowal.

Dr. Martin Kropff, CIMMYT DG, accompanied by Drs. John Snape, Board Chair; Thomas A. Lumpkin, former CIMMYT DG; Marianne Banziger, CIMMYT DDG, and H.S. Gupta, BISA DG, paid a courtesy visit on the Hon’ble Chief Minister of Punjab Shri Parkash Singh Badal on October 02, 2015. Dr. Kropff apprised the Hon’ble Chief Minister about the infrastructure development and research activities going on at the Ladhowal center of BISA. The Chief Minister expressed keen interest in the activities of BISA and urged CIMMYT management to take the technology developed at BISA farm to farmers’ fields.

While thanking the team for sparing time to visit him, the Chief Minister promised full support to BISA and hoped that BISA will prove to be a milestone in heralding a second Green Revolution in India.

Visit to the Research Platform at CSSRI, Karnal, Haryana, India

CIMMYT DG visiting the research platform at ICAR’s Central Soil Salinity Research Institute, Karnal, Haryana.

The team, comprised of Drs. Martin Kropff, DG, CIMMYT, John Snape, Board Chair CIMMYT, Thomas A. Lumpkin, former CIMMYT DG, Marianne Banziger, CIMMYT DDG, H.S. Gupta, BISA DG,  and Etienne Duveiller, Director of Research, CIMMYT-South Asia, visited the CSSRI-CSISA Research Platform at Karnal, Haryana, on Oct. 2, 2015. Dr. D.K. Sharma, Director, ICAR-CSSRI, welcomed CIMMYT’s new DG and senior management and highlighted the CIMMYT/CSSRI partnership and how important it is in relation to salinity and food security under the emerging climate change scenario. He stressed sustainable intensification and climate-smart agriculture for efficient resource management to address issues such as soil quality, labor shortages, water, and energy in the current changing climate in Indian IGP. He suggested to Dr. Kropff that the research platform on sustainable intensification initiated under CSISA at CSSRI should be continued for the next few years through support from CIMMYT because this platform acts as a production observatory to monitor the long-term changes and helps to give future research direction. Dr. H.S. Jat, CIMMYT senior scientist and platform coordinator, explained the outputs of CIMMYT’s on-going research activities being carried out in collaboration with CSSRI, Karnal.

Setting the stage for delivering high zinc wheat in South Asia

Delivering-High-Zinc
HarvestPlus pioneers at the off-season seed production site in Dalang Maidan, Himachal Pradesh, India. Photo: HarvestPlus

Public and private sector partners in HarvestPlus’ biofortified wheat research and dissemination network in South Asia got together at ICRISAT, Hyderabad, on 10-11 September to discuss progress on breeding research, producing seed for target populations, and strategies for accelerating seed production and fast-tracking commercialization of biofortified zinc-rich wheat varieties.

Partners from India, Nepal, Bangladesh and Pakistan, as well as delegates from the Indian Council of Agricultural Research (ICAR), various state agricultural universities, NGOs, small and medium-size private seed companies, processors, millers, and progressive farmers discussed topics such as critical gaps and opportunities in outreach strategies, priority upscaling interventions, and policy incentives for fast-track adoption of improved high Zn wheat varieties.

ICAR Deputy Director General (Crop Science) J.S. Sandhu inaugurated the workshop with a formal presentation on India’s Consortia Research Platforms (CRP) for improving nutritional quality of major staples and emphasized the extraordinary nutritional challenges that country faces, e.g., some of the highest rates of childhood stunting and malnutrition in the world. Wolfgang Pfeiffer, HarvestPlus Director (Product Development and Deployment), highlighted the success of HarvestPlus partners in disseminating nutrient-dense wheat, reaching 50,000 farm households and providing biofortified wheat to a quarter of a million household members by 2015. Parminder Virk, Product Development Manager at HarvestPlus, urged participants to set up a fast-track commercialization pipeline to enable nutrient rich wheat varieties to reach smallholder farmers fast.

CIMMYT Wheat Breeder Velu Govindan discussed advances in the development of competitive high Zn wheat germplasm at CIMMYT, Mexico, to satisfy the needs of national program partners, while Arun Joshi, Senior Wheat Breeder, CIMMYT-South Asia, emphasized the crucial role of public and private sector partners in ensuring farmers have rapid and long-term access to nutrient rich wheat seed. Ravish Chatrath, IIWBR, summarized the results of a special biofortified wheat trial conducted across locations in India.

HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.
HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.

V.K. Mishra, Banaras Hindu University, reported that farmer-participatory varietal selection trials have enabled the identification and release of competitive high Zn wheat varieties for fast-track commercialization in the eastern Gangetic Plains (EGP) of India. The new varieties are not only nutritionally superior, but also drought tolerant and resistant to rusts and other foliar diseases. They are being commercialized in India as truthfully-labeled seed under different names by private companies and farmers’ seed production networks.

Zero-till wheat raises farmers’ incomes in eastern India, research shows

Farmer-with-wheat-harvest
Photo Credit: Vinaynath Reddy / CIMMYT

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmers’ total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar.

While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields in eastern India.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

According to Keil, the divergent findings of the meta-analysis may be caused by the fact that most of the reviewed studies were conducted in moderate climatic zones (U.S., Canada, Europe, China) and results were aggregated across various crops.

Bringing a Wheat Revolution to Eastern India

Compared to the prosperous northwestern states, the eastern IGP is characterized by pervasive poverty and high population density, and its resource-poor farmers are more prone to the risks of climate change. Bihar has the lowest wheat yields in the IGP with an average of 2.14 tons per hectare.

To feed a growing wheat-consuming population, Bihar currently imports wheat largely from Punjab, where yields have stagnated over the last five years due to an over-exploitation of resources, especially water.

While ZT is widespread on the mechanized farms of Punjab and Haryana, seat of the first Green Revolution in India, farmers in the eastern IGP are yet to benefit. “There is also evidence that the positive effect of ZT is larger in areas with low agricultural productivity (generally low yields, such as Bihar) than in areas with higher productivity (such as Punjab, for instance),” remarks Keil.

Increasing Access among Smallholders

The study concludes that ZT users reap substantial benefits, and that this technology could help close the growing yield gap between production and consumption of wheat in Bihar. A 19% yield increase would translate into a production increase of 950,000 MT, which exceeds the total wheat imports into Bihar (868,000 MT in 2011).

However, with low ownership of tractors and ZT drills, large-scale adoption of ZT in eastern India hinges on an expansion of the network of service providers, who can custom-hire these kinds of services to smallholder farmers.

With public and private sector partners, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) has supported the development of ZT service providers among tractor owners by facilitating the purchase of ZT drills and providing technical trainings and know-how since 2009. Consequently, the number of ZT service providers in Bihar increased from 17 in 2011 to 1,624 in 2014, servicing a total of approximately 44,700 acres.

“Furthermore, we found that only 32% of non-users of ZT in our sample were aware of the technology. Hence, increasing the number of service providers to enhance farmers’ access to ZT has to go hand-in-hand with large-scale information campaigns to raise their awareness of the technology,” says Keil.

Minimizing yield losses via conservation agriculture

Last year, climatic variability such as untimely rainfall was devastating in northwest India. Mid-season rainfall resulted in massive yield losses during winter 2014-15. Starting that season, a case study of wheat adaptation to climatic risks was undertaken in Karnal by Sakshi Baliyan, a young female student, as an internship project under CIMMYT-CCAFS. The project aimed to evaluate yield losses as evidence of the difference zero till makes in coping with unseasonable rainfall.

The study focused on the vulnerability of wheat yields to untimely mid-season rainfall by comparing conventional vs. conservation agriculture (CA) practices. To construct the database, during the 2013-14 and 2014-15 winter seasons, wheat yield data were collected from 100 randomly selected farmers who produced wheat using conventional tillage and conservation agriculture in 14 climate-smart villages (CSVs) in the Karnal district of Haryana.

The results revealed that CA-based systems produced higher wheat yields (6% higher in 2013-14 and 13% higher in 2014-15) than conventional tillage systems. The study also found that farmers who practiced conventional tillage during winter 2014-15, which had untimely heavy rains, averaged a 19% yield loss, whereas those practicing CA averaged a yield loss of only 10% in the same locations.

These interesting results indicate that the next step should be to introduce climate-smart agricultural practices (CSAPs) in policy decision making. A more in-depth study should be undertaken to verify the results and establish environmentally and farmer friendly policies at the state and national levels. Policies that calculate subsidies and compensations considering the agricultural practices used by farmers are required to motivate them to adopt CSAPs. This will not only reduce losses in times of uncertainty, but also generate gains in favorable times.

