Skip to main content

Location: China

At 50-year mark, CIMMYT scientists strive for gender equity

Image designed by Gerardo Mejia/CIMMYT
Image designed by Gerardo Mejia/CIMMYT

This story is one in a series of features written during CIMMYT’s 50th anniversary year to highlight significant advancements in maize and wheat research between 1966 and 2016.

EL BATAN, Mexico (CIMMYT) – The International Maize and Wheat Improvement Center (CIMMYT) stepped onto the global stage during the “Swinging Sixties.” The decade was defined by social upheaval dominated by left-right political tensions provoked in large measure by Cold War rivalries between the United States and the former Soviet Union.

It was 1966 when Mexico’s Office of Special Studies, formed in the 1940s as an agency of the country’s Ministry of Agriculture and Livestock in partnership with the Rockefeller Foundation to improve bean, maize, potatoes and wheat crops, became CIMMYT.

That same year, civil war exploded in Chad, China’s cultural revolution began, Indira Gandhi became India’s first woman prime minister and musician John Lennon met his future wife Yoko Ono. In the United States, the feminist National Organization for Women (NOW) was formed. Throughout the decade, as the Vietnam War rumbled and more than 30 countries declared independence in Africa, women in many developing countries struggled to gain basic human rights, including the chance to vote.

In wealthy western nations, the “Women’s Liberation Movement,” ultimately known as second-wave feminism, emerged, supplanting women’s suffrage movements and deepening debates over women’s rights.

At CIMMYT, efforts to meet agricultural needs of women farmers and those in charge of nutritional wellbeing within the household to bolster global food security took shape.

Women make up 43 percent of the agricultural labor force in developing countries, according to the U.N. Food and Agriculture Organization (FAO). However, rural women suffer systematic discrimination with regard to their ability to access resources for agricultural production and socio-economic development.

Now referred to as “gender issues” and “gender relations,” debates over how to address inequity on farms and in the workplace are ongoing at CIMMYT. Rather than focusing specifically on women’s rights, gender studies focus on how notions of women or men are determined through characteristics societies attribute to each sex. Gender relations consider how a given society defines rights, responsibilities, identities and relationships between men and women.

As staple foods, maize and wheat provide vital nutrients and health benefits, making up close to one-quarter of the world’s daily energy intake, and contributing 27 percent of the total calories in the diets of people living in developing countries, according to FAO.

Globally, if women had the same access to agricultural production resources as men, they could increase crop yields by up to 30 percent, which would raise total agricultural output in developing countries by as much as 4 percent, reducing the number of hungry people by up to 150 million or 17 percent, FAO statistics show.

SCIENTIFIC CONTRIBUTIONS

From the outset, women scientists played a key role as maize and wheat researchers at CIMMYT.

Evangelina Villegas, who in 2000 became the first woman to win the World Food Prize, joined CIMMYT in 1967. She shared the prestigious award with CIMMYT colleague Surinder Vasal for efforts and achievements in breeding and advancing quality protein maize to improve productivity and nutrition in malnourished and impoverished areas worldwide.

Maize scientist Marianne Bänziger joined CIMMYT in 1992. When she was transferred to Zimbabwe in 1996 to lead the Southern African Drought and Low Soil Fertility Project (SADLF), she became the first woman scientist at CIMMYT posted to a regional office.

“In the good old days, women scientists were considered an oddity – women were considered something special, even though a scientist like Eva Villegas was very well integrated into CIMMYT,” said Bänziger, who now serves as CIMMYT’s deputy director general.

Bänziger’s work was centered on eastern and southern Africa, where the livelihoods of about 25 million people depend directly on agriculture and maize is the staple crop of choice. Drought and poor soil quality often erode food security and increase socio-economic pressures in the region.

Bänziger became known as “Mama Mahindi,” Swahili for “Mother Maize,” for her work developing stress-tolerant maize and for fostering the widespread access of seed producers and farmers to improved drought-tolerant maize now grown by at least 2 million households.

Denise Costich manages the world’s biggest maize gene bank at CIMMYT headquarters near Mexico City. She joined CIMMYT to work closely with farmers. She now holds farmer field days to help improve seed distribution. Her aims include understanding how best to move genetic resources from gene bank to field through breeding, so they become products that help improve food security.

“I was always encouraged to go as far as I could,” Costich said. “The way I prove that women can be scientists is by being a scientist. Let me get out there and do what I can do and not spend a lot of time talking about it.”

Wheat physiologist Gemma Molero spent two years inventing a hand-held tool for measuring spike photosynthesis, an important part of the strategy for developing a high-yielding plant ideotype. Now, Bayer Crop Science is interested in joining a collaborative project with CIMMYT, which will focus around use of the new technology.

