Skip to main content

Location: India

For more information, contact CIMMYT’s India office.

India celebrates women in climate smart agriculture

In celebration of International Women’s Day, 150 women from villages across Haryana and Bihar, India joined to celebrate the adoption of climate-smart agriculture in their communities. Photo: Kailash C Kalvaniya/ CIMMYT
In celebration of International Women’s Day, 150 women from villages across Haryana and Bihar, India joined to celebrate the adoption of climate-smart agriculture in their communities. Photo: Kailash C. Kalvaniya/ CIMMYT

NEW DELHI (CIMMYT) – If women were given the same access to land, seed and other resources as men, they could increase yields on their farm up to 30 percent, reducing the number of hungry people in the world by 150 million. However, large gender disparities in agriculture continue to make it difficult for rural women to access resources and make their own farming decisions.

In response, the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) began initiatives to empower rural women such as campaigns to eliminate residue burning, build partnerships with local organizations and more.

Climate-smart agriculture (CSA) addresses the interlinked challenges of food security and climate change by sustainably increasing agricultural productivity, building resilience in food-production systems and reducing greenhouse gas emissions in agriculture.

In celebration of International Women’s Day, two events promoting the adoption of CSA technologies and practices among women farmers – like the GreenSeeker sensor, zero tillage farming and others – were organized in the states of Bihar and Haryana, India, representing contrasting agro-ecological and socio-economic regions.

“Linking with CIMMYT-CCAFS, I’ve learned advanced farming techniques, which support better agriculture with increased productivity and profits,” said Ms. Suman, a young farmer from Bastara village in Karnal, India. Suman’s success with climate-smart agriculture inspired women from other villages to begin practicing sustainable farming as well. Photo: CIMMYT
“Linking with CIMMYT-CCAFS, I’ve learned advanced farming techniques, which support better agriculture with increased productivity and profits,” said Ms. Suman, a young farmer from Bastara village in Karnal, India. Suman’s success with climate-smart agriculture inspired women from other villages to begin practicing sustainable farming as well. Photo: CIMMYT

In Bihar, the event was held in collaboration with the Indian Council of Agricultural Research (ICAR)-Research Complex for Eastern Region, Patna and the Borlaug Institute for South Asia and was attended by 80 women farmers from climate smart villages (CSVs), areas that integrate CSA technologies and practices into village development plans, using local knowledge and expertise and supported by local institutions, to help communities adapt to and mitigate the effects of climate change.

Usha Singh, professor of home science at Dr. Rajendra Prasad Central Agriculture University, Bihar, highlighted the role of women in Bihar’s agriculture sector and their contribution to sustainable food production, nutrition and livelihoods. Singh shared home remedies to overcome malnutrition among children and women in rural areas by using their farm produce to prepare balanced diet. R.K. Asthana, animal husbandry scientist with the agricultural extension center Krishi Vigyan Kendra (KVK) in Biroli, emphasized the important role training activities for livestock management can have in improving the socioeconomic status of women in the area.

In Haryana, the event was organized at a climate smart village in Bastara, Karnal in collaboration with the ICAR-Central Soil Salinity Research Institute, which was attended by over 70 women farmers from across several villages. Women shared their experiences under CSVs, discussed ways to increase productivity and profitability, and raise awareness among other women farmers in the area.

HS Jat, CIMMYT senior scientist in Karnal, provided an overview of CIMMYT-CCAFS activities in Haryana and emphasized strengthening and formalizing women groups to enhance knowledge and increase access to resources. CIMMYT event organizers and assistant research associates Munmun Rai and Deepak Bijarniya, and assistant research scientist JM Sutaliya, collectively emphasized the positive impact of CSA interventions in India, which have built farmer resilience to climate change while increasing their productivity and incomes. Deepa Chandra and DK Gosain, program coordinators for National Dairy Research Institute’s KVK in Haryana, also spoke at the event.

For further information:

Women in agriculture step together for change

“Young Scientist Award” winner fights hidden hunger with high zinc wheat

Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)
Velu Govindan, a wheat breeder who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits, has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research. (Photo: Xochiquetzal Fonseca/CIMMYT)

EL BATAN, Mexico (CIMMYT) – A scientist who has advanced the development of nutrient-rich millet and wheat varieties with higher yield potential, disease resistance and improved agronomic traits has won the 2016 Young Scientist Award for Agriculture presented by India’s Society for Plant Research.

Velu Govindan, a wheat breeder from India working with the HarvestPlus project at the International Maize and Wheat Improvement Center (CIMMYT), received the award last week for high-yielding, nutritious wheat varieties tolerant to rust diseases and climate change-induced heat and drought stress.

“I’m so honored,” said Govindan. “It’s a terrific vote of confidence for the work we’re doing at CIMMYT and through HarvestPlus to develop nutritious staple crops that significantly reduce hidden hunger and help millions of people lead better, more productive lives in the global south.”

CIMMYT scientists tackle micronutrient deficiency or “hidden hunger” by biofortifying crops to boost nutrition in poor communities where nutritional options are unavailable, limited or unaffordable. About 2 billion people worldwide suffer from hidden hunger, which is characterized by iron-deficiency anemia, vitamin A and zinc deficiency.

The wheat component of HarvestPlus, which is part of the Agriculture for Nutrition and Health program managed by the CGIAR global agricultural research project, involves developing and distributing wheat varieties with high zinc levels.

Govindan has been actively involved in the recently released wheat variety Zinc Shakthi – meaning “more power” – which has been adopted by some 50,000 smallholder farmers in India. In addition, two new varieties are projected soon to be widely adopted throughout the fertile northwestern Indo-Gangetic Plains of India.

“We’ve released ‘best bet’ varieties in India and Pakistan to ensure fast-track adoption of high zinc wheat,” Govindan said. “Farmers are adopting it, not only for its nutritional benefit, but also for its superior agronomic features like competitive yield, rust resistance and other farmer preferred traits.”

Before joining CIMMYT eight years ago, Govindan worked at the International Crops Institute for the Semi-Arid Tropics (ICRISAT), where he initiated the development of an iron-rich pearl millet called Dhanashakti – meaning “prosperity and strength” – which was commercialized in 2012 in the Indian state of Maharashtra, where it is now used by more than 100,000 smallholder farmers.