Replacing gender myths and assumptions with knowledge

CIMMYT Director General Martin Kropff speaks on the topic of ‘Wheat and the role of gender in the developing world’ prior to the 2015 Women in Triticum Awards at the Borlaug Global Rust Initiative Workshop in Sydney on 19 September.

If we are to be truly successful in improving the lives of farmers and consumers in the developing world, we need to base our interventions on the best evidence available. If we act based only on our assumptions, we may not be as effective as we could be or, even worse, actively cause harm.

One example is the common perception that women are not involved in the important wheat farming systems of North Africa and South Asia. By recognizing and engaging with these myths, we are beginning to build a more sophisticated understanding of how agriculture works as a social practice.

Currently, there are only a few published studies that take a closer examination of the roles played by women in wheat-based farming systems. These studies have found that, in some cases, men are responsible for land preparation and planting, and women for weeding and post-harvest activities, with harvest and transport duties being shared. Between different districts in India, huge variations may be found in the amount of time that women are actively involved in wheat agriculture. This shows that some careful study into the complexities of gender and agricultural labor may hold important lessons when intervening in any particular situation.

We must also never assume that, just because women are not as involved in agriculture in a particular context, they can not benefit from more information. In a survey carried out by CIMMYT researcher Surabhi Mittal in parts of rural India, it was found that women used a local cellphone agricultural advisory service just as much as men, and that this knowledge helped them get more involved in farming-related decision-making.

Gender is not just about women

For all that it is important to include women, along with other identity groups in project planning, implementation and data collection, it is important not to get into the trap of thinking that gender-integrated approaches are just about targeting women.

For example, the World Health Organization estimates that micronutrient deficiency affects at least two billion people around the world, causing poor health and development problems in the young. The effects of micronutrient deficiency start in the womb, and are most severe from then through to the first two years of life. Therefore it would make sense to target women of childbearing age and mothers with staple varieties that have been bio-fortified to contain high levels of important micronutrients such as zinc, iron or vitamin A.

However, to do so risks ignoring the process in which the decision to change the crop grown or the food eaten in the household is taken. Both men and women will be involved in that decision, and any intervention must therefore take the influence of gender norms and relations, involving both women and men, into account.

The way ahead

To move forward, each component of the strategy for research into wheat farming systems at CIMMYT also has a gender dimension, whether focused on improving the evidence base, responding to the fact that both women and men can be end users or beneficiaries of new seeds and other technologies, or ensuring that gender is considered as a part of capacity-building efforts.

Already, 20 of our largest projects are actively integrating gender into their work, helping to ensure that women are included in agricultural interventions and share in the benefits they bring, supplying a constant stream of data for future improvement.

We have also experienced great success in targeting marginalized groups. For instance, the Hill Maize Research Project in Nepal, funded by the Swiss Agency for Development and Cooperation (SDC) alongside the U.S. Agency for International Development (USAID), focused on food-insecure people facing discrimination due to their gender or social group. By supporting them to produce improved maize varieties in community groups, the project managed not only to greatly increase their incomes, but also to improve their self-confidence and recognition in society.

CIMMYT researchers are also among the leaders of a global push to encode gender into agricultural research together with other international research partnerships. In over 125 agricultural communities in 26 countries, a field study of gender norms, agency and agricultural innovation, known as GENNOVATE, is now underway. The huge evidence base generated will help spur the necessary transformation in how gender is included in agricultural research for development.

Further information:

The Borlaug Global Rust Initiative, chaired by Jeanie Borlaug Laube, has the overarching objective of systematically reducing the world’s vulnerability to stem, yellow, and leaf rusts of wheat and advocating/facilitating the evolution of a sustainable international system to contain the threat of wheat rusts and continue the enhancements in productivity required to withstand future global threats to wheat. This international network of scientists, breeders and national wheat improvement programs came together in 2005, at Norman Borlaug’s insistence, to combat Ug99. The Durable Rust Resistance in Wheat (DRRW) project at Cornell University serves as the secretariat for the BGRI. The DRRW, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA) and the FAO helped establish the BGRI a decade ago. Funding is provided by the UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation. For more information, please visit www.globalrust.org.