In addition to his primary responsibility of breeding nutrient-rich wheat varieties, Govindan works with the Global Wheat Program’s spring wheat breeding team at CIMMYT. The spring bread wheat program develops high yielding and climate resilient varieties, which are distributed to more than 80 countries in the wheat growing regions of the developing world.

Through its annual awards ceremony, the Society for Plant Research, which has also produced the international journal Vegetos since 1988, recognizes individual contributions from across a broad spectrum of plant-based research, including agriculture, biotechnology, industrial botany and basic plant sciences.

Participatory scaling of climate-smart agriculture

Introducing climate change in Bihar’s Krishi road map. Photo: CIMMYT-BISA
Introducing climate change in Bihar’s Krishi road map. Photo: CIMMYT-BISA

BIHAR, India (CIMMYT) — Rich endowment of fertile soil, adequate rainfall and sufficient ground water makes agriculture key to the overall development of the economy of the state of Bihar in India. Farm mechanization to enhance cropping intensity, reduce labor requirements and improve farm production efficiency is a vital policy initiative taken by Bihar’s Department of Agriculture to address the shrinking area under cultivation. Although the state government has accorded top priority to agriculture, the action plan (the so-called Krishi road map) it has prepared for the agriculture sector does not include a strategy for climate change mitigation.

Extreme climatic vulnerability keeps Bihar’s agricultural productivity low. It is the only state in the country where drought and flood recurrently occur at the same time. To overcome these adverse conditions, the government of Bihar is trying to re-orient agriculture by enacting diversification policies and other measures such as irrigation, flood control and drainage schemes. It has also been involved in climate-smart agriculture (CSA) work and pilot climate-smart villages (CSVs) undertaken by CIMMYT and the Borlaug Initiative for South Asia (BISA) and other collaborators. Concerns about climate change challenges were shared by Nitish Kumar, Bihar’s chief minister, with CIMMYT Director General Martin Kropff during his recent visit to Bihar. They also discussed local community collaboration with researchers, policymakers and scientists on establishing a strategic approach to scale sustainable intensification based on conservation agriculture.

Throughout 2016, traveling seminars and workshops were organized in CSVs to disseminate knowledge about climate-smart agriculture practices (CSAPs). Highlighted at these events were the benefits of direct-seeded rice, laser land leveling, bed planting, residue management, site-specific nutrient management, the GreenSeeker sensor, zero tillage, crop diversification, intensification with legume incorporation, information & communications technologies and weather forecasting. During a stakeholder consultation in September 2016 led by Vijoy Prakash, Bihar’s Agriculture Production Commissioner, CIMMYT-BISA shared its CSA experiences. Addressing the need to incorporate climate change into the Krishi road map, the Chief Minister and other senior government officials visited the CSA research sites at BISA-Pusa and the CSV pilots in Samastipur District implemented by CCAFS, CIMMYT and BISA. Bihar’s Agriculture Minister Vijay Kumar Choudhary also visited 30 CIMMYT-BISA pilot CSVs in Samastipur and Vaishali Districts.

Farmers sharing their experiences with climate-smart practices during a field visit by the Chief Minister of Bihar. Photo: CIMMYT-BISA
Farmers sharing their experiences with climate-smart practices during a field visit by the Chief Minister of Bihar. Photo: CIMMYT-BISA

The Bihar Agricultural Management and Training Institute (BAMETI) issued a letter to CIMMYT stating that the government of Bihar plans to implement CSA and CSVs in all 38 districts of Bihar. BAMETI is responsible for organizing need-based training programs for the farming community. The Bihar’s Department of Agriculture is also preparing a proposal to introduce CSAPs to improve the resilience of farmers by mainstreaming CSVs in Bihar with technical and strategic support from CIMMYT, BISA and CCAFS in collaboration with Rajendra Agricultural University, Bihar Agricultural University and the ICAR research complex for the eastern region. Based on the success of CSVs, the linkages with CIMMYT will help fulfill Bihar’s innovative Krishi road map. Commending the work done in farmers’ fields and its relevance for addressing climate challenges from a farming systems perspective, Chief Minister Kumar sent a letter to CIMMYT’s DG on the occasion of CIMMYT’s 50th anniversary.

Since then, several field days, workshops and meetings have been conducted by CIMMYT-BISA in collaboration with other partners to fulfill the Krishi road map. On October 7, 2016, a field day on “Direct-Seeded Rice in Climate-Smart Villages’’ was held at CSV Digmbra with more than 300 farmers, service providers, NGOs, private companies and state agriculture department representatives participating, as well as scientists from Krishi Vikas Kendra University and CIMMYT.

Among the subjects discussed were CSA interventions implemented through innovative partnerships with farmers and farmer cooperatives to build farmers’ resilience to climate change and increase their productivity and incomes, while mitigating greenhouse gas emissions from agriculture. Samastipur’s district magistrate reported that the government of Bihar is supporting farmers’ adoption of improved technologies by providing them with subsidies for mechanization, irrigation and improved seed. Finally, several progressive farmers shared their experiences with climate-smart practices and encouraged other farmers to adopt them in order to improve their livelihoods.

New Publications: Rise of micro-satellites offers cost-effective way to collect data on smallholder farms

Thermal image of the CIMMYT-Obregon station acquired from the thermal camera at a 2-meter resolution on 14 February 2013. Well-watered (cooler) plots are shown in blue, water-stressed (warmer) plots in green and red. Roads and bare soil areas have an even higher temperature and are shown in yellow. Photo: CIMMYT
Thermal image of the CIMMYT-Obregon station acquired from the thermal camera at a 2-meter resolution on 14 February 2013. Well-watered (cooler) plots are shown in blue, water-stressed (warmer) plots in green and red. Roads and bare soil areas have an even higher temperature and are shown in yellow. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) — Micro-satellites are emerging as an effective low-cost option to collecting data like sow date and yields on small farms across the developing world. When used in combination with bio-physical and socio-economic data, micro-satellite data can improve monitoring and evaluation, better assess and understand changes and shocks in crop-based farming systems and improve technology targeting across farmer communities.

Data taken from satellites – remotely controlled communications systems that orbit the earth – can provide different spatial, spectral and temporal resolutions for agriculture that detail crop health, irrigation use, yield, soil analysis and more.

While this information has greatly benefited the accuracy and precision of farming across the globe, it’s traditionally been a challenge to collect data on farms in the developing world. Many farmers have small pieces of land that can’t be accurately observed by most freely available satellite imagery, and it’s extremely expensive to access information that isn’t free.

However, a trend in recent years towards smaller, often private organizations sending their own micro-satellites into the sky have made access to satellite imagery much more affordable due to their smaller size, shorter life cycles and lower upfront costs.

A recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT) looked at the impact of the micro-satellite SkySat in Bihar, India, which mapped sowing dates and yields of smallholder wheat fields during the 2014-2015 and 2015-2016 growing seasons. The study then compares how well sowing date and yield were predicted when using ground data, like crop cuts and self-reports, versus using crop models, which require no on-the-ground data, to develop and parameterize prediction models.

The study “Mapping Smallholder Wheat Yields and Sowing Dates Using Micro-Satellite Data,” concludes that micro-satellite data can be used to map individual field-level characteristics of smallholder farms with significant accuracy, capturing roughly one-half and one-third of the variation in field-measured sow date and yields, respectively, when parameterized with field measures. These results suggest that micro-satellites and the data they provide will continue to serve as an important resource for mapping field-level farm characteristics, and that their utility will only improve as micro-satellites develop increased temporal frequency throughout the growing season.

Learn more about this and other recent publications from CIMMYT scientists below.

  1. Association analysis of resistance to cereal cyst nematodes (Heterodera avenae) and root lesion nematodes (Pratylenchus neglectus and P. thornei) in CIMMYT advanced spring wheat lines for semi-arid conditions. 2016. Dababat, A.A.; Gomez-Becerra, H.F.; Erginbas-Orakci, G.; Dreisigacker, S.; Imren, M.; Toktay, H.; Elekcioglu, I.H.; Tesfamariam Mekete; Nicol, J.M.; Ansari, O.; Ogbonnaya, F.C. Breeding Science. Online First.
  2. Developing and deploying insect resistant maize varieties to reduce pre-and post-harvest food losses in Africa. 2016. Tadele Tefera; Mugo, S.N.; Beyene, Y. Food Security 8 (1) : 211-220.
  3. Mapping smallholder wheat yields and sowing dates using micro-satellite data. 2016. Meha Jain; Srivastava, A.; Singh, B.; Rajiv K. Joon; McDonald, A.; Royal, K.; Lisaius, M.C.; Lobell, D.B. Remote Sensing 8 (10) : 860.
  4. Nitrogen fertilizer placement and timing affects bread wheat (Triticum aestivum) quality and yield in an irrigated bed planting system. 2016. Grahmann, K.; Govaerts, B.; Fonteyne, S.; Guzman, C.; Galaviz-Soto, A.P.; Buerkert, A.; Verhulst, N. Nutrient Cycling in Agroecosystems 106 : 185-199.
  5. Resistance of Bt-maize (MON810) against the stem borers Busseola fusca (Fuller) and Chilo partellus (Swinhoe) and its yield performance in Kenya. 2016. Tadele Tefera; Mugo, S.N.; Mwimali, M.; Anani, B.; Tende, R.; Beyene, Y.; Gichuki, S.; Oikeh, S.O.; Nang’ayo, F.; Okeno, J.; Njeru, E.; Pillay, K.; Meisel, B.; Prasanna, B.M. Crop Protection 89 : 202-208.

Advice for India’s rice-wheat farmers: Put aside the plow and save straw to fight pollution

A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia.
A suite of simple, climate-smart farming practices predicated for years by agricultural scientists holds the key to resource conservation, climate change and reduced pollution in South Asia. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) — Recent media reports show that the 19 million inhabitants of New Delhi are under siege from a noxious haze generated by traffic, industries, cooking fires and the burning of over 30 million tons of rice straw on farms in the neighboring states of Haryana and Punjab.

However, farmers who rotate wheat and rice crops in their fields and deploy a sustainable agricultural technique known as “zero tillage” can make a significant contribution to reducing smog in India’s capital, helping urban dwellers breathe more easily.

Since the 1990s, scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been working with national partners and advanced research institutes in India to test and promote reduced tillage which allows rice-wheat farmers of South Asia to save money, better steward their soil and water resources, cut greenhouse gas emissions and stop the burning of crop residues.

The key innovation involves sowing wheat seed directly into untilled soil and rice residues in a single tractor pass, a method known as zero tillage. Originally deemed foolish by many farmers and researchers, the practice or its adaptations slowly caught on and by 2008 were being used to sow wheat by farmers on some 1.8 million hectares in India.

Scientists and policymakers are promoting the technique as a key alternative for residue burning and to help clear Delhi’s deadly seasonal smog.

Burning soils the air, depletes the soil

“Rice-wheat rotations in Bangladesh, India, Nepal and Pakistan account for nearly a quarter of the world’s food production and constitute a key source of grain and income in South Asia, home to more than 300 million undernourished people,” said Andy McDonald, a cropping systems agronomist at CIMMYT. “But unsustainable farming practices threaten the region’s productivity and are worsening global climate change.”

The burning of paddy straw is one example, according to expert studies. Besides triggering costly respiratory ailments in humans and animals in farm regions and urban centers like Delhi, burning rice residues depletes soil nutrients, with estimated yearly losses in Punjab alone of 3.9 million tons of organic carbon, 59,000 tons of nitrogen, 20,000 tons of phosphorus and 34,000 tons of potassium, according to M.L. Jat, a senior agronomist at CIMMYT, who leads CIMMYT’s contributions to “climate-smart” villages in South Asia, as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS).

The Turbo Happy Seeder allows farmers to sow a rotation crop directly into the residues of a previous crop—in this case, wheat seed into rice straw—without plowing, a practice that raises yields, saves costs and promotes healthier soil and cleaner air. Inset: Agricultural engineer H.S. Sidhu (left), of the Borlaug Institute for South Asia (BISA), who has helped test and refine and the seeder, visits a zero tillage plot with Dr. B.S. Sidhu, agricultural commissioner of Punjab State. Photo: CIMMYT

Zero tillage: A lot to like

Traditional tillage for sowing wheat in northern India involves removing or burning rice straw and driving tractor-drawn implements back and forth over fields to rebuild a soil bed from the rice paddy, a costly and protracted process.