CIMMYT is the global leader in research for development in wheat and maize and related farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat to improve food security and livelihoods. CIMMYT belongs to the 15-member CGIAR Consortium and leads the Consortium Research Programs on wheat and maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

Follow the #BGRI2015 hashtag on social media

Twitter: @CIMMYT, @KropffMartin and @GlobalRust

The first heat tolerant maize hybrids are licensed for deployment in Bangladesh, India and Nepal

Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur
Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur

The Bangladesh Agricultural Research Institute (BARI), Bangladesh’s ACI Seeds, India’s Bihar Agricultural University, Sabor, and the University of Agricultural Sciences, Raichur, Ajeet Seeds, and Nepal’s Hariyali Community Seeds and Sean Seeds are the first proud institutions/companies to receive a license for the deployment of heat tolerant maize hybrids. B.M. Prasanna, Director of CIMMYT’s Global Maize Program, formally presented the product licensing certificates to the heads/representatives of these organizations during the Heat Tolerant Maize for Asia (HTMA) project’s 3rd Annual Progress Review and Planning Meeting held from 10-12 August 2015 in Hyderabad, India. Other project partners, including national program and seed companies from Pakistan, Nepal and Bangladesh, have shared their choice of hybrids, and asked to submit them for formal licencing. The hybrids were developed under the HTMA project funded by United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, a public-private alliance that targets resource-poor people of South Asia who face weather extremes and climate-change effects.Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal.

At the event’s inaugural session, Nora Lapitan, Senior Science Advisor, Bureau for Food Security, USAID, gave an update on the FTF initiative and highlighted its priorities, which include reducing poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. This was followed by an overview by B.M. Prasanna of the new CGIAR research program on Maize Agri-food system, its focus and priorities and the importance of stress-resilient maize in food security and livelihoods, especially in climate-change vulnerable regions, such as the Asian tropics.

The inaugural session was followed by technical sessions, during which Raman Babu, CIMMYT molecular maize breeder, M.T. Vinayan, CIMMYT maize stress specialist for South Asia, A.R. Sadananda, CIMMYT maize seed system specialist, and CIMMYT socioeconomist Christian Boeber presented their latest research results.

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna. Photo: CIMMYT-India

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna.P.H. Zaidi, HTMA project leader and senior maize physiologist at CIMMYT, described the progress achieved at the end of the project’s third year. Representatives from public and private sector partners presented the results of the HTMA trials conducted at their locations, and shared a list of top-ranking, best-bet heat-tolerant maize hybrids to take forward for large-scale testing and deployment. Collaborators from Pakistan’s Maize and Millet Research Institute (MMRI) and Bhutan’s Maize Program could not participate in the meeting but their progress reports were presented by K. Seetharam and Zaidi, respectively. It is quite impressive that within the first three years of the project, each partner has identified promising and unique maize hybrids suitable for their target markets/agro-ecologies.

Participants visited a demonstration of elite HTMA hybrids and their parents, where they observed the performance of their selected hybrids under Indian conditions. They were able to see the hybrids and their parents side by side, assess their performance and request seed of parental lines.

The project is also involved in capacity building, including providing support to a total of nine M.Sc./Ph.D. students, as well as workshops and in-country training courses in Nepal, Bangladesh and India, where over 100 researchers have been trained on developing stress resilient maize. In a special session dedicated to student research projects, four HTMA students, including Mahender Tripathi from Nepal, Ashraful Alam from Bangladesh and Akula Dinesh and C.N. Ranganath from India, presented their research projects.

The project’s progress was critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed great satisfaction with its overall progress and acheivements. Speaking for USAID, Lapitan said they are highly impressed with the progress of the HTMA project and consider it a model project. Other PSC members also expressed their satisfaction and agreed that the HTMA team deserves special appreciation for remarkable achievements within a period of just three years.

The HTMA project meeting was attended by program leaders, scientists and representatives from collaborating institutions in South Asia, including BARI, Nepal’s National Maize Research Program (NMRP) and two of India’s state agriculture universities. Seed companies operating in the region, including Pioneer Hi-bred, Kaveri Seeds and Ajeet Seeds from India, and Sean Seeds and Hariyali Community Seeds from Nepal, and international institutions such as Purdue University, USAID and CIMMYT also participated in the event.