Zero tillage cuts farmers’ costs and provides better yields. By eliminating plowing, farmers can sow wheat up to two weeks earlier. This allows the crop to fill grain before India’s withering pre-Monsoon heat arrives — an advantage that is lost under conventional practices.

A 2016 study in Bihar state showed that farmers’ annual income increased by an average 6 percent when they used zero tillage to sow wheat, due both to better yields and savings in diesel fuel through reduced tractor use.

Zero tillage also diminishes farmers’ risk from erratic precipitation, according to Jat. “A new study in Haryana has shown that in wet years when conventionally-sown wheat fields are waterlogged, zero-tilled crops can produce 16 percent more grain.”

Environmental and climate change benefits include 93 kilograms less greenhouse gas emissions per hectare. “In the long run, retaining crop residues builds up soil organic matter and thereby reduces farming’s carbon footprint,” Jat explained.

Zero-tilled wheat also requires 20 to 35 percent less irrigation water, slowing depletion of the region’s rapidly-dwindling underground water reserves and putting money in farmers’ pockets by reducing their need to pump.

“It’s impressive that a single practice provides such a broad set of benefits,” said McDonald, who leads CIMMYT’s Cereal Systems Initiative for South Asia (CSISA).

Specialized seed planters sell slowly

Farmer awareness is growing, but putting aside the plow is not an easy proposition for some. In particular, zero tillage requires use of a special, tractor-mounted implement which, in a single pass, chops rice residues, opens a rut in the soil, and precisely deposits and covers the seed.

Development of this special seeder was first funded by the Australian Centre for International Agricultural Research (ACIAR) and led by Punjab Agricultural University, with contributions from CIMMYT and other organizations. The latest version, the Turbo Happy Seeder, costs $1,900 — an investment that many farmers still struggle to make.

“As an alternative, we’ve been saying that not all farmers need to own a seeder,” Jat observed. “Many can simply hire local service providers who have purchased the seeder and will sow on contract.” In Bihar and the neighboring state of Uttar Pradesh, the number of zero-tillage service providers rose from only 17 in 2012 to more than 1,900 in 2015, according to Jat.

Given New Delhi’s smog troubles, Haryana and Punjab policymakers are adding support to avoid burning rice straw. “The government of Haryana has taken a policy decision to aggressively promote the seeder for zero tillage and residue management and to provide 1,900 seeders on subsidy this year,” said Suresh Gehlawat, assistant director of agriculture for that state, in a recent statement.

On the horizon: Zero tillage for rice

As part of these efforts, CIMMYT scientists and partners are testing and promoting with farmers a suite of resource-conserving practices. These include precision land levelling, which saves water and improves productivity, as well as directly sowing rice into untilled, non-flooded plots.

“The practice of direct-seeded rice requires less labor, raising farmers’ profits by as much as $130 per hectare over paddy-grown rice,” said Jat. “Moreover, growing rice in non-flooded fields uses 25 percent less water and reduces the emission of methane, a greenhouse gas 200 times more powerful than carbon dioxide, by 20 kilograms per hectare.”

Agricultural biodiversity key to future crop improvement

The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT's genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.
The CGIAR is one of the biggest suppliers and conservers of crop genetic diversity. CIMMYT’s genebank contains around 28,000 unique samples of maize seed—including more than 24,000 landraces; traditional, locally-adapted varieties that are rich in diversity—and 150,000 of wheat, including related species for both crops. Photo: X. Fonseca/CIMMYT.

NEW DELHI — Conserving and using agricultural biodiversity to create better crops can help meet several sustainable development goals and stave off further species extinctions, according to scientists at the first International Agrobiodiversity Congress.

About 75 percent of plant genetic diversity worldwide has been lost since the beginning of the 20th century and 30 percent of livestock breeds are at risk of extinction, according to the Food and Agriculture Organization.  Meanwhile, humans only consume about 1.5 percent of edible plants and only three of these – rice, maize and wheat – contribute nearly 60 percent of calories and proteins obtained by humans from plants. This huge loss in biodiversity due to environmental degradation caused by humans – what many scientists refer to as earth’s “sixth extinction”– is detrimental to global food security and the environment.

“Just a 7-10 percent loss of any major food crop would result in prices quadrupling,” says Howarth Bouis, founder of HarvestPlus and 2016 World Food Prize winner. “Non-staple food prices in India have [already] risen by 50 percent over the past 30 years.” A lack of agricultural diversity puts the world’s entire food chain at risk if a shock – such as increased instances of drought or crop diseases due to rising temperatures from climate change – were to destroy a particular type of crop.

As part of a global response to these challenges, researchers in collaboration with farmers are gathering seed to conserve and protect in genebanks across the world for future generations. These banks are the foundation of agriculture, food security and dietary diversity.

“We don’t know what scientists will need in 30 years,” says Marie Haga, executive director of the Crop Trust. “We need to conserve the entire spectrum [of seeds]. If it’s not being used right now, that does not mean it won’t be critically important in the future.”

New advancements in DNA-sequencing and phenotyping technologies have also created an opportunity to actively use the genetic information of these seeds that did not exist just a few years ago. Crop breeders can now more rapidly and effectively identify seeds that have traits like enhanced nutritional qualities, drought or heat tolerance, or disease resistances to create better crops that withstand challenges related to malnutrition, climate change, disease and more.

For example, in 2012 approximately 23 percent of Kenya’s maize production was lost due to an outbreak of the disease Maize Lethal Necrosis (MLN). Thanks to the efforts of the International Maize and Wheat Improvement Center (CIMMYT) and other partners, there are now 13 hybrid varieties with tolerance to MLN – created in just four years.

Delegates to the congress also tackled issues regarding the effective and efficient management of genebanks, biosafety and biosecurity, intellectual property rights, access to germplasm, benefit sharing from use of germplasm, and farmers’ role in conservation of genetic resources and other related themes.

The Congress culminated with the adoption of “The Delhi Declaration on Agrobiodiversity Management” that recommended harmonizing multiple legal systems across countries to facilitate the safe transfer of genetic resources, developing and implementing an Agrobiodiversity Index to help monitor the conservation and use of agrobiodiversity in breeding programs, promoting conservation strategies for crop wild relatives and other strategies to strengthen agricultural biodiversity’s role in agricultural development.