The HTMA team at CIMMYT, Hyderabad, India. Photo: CIMMYT-India

 

AAA hybrids move towards commercialization

PLC6 is a term used to refer to an advanced stage of hybrid testing at Syngenta, a partner of the Affordable, Accessible, Asian (AAA) Drought Tolerant Maize Project. Four hybrids, representing combinations of Syngenta and CIMMYT germplasm are currently at PLC6 in big plots at multiple locations.  The trajectory of this process points to pilot marketing of a limited quantity of hybrid seed in 2016 and a full market launch in 2017.

AAA Drought Tolerant Maize Project Meeting, ICRISAT Campus, Hyderabad, India. 22-23 July 2015. Photo: P.S. Rao/ICRISAT

Four million hectares in India and Indonesia is the potential target area of this project.  This translates to a market potential of about 80,000 metric tons of seed and offers the opportunity to address the needs of over five million households.  In Indonesia, this primarily covers the island of Sulawesi and eastern Java province. In India, the targeted west central zone includes drought prone and tribal areas, a high risk environment where farmers require improved low-cost seed.

According to Syngenta, the region’s climate and other dynamics make seed marketing risky, unpredictable and unattractive, and is often overlooked by the private seed sector – exactly the kind of underserved area CIMMYT is mandated to target.

The AAA annual meeting was held at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) campus in Hyderabad, India on 22 and 23 July 2015.  Members of the AAA team highlighted achievements over the past five years that ranged from identifying hybrid combinations, fast tracking them to deployment, developing new inbred lines, identifying molecular marker leads for grain yield under drought and for root traits, generating information on genomic selection and genome wide associations and building human, infrastructural, informatics and networking capacity.  All this was done through an exploratory partnership model that included NARS partners (from Vietnam and Indonesia) in addition to Syngenta.

CIMMYT and the AAA team would like to thank the Syngenta Foundation for Sustainable Agriculture (SFSA), especially Mike Robinson, Chief Science Advisor and the mastermind behind this approach, for the support provided and for enabling such a collaborative opportunity.

Tech-savvy women in Haryana implement precision fertilizer application

The state of Haryana, India’s breadbasket, faces a major challenge due to the excessive use of nitrogen fertilizer (N: P: K = 27.2: 9.8: 1) in agriculture. The overuse of nitrogen fertilizer in the rice-wheat systems of Haryana has led to high production costs, low efficiency, environmental pollution and nitrate contamination of groundwater, which causes blue baby syndrome in young children.

Another challenge to agriculture in Haryana is that traditional ways of farming are no longer attractive to educated youth, which means that fewer young people are opting to become farmers. However, new innovations and technological advancements are making agriculture much more attractive to young people, especially women, and creating awareness and building capacity about these advancements is critical to make women see the potential in agriculture.

CIMMYT, under the CGIAR Research Program on Climate Change, Agriculture and Food Security, organized a day-long field training session for young female farmers in the climate-smart village of Bastada, Haryana, on the GreenSeeker, a hand-held sensor that measures nitrogen, assesses crop vigor and calculates a Normalized Difference Vegetation Index representing crop health. Nearly 20 young women from farm families in Bastada participated.

Farmers often lack training to interpret raw data from devices like the GreenSeeker. To address this problem, CIMMYT, the Indian Council of Agricultural Research and the Government of Punjab launched a mobile calculator application in January 2015 that allows farmers to precisely calculate the nitrogen in their fields right on their mobile phone, ensuring accurate nitrogen fertilizer application, which in turn raises crop yields and profits.

Mamta, a young woman of 23 who participated in the training session, mentioned that farmers faced a serious problem due to a shortage of urea during the winter 2014-15 wheat season. This problem is easier to avoid now that her cell phone has a GreenSeeker application that allows her to calculate the precise amount of nitrogen in her rice and wheat fields. “The application is very helpful in saving nitrogen to the tune of one bag of urea per hectare,” said Mamta.

CIMMYT plans to hold similar training sessions for young women and men throughout the states of Haryana, Punjab and Bihar, which will no doubt make them more likely to opt to become farmers and will go a long way towards ensuring adequate fertilizer application by farmers.

Trainees learn to use the GreenSeeker application on their cell phones, which used to be simple devices that could only send or receive calls and text messages.
Trainees learn to use the GreenSeeker application on their cell phones, which used to be simple devices that could only send or receive calls and text messages.