Improved genetic analysis offers faster, more precise results to crop breeders

CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kroff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT
CIMMYT representatives at IAC (L-R) Prashant Vikram, Ravi Singh, Cynthia O.R, Laura Bouvet, Sukhwinder-Singh, Martin Kropff, Kevin Pixley and Gilberto Salinas. Photo: CIMMYT

EL BATAN, Mexico (CIMMYT) – Researchers gathered last week at the International Agrobiodiversity Conference in New Delhi to improve global collaboration on harnessing genes in breeding that can help wheat withstand the effects of climate change.

Wheat is the most widely cultivated staple food in the world, providing 20 percent of the protein and calories consumed worldwide and up to 50 percent in developing countries. It is also particularly vulnerable to climate change, since the crop thrives in cooler conditions. Research has shown wheat yields drop 6 percent for each 1 degree Celsius rise in temperature, and that warming is already holding back yield gains in wheat-growing mega-regions like South Asia.

The International Maize and Wheat Improvement Center’s (CIMMYT) genebank serves as a vital source of genetic information and biodiversity. Breeders use this information to accelerate the development of wheat resilient to climate change by identifying varieties that display valuable traits like drought and heat-stress tolerance, which allow them to flourish despite stressful conditions.

However, all this genetic information is incredibly dense and requires filtering before breeders can efficiently use that information, according to Sukhwinder Singh, head of the wheat pre-breeding team at CIMMYT’s Seeds of Discovery (SeeD) initiative.

“Using new genes to improve wheat, or any crop, is incredibly difficult because often along with the desired traits, come numerous undesirable traits,” said Singh. “That’s where pre-breeding comes in – we essentially purify this huge pool of good and bad traits by identifying useful genes, like heat tolerance, then make these traits available in a form that’s easier for wheat breeders to access and use.”

Pre-breeding is done through cutting-edge, cost-effective technologies that characterize the genetic information of CIMMYT’s wheat genebank. Using these tools, nearly 40 percent of the 150,000 seed samples of wheat in the bank have undergone high-throughput genetic characterization, a process that allows pre-breeders to rapidly identify desirable traits in the varieties.

A recent successful example of pre-breeding was highlighted in a report that genetically characterized a collection of 8,400 centuries-old Mexican wheat landraces adapted to varied and sometimes extreme conditions, offering a treasure trove of potential genes to combat wheat’s climate-vulnerability.

“Pre-breeding helps us better understand and gather more information on what genetic traits are available in CIMMYT’s wheat genebank, so researchers can have more access to a wider variety of information than ever before,” said Prashant Vikram, wheat researcher who is also working with the pre-breeding team at CIMMYT.

However, as new genomics tools continue to develop, capacity building for researchers is necessary to ensure the potential impacts of the genebank’s biodiversity is fully realized and equitably accessible, said Kevin Pixley, SeeD project leader and program director of CIMMYT’s Genetic Resources Program.

During the IAC partners, scientists, students, and stakeholders from across the globe provided feedback on SeeD and pre-breeding initiatives, while CIMMYT led discussions on how to build genebank biodiversity for future food security and sustainable development. Increasing partnerships and multidisciplinary projects for stronger impact were identified as key needs for future initiatives.

Conference highlights urgent need to harness genetic resources for future food security

Climate change is likely to have a huge impact on cereal farmers in India. CIMMYT/Emma Quilligan
Climate change is likely to have a huge impact on cereal farmers in India. CIMMYT/Emma Quilligan

NEW DELHI (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) will participate in the first International Agrobiodiversity Congress (IAC) from November 6 to 9, 2016 in New Delhi. The IAC aims to provide a common platform for stakeholders, including farmers, scientists, policymakers and industry leaders to share their experiences and knowledge in agrobiodiversity management and genetic resource conservation. The Congress is being hosted by the Indian Society of Plant Genetic Resources and Bioversity International, and co-organized by CIMMYT and the Borlaug Institute for South Asia.

“Multiple challenges in future wheat production – including heat stress, changes in rainfall and a growing threat of increased virulent diseases – will increase the demand for new varieties that can cope with stress and changing environment,” said Arun Joshi, CIMMYT’s regional representative in Asia. “This congress will focus on advances that can be made through increased diversity and targeted use of genetic resources to produce improved varieties.”

Martin Kropff, director general of CIMMYT, will give a keynote address on why effective partnerships and agrobiodiversity are needed to feed nine billion people. He will also chair a plenary session on “Agrobiodiversity for Sustainable Development Goals.” Other key themes for plenaries include agrobiodiversity for adaptation to and mitigation of climate change, intellectual property rights, access and benefit sharing, farmers’ rights, quarantine, biosafety and biosecurity and science-led innovation for agrobiodiversity management and sustainable use.

CIMMYT is also organizing a satellite session titled “Harnessing Biodiversity for Food Security and Sustainable Development.” This session will bring together numerous partners of the SeeD initiative, which seeks to unlock the genetic potential of maize and wheat genetic resources by providing breeders with a toolkit to improve targeted use in the development of high-yielding, climate-ready and resource-efficient cultivars. The session will also cover the importance of enhancing the use of genetic resources for improved agriculture, and how doing so can help meet several of the 17 U.N. Sustainable Development Goals by 2030. SeeD is a pioneering partner in the Diversity Seek initiative, which seeks synergies among projects to harness the diversity of crop species to feed humankind.

In addition to Kropff, CIMMYT speakers at the conference include Ravi Singh, distinguished scientist and head of bread wheat improvement and Kevin Pixley, director of CIMMYT’s genetic resources program. Other researchers working to improve the genetic potential of maize and wheat will also participate. CIMMYT will also host an evening reception on Nov. 7 to mark CIMMYT’s achievements over the last 50 years.

Check out the IAC program here and list of keynote speakers here.   

Empowering women to eliminate residue burning for better human and soil health

Farmers pledge to stop burning residues. Photo: L. Singh/CIMMYT
Farmers pledge to stop burning residues. Photo: L. Singh/CIMMYT

HARYANA, India (CIMMYT) — In the intensively cropped region of northwest India, poor management practices – especially residue burning after the rice season – often results in environmental degradation, severely affecting soil and human health. Residue burning is a major issue not only for agriculture, but for society as a whole. It cannot be dealt with in isolation and technology alone is not sufficient to address this challenge.

Arpana Services, a leading NGO in Haryana involved in promoting micro-enterprise programs by motivating women’s self-help groups, is working together with the International Maize and Wheat Improvement Center (CIMMYT) to generate awareness among women about climate-smart practices. In view of the forthcoming wheat sowing season, two field days aimed at discouraging residue burning were held by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) on 18 and 25 September 2016 in the Taprana and Sangoi villages of Haryana, India. The events brought together around 2,000 women from villages across the state.

Aiming to foster climate-smart agriculture, the events promoted zero-tillage wheat and highlighted the adverse effects that residue burning has on soil physiochemical and biological properties. Demonstrations showed how the Happy Seeder and other zero-tillage machines reduce production costs, save water and increase yields. The field days also focused on reducing soil degradation and human health hazards by improving soil nutrient content and decreasing hazardous gas emissions. Citing the success of 27 climate-smart villages across Haryana, H.S. Jat, CIMMYT scientist, stressed the need to conserve natural resources and develop climate-resilient cropping systems.

Another part of the collaboration involves ensuring women farmers are financially independent. For example, Aruna Dayal, director of Arpana Services, stated that working together with CIMMYT will provide innovative solutions to women farmers who need to repay loans, while diversifying income and promoting savings. At the end of the field days, the highly motivated women took an oath not to burn crop residues on their fields and to educate other fellow farmers about the harm burning can do.

receive newsletter

A leading NGO joins hands with CIMMYT-CCAFS to empower women farmers

NGO partnership brings new capacity building opportunities. Photo: CIMMYT
NGO partnership brings new capacity building opportunities. Photo: CIMMYT

In the Indian state of Haryana, women are actively involved in farm operations but do not contribute significantly to decision-making. An effective way to enhance women’s decision-making and promote gender equity is to teach them to use new agricultural technologies and thus generate higher yields and better income. How technological change contributes to women’s empowerment has thus become an important area of study in India’s male-dominated farm sector.

Under the aegis of CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), CIMMYT is working on developing climate-smart agricultural practices (CSAPs) that enable farmers to reduce climate-related risks. As part of this activity, CIMMYT-CCAFS is joining hands with a leading NGO, Arpana Services (www.arpanaservices.org), that seeks to enhance livelihoods in rural areas of the states of Haryana, Himachal Pradesh and Delhi. More to the point in this case, it works with 830 self-help groups including 11,600 women across 100 villages in Haryana.

CIMMYT will build confidence and awareness among the women’s groups Arpana has formed by instructing them on CSAPs and their use. CIMMYT and Arpana will merge their areas of expertise to promote CSAP adoption among female smallholders, thereby benefiting farm households. They plan to provide capacity building programs aimed at educating female farmers on technical aspects of sustainable intensification and making them realize the importance of nutrition by introducing legumes into their cropping systems.

The women will also be trained to use a farm lekha jokha book, which is an accounting and farm management tool that allows farmers to understand and compare farm expenses that, though important, are commonly neglected. Keeping such records would make women more knowledgeable and help them manage their farms more efficiently, thereby escalating their decision-making authority at home.

Although the CIMMYT-Arpana initiatives target women’s empowerment, they will also lead to other socio-economic changes. For example, successful women farmers could help promote CSAPs and convince government and policy makers to make recommendations based on conservation agriculture. In this way, a model encompassing the pre-requisites of sustainable agriculture could be established with women as torch-bearers of the future of agriculture.

Heat-tolerant maize offers new opportunities to rice farmers in South India

The gathering of farmers in the field day. Photo: UAS, Raichur
The gathering of farmers in the field day. Photo: UAS, Raichur

KARNATAKA, India (CIMMYT) — Maize has emerged as a preferred choice for farmers in Karnataka, India, as it can be grown with less than a third amount of water needed for traditionally planted rice and has the potential to maintain farm profitability at par or better.

However, maize is prone to heat stress during its reproductive phase in spring, as temperatures peak in March and April. Because of this and the fact maize is a fully-irrigated crop, water availability is a challenge during this dry period.

Water-efficient and heat-tolerant maize hybrids are a great way for farmers in Karnataka to farm sustainably and maintain their livelihoods during this season. To put these varieties in the hands of farmers, the University of Agricultural Sciences (UAS) in Raichur, India joined the collaborative research project Heat Tolerant Maize for Asia (HTMA).

After three years, the first generation of heat-tolerant hybrids were developed, and suitable hybrids for Karnataka farmers were identified by UAS, Raichur. CIMMYT licenced the selected hybrids to the university for deployment and scale-out in 2015.

Inauguration of the Field day by B.V. Patil, Director of Education at UAS, Raichur. Photo: UAS, Raichur
Inauguration of the Field day by B.V. Patil, Director of Education at UAS, Raichur. Photo: UAS, Raichur

In order to get farmer input and feedback on these heat-tolerant hybrids, a field day was organized in Karnataka in collaboration with the Government of Karnataka’s Department of Agriculture.

The field day was attended by over 100 farmers, including both women and men, as well as participants from local seed companies, state agriculture department officials and officials from UAS, Raichur.

Director of Education and Former Vice-Chancellor of University of Agricultural Sciences (UAS), Raichur B.V. Patil inaugurated the event urging farmers to diversify rice-rice systems into more sustainable and profitable rice-maize systems, which is possible with the availability of heat-resilient maize hybrids. He elaborated that UAS, Raichur in collaboration with CIMMYT-Asia, Hyderabad have developed new heat-resilient maize hybrids with wide adaptability and are suitable for cultivation in this region.

Joint Director of Agriculture, Chetana Patil talks to farmers during the field day. Photo: UAS, Raichur
Joint Director of Agriculture, Chetana Patil talks to farmers during the field day. Photo: UAS, Raichur

Joint Director of Agriculture Chetana Patil also advised the farmers about other benefits of adopting rice-maize systems, such as- improved soil health, reducing weed seed back etc. apart from water saving and improved farm economy. V.N. Kulkarni, Vice President of research and development at   J.K. Agri-Genteics Ltd., Hyderabad  participated in the field day along with his maize research team and selected promising hybrids for deployment. S.N. Vasudevan, Head of the Agri-business incubation centre also visited the demonstration site along with his staff to assess the potential of the heat stress resilient maize hybrids under heat stress conditions. Other two seed companies, Mahindra Agri Solutions Ltd, Hyderabad and Mahyco Seeds Ltd, Jalna, Maharastra have expressed their interest in new heat stress resilient hybrids and wanted to take-up these hybrids for large scale testing followed by marketing in stress-prone ecologies.