Training on developing stress-resilient maize at CIMMYT-Hyderabad, India

A training course on developing stress-resilient maize for early-/mid-career maize breeders from national programs, agricultural universities and seed companies, especially small and medium enterprises (SMEs), was held at CIMMYT-Hyderabad, India, on 15 May 2015. The course was open to partners in the Heat Tolerant Maize for Asia (HTMA) project and members of the International Maize Improvement Consortium (IMIC-Asia). It covered key aspects of precision phenotyping, including enhancing precision of field trials, managing adequate levels of stress to express available genotypic variability, using advanced tools to capture data efficiently and precision in recording various traits in phenotyping trials.

At the outset, B.S. Vivek, Maize Breeder at CIMMYT-Hyderabad, introduced the course agenda and objectives and mentioned that participants would learn various aspects of stress phenotyping. C. Aditya, System Developer, and M.T. Vinayan, Maize Stress Breeder at CIMMYT-Hyderabad, discussed FIELD-LOG, the new android-based data-capturing software developed by CIMMYT. They explained the details of its software applications and the method used for recording data in the field and transferring them to a computer.

FIELD-LOG is an excellent user-friendly system that increases the efficiency of data capturing and processing, and at the same time significantly reduces the chances of human error. Participants received hands-on training on using FIELD-LOG to install, operate and record data in the field, and then transfer them to a computer. This was followed by a series of presentations by P.H. Zaidi, Senior Maize Physiologist, CIMMYT-Hyderabad, on various aspects of field-based precision phenotyping for abiotic stress, including site selection and characterization.

Training course participants.
Training course participants.

Seetharam, Project Scientist at CIMMYT-Hyderabad, discussed various plant traits and the proper way of capturing data in field phenotyping trials. Participants practiced recording data on various traits in heat stress phenotyping trials using the FIELD-LOG system. M.T. Vinayan explained the do’s and don’t’s in field phenotyping at various stages.

At the end, participants provided feedback on the course and thanked CIMMYT for organizing it. They also suggested adding other features to further enhance the usefulness of the FIELD-LOG system.

CIMMYT-CCAFS initiative develops 500 new climate-smart villages in Haryana, India

A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR
A climate-smart farmer in Ludhiana, Punjab, India. Photo: P. Casier/CGIAR

The Department of Agriculture (DoA) of the Indian state of Haryana, in collaboration with CIMMYT-CCAFS, developed an action plan to mainstream climate-smart agriculture (CSA) in the state and develop 500 new climate-smart villages (CSVs), at a workshop held on 8 June 2015. Over the past three years, Haryana has successfully adopted CSA technologies and practices through a CSV initiative of CIMMYT and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Demand-driven policies and engagement by local governments are essential to ensure CSVs continue to expand throughout the country.

CSVs identify, adapt and evaluate demand-driven CSA interventions aimed at improving the capacity of local farmers to adapt to climate change. Northwest India, which is crucial to the country’s food security, faces diverse challenges to meet current and future food demands. Problems such as groundwater scarcity, soil health deterioration, heat stress, erratic rainfall due to climate change and high input costs are taking a toll on farmers.

In response, India has promoted a portfolio of successful CSA interventions, particularly in Haryana, and has developed over two dozen CSVs in the last three years. Rice-wheat systems in these CSVs have proven more resilient than other areas to tough climatic challenges, such as extremely high rainfall during the 2014-2015 winter season. While many farmers experienced yield losses of 30-50%, those in CSVs only lost 5-10%.

The success of 28 CSVs in Haryana’s Karnal district over the last three years has raised the confidence level of stakeholders, particularly the state’s DoA, which are now involved in developing more CSVs in the state in close collaboration with CIMMYT-CCAFS and partners.

According to an official letter issued by the DoA piloting the new 500 CSVs, “The farmers of our state are facing challenges of natural resource degradation, high input costs and frequent weather abrasions due to climate change. The adoption of climate-smart agriculture technologies [and] new innovative practices in agriculture is essential.”

CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF
CIMMYT-CCAFS climate-smart village site in Haryana, India. Photo: CIMMYT/CCAF

Farmer-friendly policies that prioritize CSA have been implemented by the government of Haryana, but more has to be done to ensure further adoption of CSA throughout the state and the country. During the workshop, a roadmap was designed for implementing the 500 CSVs, that includes devising strategies to attract rural youth and women to agribusinesses across the state. Suresh Gehlawat, Additional Director Agriculture, government of Haryana, called this approach a “win-win for all stakeholders.” Knowledge sharing and capacity building to promote CSAs contribute to the continuous expansion of CSVs across state and country.