Also attending the field day were Principal Investigator of HTMA Prakash Kuchanur;  S.N. Vasudevan, Head of the Agri-business incubation center at UAS, Raichur; and Mahindra Agri Solutions Ltd., Hyderabad and Mahyco Seeds Ltd., two seed companies who showed interest in purchasing the hybrids for large-scale testing and marketing in stress-prone ecologies.

Lead by CIMMYT and supported by USAID, the Heat Tolerant Maize for Asia project (HTMA) aims at improving income and food security of smallholder maize farmers living in climate-vulnerable regions through accelerated development and deployment of heat-resilient maize hybrids.

CIMMYT Maize hybrids ranked first and third in nation-wide trials in India

Farmers and seed company personnel observing RCRMH-2 in an on-farm demonstration during the spring season in Gulbarga district of Karnataka, India. Photo: UAS, Raichur
Farmers and seed company personnel observing RCRMH-2 in an on-farm demonstration during the spring season in Gulbarga district of Karnataka, India. Photo: UAS, Raichur

RAICHUR, India (CIMMYT) — Two hybrids from the International Maize and Wheat Improvement Center (CIMMYT) developed under the Heat Tolerant Maize for Asia (HTMA) project were ranked first and third among over 100 hybrids during the 2015 All-India Coordinated Maize Program (AICMP) trials. The trials took place during the summer-rainy season (commonly known as the “Kharif” season) – the major maize growing season in South Asia – which covered about 70 percent of South Asia’s total maize area.

AICMP, managed by the Institute of Maize Research in New Delhi, is one of the largest maize variety testing networks in South Asia. New maize hybrids from both the public and private sector are evaluated in over 30 locations across India’s different ecologies.

The two hybrids RCRMH-1 and RCRMH-2 – were submitted by the University of Agriculture Sciences (UAS), Raichur, one of the key partners with CIMMYT in developing heat tolerant maize varieties in the region. The hybrids showed good performance by performing well across agro-ecologies, including stressed and un-stressed locations, competing well against both public and private sector varieties tested in the AICMP trials.

CIMMYT seeks to develop maize varieties that are tolerant to a range of stresses that South Asia experiences. For example, heat resilience is necessary in a region which experiences temperatures of over 400C in the spring season, right when the crop needs to reproduce. The summer-rainy season in South Asia brings monsoon rains. However, in drought years (such as year 2015) the temperature may rise close to 400C, and therefore maize crops face combined drought and heat stress. The selection strategy used by HTMA focuses on developing broad temperature resilience rather than tolerance to heat stress by exposing the hybrids across temperature regimes during selection process, which explains the success of the two hybrids in the AICMP trials. The performance of CIMMYT hybrids in these trials clearly indicate that the hybrids have wider adaptation to many stresses including areas with no stresses.

These two hybrids are among the first 18 hybrids licensed to CIMMYT partners for deployment and scale-out in stress-prone ecologies of South Asia.

University of Agricultural Sciences (UAS), Raichur, India is one of the collaborators in CIMMYT’s Heat Tolerant Maize for Asia (HTMA) project. Funded by the United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative HTMA is a public-private alliance that targets resource-poor maize farming communities in South Asia who face weather extremes and climate change effects.

Launch of new geo-informatics tool

Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT
Participants in the LCAT training in New Delhi, India. Photo: Ashwamegh Banerjee/CIMMYT

NEW DELHI — The International Maize and Wheat Improvement Center (CIMMYT) has launched the beta version of the Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies. Using geo-informatics, the Cereal Systems Initiative for South Asia (CSISA), for example, was able to identify districts in the state of Odisha most prone to flooding and categorize them as areas ill-suited for direct seeded rice. LCAT will provide a platform for extension professionals, policymakers and research scientists to leverage geo-informatics for better decision-making. The tool was developed for South Asia but can be used globally.

“In the eastern Indo-Gangetic Plains, we promote early sowing of wheat, which is one of the most important adaptations to climate change. But we haven’t been able to accurately monitor and measure where it is being implemented and when,” explained Andrew McDonald, CIMMYT principal scientist and CSISA project leader. “In our line of work, it is crucial to understand where you’re making progress. While the data exists, it is often not integrated at the spatial level.”

Considerable environmental and man-made landscape diversity exists across South Asia. LCAT will help to analyze these landscapes and characterize large areas of land based on remote sensing data. It will serve two main purposes – to facilitate technology targeting and provide information such as crop status, phenology and yield goals to support crop management decisions.

LCAT Screenshot
Screenshot of the new Landscape-scale Crop Assessment Tool (LCAT), a geo-informatics technology that will help scientists to forecast crop yields and identify regions where conditions will support the adoption of specific technologies.

“The first version of the tool uses datasets from CSISA sites in Bangladesh and India to characterize the existing cropland. However, the algorithms on which it is based are generic and can hence be applied to describe any dominant agricultural landscape across the globe,” said Balwinder Singh, CIMMYT crop simulation modeler. “Within CSISA, the tool will be used for specific applications extending to crop yield forecasting and monitoring, learning and evaluation.”

However, critical knowledge gaps between landscape-scale processes and technology targeting remain a challenge. To ensure policymakers and scientists are able to effectively collaborate in using this tool, a team of scientists from Oak Ridge National Laboratories (ORNL) visited New Delhi in May to conduct a training session on LCAT for CSISA staff and government partners from India and Bangladesh. The training not only demonstrated the tool’s beta version but also created greater understanding of its practical applications.

“If you’re a user of data, you spend 60 percent of your time just assembling data before analyzing it. We want to reduce that to 5 percent,” said Suresh Vannan, director of the ORNL Distributed Active Archive Center for Biogeochemical Dynamics and CCSI data theme leader.