Fostering collaboration between Nepalese and Indian seed companies

Participants compare cob size of different hybrid maize varieties at Bioseed Company in Hyderabad. Photo: Narayan Khanal

A delegation of 15 Nepalese seed entrepreneurs learned about various business models and innovations for seed industry development on their first visit to India. The visit, sponsored by the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP), lasted from 1 to 10 June.

According to Arun Joshi, Country Liaison Officer, CIMMYT-Nepal, Nepalese seed companies are in their initial growth phase and constrained by the lack of research and development, low business volume, limited seed processing and storage facilities, and low seed capital. To help them overcome these challenges, CSISA-NP recently initiated a business mentoring initiative to build the capacity of small and medium enterprises engaged in wheat and maize seed production.

To read more about CSISA-NP sponsored visit and more about its work with seed companies in Nepal, view the full story here.

 

Learning climate smart agricultural practices empowers women farmers in Haryana

Haryana is traditionally an agrarian state where many farm operations are undertaken by women; however, in this male-dominated farm society, decision-making does not involve women folk. Under CIMMYT-CCAFS, we developed a farm budgeting booklet that was distributed to women and men farmers in climate-smart villages (CSVs) and got very good response from young educated women farmers. To further empower them, we have been training women farmers in these CSVs to make them confident farmers so that in this world of changing climate, they are knowledge-empowered and able to increase their family income and develop stable rural livelihoods by actively contributing to decision-making.

During training, women farmers are taught technical aspects of agriculture such as how to sow direct-seeded rice and the importance of fertilizer management and crop yield.

They also become acquainted with a farm lekha jokha book, which is an accounting and farm management tool that allows farmers to understand and compare farm expenses that, though important, are commonly neglected. This book was designed keeping in mind the situation of women farmers in Haryana. Keeping a record of farm practices makes women more knowledgeable, thereby escalating their decision-making authority at home. Their decision-making is supported by their understanding of technological interventions that help them manage their farms more efficiently and reduce the errors of current farm practices by analyzing data which they record in this book.

Training makes women farmers realize that their knowledge is not only technical but valuable. We hope this realization will lead them to consciously explore, strengthen and share the expertise they have acquired.

Direct sowing of rice (DSR) in Unchasaman village, Haryana. Photo: CIMMYT
Direct sowing of rice (DSR) in Unchasaman village, Haryana. Photo: CIMMYT

Fostering collaboration between Nepalese and Indian seed companies

A delegation of 15 Nepalese seed entrepreneurs learned about various business models and innovations for seed industry development on their first visit to India. The visit, sponsored by the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP), lasted from 1 to 10 June.

Participants learning about methods for maize seed germination test at Kaveriseed Lab, Hyderabad. Photo: Narayan Khanal

According to Arun Joshi, Country Liasion Officer, CIMMYT-Nepal, Nepalese seed companies are in their initial growth phase and constrained by the lack of research and development, low business volume, limited seed processing and storage facilities, and low seed capital. To help them overcome these challenges, CSISA-NP recently initiated a business mentoring initiative to build the capacity of small and medium enterprises engaged in wheat and maize seed production.

A team of CSISA-NP experts assessed the potential and challenges of Nepalese seed companies and established a good relationship with them. “After the assessment, 15 Nepalese cereal seed production entrepreneurs from Nepal’s hills and Terai (plains) were identified for a ten-day visit to India,” reported Dilli K.C., Monitoring and Evaluation Specialist, CIMMYT-Nepal.

During the visit, the Nepalese delegation observed many Indian seed business components including research and development programs, seed processing facilities and government farms at four major seed enterprise centers: Delhi, Kashipur, Hyderabad and Elluru.

The entrepreneurs received first-hand information on ways to link contract farmers with private companies, how to set up linkages for hybrid seed production, and how to enhance maize seed germination through cob drying. “We have to establish demos of our products and maintain good relations with seed producers and consumers,” said entrepreneur Tikaram Rijal, Managing Director, Global Agri-Tech Nepal Limited, after the visit.