LCAT is being developed in collaboration with ORNL and the Group on Earth Observations Global Agricultural Monitoring (GEOGLAM) Initiative. It is funded by CIMMYT as part of a five-year agreement with ORNL signed in 2014.

receive newsletter

Sustainable agriculture takes root in Karnataka, India

H.S. Sidhu, senior research engineer, BISA, demonstrating laser land leveler technology. Photo: Yogehs Kumar/CIMMYT
H.S. Sidhu, senior research engineer, BISA, demonstrating laser land leveler technology.
Photo: Yogehs Kumar/CIMMYT

DHARWAD, INDIA — Nearly 150 scientists, researchers and extension agents from universities and agricultural departments across the state of Karnataka, India, attended a field training 12-13 April on conservation agriculture and farm mechanization for sustainable intensification. The training was hosted by the University of Agricultural Sciences (UAS), Dharwad, Karnataka, and jointly organized by CIMMYT, UAS and Karnataka’s Department of Agriculture.

South Asia is one of the most vulnerable regions to climate change. Flooding and drought coupled with seasonal rainfall changes are predicted to devastate agriculture, with extreme heat already disrupting the growing season in India and other countries. Wheat production in India’s Indo-Gangetic Plains may decrease by up to 50 percent by 2100, harming the hundreds of millions who rely on the region for food security. India also extracts more groundwater than any other country in the world to support agriculture, with northern India’s groundwater declining one meter every three years.

Karnataka faces these and other challenges, including production system constraints, mono-cropping and lack of access to markets, storage facilities, processing units and real-time information. Other constraints include large post-harvest losses, labor and energy shortages, poor mechanization and fodder scarcity.

J.V. Goud, Ex Vice Chancellor, UAS, Dharwad, described these challenges in his inaugural address and emphasized the need for sustainable agriculture practices to achieve food security in India.

“Courses like this help combat climate anomalies and make agriculture practices drought-proof,” said Goud. Sustainable practices have proven successful in addressing water shortages in agriculture. For example, trainees were introduced to precision land leveling, which can raise India’s wheat yields more than 16% and increase water productivity by 130%.

Training attendees. Photo: UAS-Dharwad
Training attendees. Photo: UAS-Dharwad

According to M.L. Jat, CIMMYT senior cropping systems agronomist and an expert in conservation agriculture (CA), “Climate-smart agriculture practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, This is backed up by ample data on conservation agriculture management practices throughout the region.”

Conservation agriculture is sustainable and profitable agriculture based on minimal soil disturbance, permanent soil cover and crop rotations. It is improving farmers’ livelihoods throughout South Asia and has led to policy-level impacts through the implementation of CA practices covered in the training, such as precision land leveling, zero tillage, direct seeding and crop residue management.

Trainees were taught how to operate a variety of CA machines, including multi-crop zero-tillage machines that can calibrate the amount of seed and fertilizer and control speed for seeding different crops. They also learned about other practices such as weed, nutrient and water management using precision support and sensors.

Scientists and researchers who imparted the training included Jat, CIMMYT agronomist H.S. Jat, CIMMYT hub manager S.G. Patil, CIMMYT consultant Yogesh Kumar Singh, Borlaug Institute for South Asia (BISA) senior research engineer H.S. Sidhu, BISA senior scientist R.K. Jat and Deputy Director of the International Plant Nutrition Institute’s India Program-South Zone, T. Satyanarayana.

 

Harnessing partnerships to build maize seed production and businesses in South Asia

HYDERABAD, INDIA — A training course on maize seed production and seed business management was organized by CIMMYT and seed companies Pioneer Hi-bred and Kaveri Seeds from 28-30 March, 2016. The training was held as part of the CIMMYT’s efforts to connect several public and private sector agricultural research institutions in South Asia.

South Asian farmlands have been increasingly experiencing climate change-related weather extremes. If current trends persist until 2050, major crop yields and the food production capacity of South Asia will decrease significantly – by 17 percent for maize – due to climate change-induced heat and water stress. In response to this situation, CIMMYT with support from the United States Agency for International Development and partners are developing heat stress-resilient maize for Asia.

Participants at DuPont Pioneer seed processing plant Dundigal Hyderabad. Photo: CIMMYT
Participants at DuPont Pioneer seed processing plant Dundigal Hyderabad. Photo: CIMMYT

The course aimed to strengthen the capacity of partner institutions – particularly small-and-medium enterprises and national agricultural research systems in South Asia –  to expand their maize seed production processes and increase uptake of heat-resilient maize hybrids in stress-prone areas.  More than 20 participants from partner institutions participated in the course including breeders, seed production specialists and seed business specialists from commercial seed companies, including Syngenta, DuPont Pioneer, Advanta, J.K. Seeds, CIMMYT and the International Crops Research Institute for the Semi-Arid Tropics.

“Public-private alliances are critical to address complex issues such as heat stress and the development and deployment of heat stress-resilient maize in different regions of South Asia,” said P.H. Zaidi, CIMMYT’s Heat Stress Tolerant Maize for Asia (HTMA) project leader and senior maize physiologist. Zaidi also presented HTMA updates and listed the first variety releases licensed in 2015 to various partners for deployment.

Selvarajan Venkatesh, DuPont Pioneer senior maize breeder, gave a talk on commercial plant breeding and its business perspective with respect to sustainability and foundation for global food security. Venkatesh elaborated on how modern sophisticated hi-tech tools and interactions with multidisciplinary departments changed the face of present plant breeding. Nagesh Patne, CIMMYT seed system project Scientist, discussed the importance of seed production research and the optimization process of the cost of goods of seeds. Various aspects of plant characterization for seed production feasibility were also discussed during this meeting.

Participants learn about large-scale commercial seed production a during a visit to Kaveri Seeds Pvt. Ltd in Jiyanpur.  Photo: CIMMYT
Participants learn about large-scale commercial seed production a during a visit to Kaveri Seeds Pvt. Ltd in Jiyanpur. Photo: CIMMYT

Other topics including maintenance breeding, production workflow, hybrid seed production, post-harvest management of seed lots and seed quality control were also discussed at the training. Presenters included A.R. Sadananda, CIMMYT, Satish Hegde, Advanta Seeds Pvt. Ltd., Ramana Rao, G.K. Seeds, S. Sudhakar Reddy, Field Crops Lead, Advanta India and R. Nanda Kumar, product quality and control manager with Syngenta India.

 

receive newsletter