Participants compare cob size of different hybrid maize varieties at Bioseed company in Hyderabad. Photo: Narayan Khanal

The participants also learned how smaller seed companies that work with open-pollinated varieties can maintain seed quality and market their brand. “For our growth and sustainability, R&D activities should be promoted even in open-pollinated seeds,” said one of the participants, Subhas Upadhaya, Chairperson, Lumbini Company.

India’s private sector shared the strategies they had adopted to manage challenges during their growth period and showed a willingness to help build the capacity of Nepalese seed enterprises through internships, short-term training and collaborative research.

During discussions with the National Seed Association of India (NSAI), the visitors learned about the role seed associations play in the growth of a country’s seed industry and in implementing seed policies. A memorandum of understanding was signed between NSAI and Seed Entrepreneurs Association of Nepal (SEAN) to foster better collaboration between seed companies from both countries.

“The visit and participants’ interaction with Indian seed companies helped them realize the importance of having a clear strategy both for SEAN and their individual businesses in order to be more successful,” added Joshi. CSISA-NP will continue to strengthen its collaboration with seed enterprises and guide them in developing their business plans, according to Andrew McDonald, Project Leader, CSISA-NP.

Farmers in India embrace high-zinc wheat for its nutritional benefits

Under-nourishment affects some 795 million people worldwide. According to the U.N. Food and Agriculture Organization (FAO), more than one out of every nine people do not eat enough to lead healthy, active lives. Almost 780 million undernourished people live in developing countries, with about 94% in Asia and Africa, FAO reports.

Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India
Biohappiness: A happy farmer grows ZincShakti wheat on his farm in Uttar Pradesh, India. Photos: Nirmal Seeds, India

But these statistics tell only part of the story. Two billion people around the world also suffer from micronutrient deficiency, according to the World Health Organization (WHO). Also known as “hidden hunger,” micronutrient deficiency occurs when the food consumed by people does not provide enough vitamins and minerals. People in South Asia and sub-Saharan Africa are hardest hit by hidden hunger, which is characterized by iron-deficiency anemia, and vitamin A and zinc deficiency.

Zinc is important for cellular growth, cellular differentiation and metabolism. Zinc deficiency, which affects about one-third of the global population, limits childhood growth and decreases resistance to infection. According to WHO, zinc supplements may help to improve linear growth of children under five years of age.

Tackling hidden hunger is the major focus of the HarvestPlus-led wheat biofortification breeding program at CIMMYT and its national program partners in South Asia. The main objective of the program is to develop and disseminate competitive wheat varieties with high grain zinc content and other essential agronomic features.

The biofortification breeding program introduces high zinc levels derived from the best sources (wild species and landraces) into adapted wheat backgrounds. The result is widely adapted, high yielding, high zinc varieties with durable disease resistance. These new varieties are 20-40% superior in grain zinc concentration and are agronomically on a par or superior to other wheat cultivars popular in South Asia. Research is also underway to transfer genomic regions into adapted backgrounds in a more precise and targeted manner, thus accelerating breeding efficiency, as well as to identify biofortified varieties for specific growing conditions in target countries.

Women farmers in field.
Women farmers involved in seed production and dissemination of high zinc varieties, along with Banaras Hindu University (BHU) and CIMMYT researchers.

Competitive high zinc wheat varieties have already been distributed to national program partners in South Asia to reach resource-poor smallholder farmers. In 2012, HarvestPlus devised a strategy with Banaras Hindu University and CIMMYT to reach thousands of wheat farmers with zinc-biofortified, disease resistant wheat in eastern Uttar Pradesh, India. Wheat productivity in this region is low compared to other parts of the country, which is why it was chosen to serve as a platform for testing and promoting high zinc wheat varieties.

After various demonstrations in 18 villages, many of the farmers became interested in adopting high zinc wheat. In 2013, seed mini-kits were distributed to farmers in the region and by 2014, more than 10,000 farmers had adopted high zinc wheat.

Public-private partnerships are contributing to fast-track commercialization. As a result, more than 50,000 farmers adopted zinc-biofortified wheat varieties during the 2015-2016 crop cycle. Farmers are happy with the “Zinc Shakthi” variety for its good performance, including a yield advantage of about 5-10% under both full and limited irrigation, as well as its grain size, cooking quality, grain color and overall appearance.