Wheat scientist Carolina Saint Pierre has made important contributions towards obtaining the first permits for growing genetically modified wheat in open field trials in Mexico. The trials have allowed the identification of best-performing genetically modified wheat under water stress and helped understand the genetic control of physiological mechanisms related to drought.

WORKPLACE EQUITY

Despite a daycare at headquarters and other efforts to encourage gender equity, women scientists at CIMMYT continue to face different burdens than men in maintaining a work-life balance.

“Whether you are a western woman in a white-collar job worrying about a daycare or a woman farmer in a developing country worrying about her aging parents, women have a different level of responsibility,” said Jenny Nelson, manager of the Global Wheat Program.

A lot of women drop out of agricultural science after earning their doctoral degrees once they have a family, said Costich, acknowledging a challenge many women working in agricultural science face related to long hours and travel requirements.

“As a young woman I have to work very hard – I have to work even harder than men in the field to demonstrate my abilities and gain respect,” Molero said.

Overall, economists concur that gender inequity and social disparities have a negative impact on economic growth, development, food security and nutrition.

Through various projects, CIMMYT aims to address the challenges of gender equity to improve development potential. For example, CIMMYT researchers are among the leaders of a global push to encode gender into agricultural research in tandem with other international research partnerships.

In more than 125 agricultural communities in 26 countries, a field study of gender norms and agricultural innovation, known as “Gennovate,” is underway. The aim is to help spur a transformation in the way gender is included in agricultural research for development. Gennovate focuses on understanding how gender norms influence the ability of people to access, try out, adopt or adapt new agricultural technology.

Learning partnerships turn research into results for Mexican agriculture

“CIMMYT is famous for helping farmers all over the world, but what fewer people know is that they also help Mexican researchers and students who will become the next generation of researchers through the courses and workshops they offer,” said Alejandro Ledesma, maize researcher at Mexico’s National Forestry, Agricultural and Livestock Research Institute (INIFAP). Above, Ledesma (L), receives certificate from CIMMYT Director General Martin Kropff, Juan Burgueño Ferreira, Head of CIMMYT’s Biometrics and Statistics Unit, and Kevin Pixley, Head of the Genetic Resources Program at a course on statistical analysis of genetic and phenotypic data for breeders held at CIMMYT. Photo: CIMMYT

The Seeds of Discovery (SeeD) project seeks to empower the next generation of Mexican scientists to use maize and wheat biodiversity to effectively meet the needs of Mexican agriculture in the future. By providing professional agricultural research and development opportunities for current and future maize and wheat scientists, SeeD works to ensure that the materials they develop will reach those who need it most. For this reason, SeeD is developing a platform of publicly available data and software tools that enable the efficient use of maize and wheat genetic resources. These genetic resources, or biodiversity, include more than 28,000 maize and 140,000 wheat samples, known as accessions, that are conserved in CIMMYT’s seed bank and available to researchers worldwide.

Genetic resources are the raw materials or building blocks used to develop new maize and wheat varieties needed to meet the demands of a growing population in a changing climate. Many of these maize and wheat accessions contain positive traits such as drought tolerance or disease resistance, which if bred into new varieties  have the potential to improve food security and livelihoods in countries such as Mexico in the global south.

However, the specific potential impact of SeeD on Mexican agriculture and society will only be realized if breeders and scientists effectively use the products resulting from the project. By inviting researchers, professors and students to participate in workshops, training courses and diverse research projects, a growing cadre of scientists is learning how to use the databases and software tools developed by SeeD and validating their utility.

Cynthia Ortiz places DNA samples into a thermal cycler in the CIMMYT Biosciences laboratory. Photo: Jennifer Johnson

“Sharing the knowledge generated by SeeD and making it available to the scientific community will help accelerate the development of new varieties that will benefit long-term food security in Mexico and the world,” said Cynthia Ortiz, a graduate student in biotechnology at the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) in Mexico City.

Ortiz is conducting research for her Master of Science thesis mentored by SeeD scientist Sukhwinder Singh, who is helping her map the quantitative trait loci (QTL) for phenological and grain yield-related traits in wheat varieties created by crossing synthetic wheat varieties with elite lines. She has participated in two SeeD workshops focusing on wheat phenotyping for heat, drought and yield as well as on the use of the maize and wheat molecular atlas, where she learned to use SeeD software such as Flapjack and CurlyWhirly to visualize the results of genetic diversity analyses.

“The materials SeeD has developed have opened the door for identifying genetic resources with positive traits such as heat and drought tolerance, or resistance to pests and diseases that affect crops all over the world,” Ortiz said. “And the best part is that at the same time, they have sought to protect the genetic diversity of these crops, using the native biodiversity we have in Mexico and the world to confront the challenge of ensuring food security.”

David Gonzalez, a recent graduate of the Chapingo Autonomous University in Texcoco, a city about 30 km (20 miles) from Mexico City, agrees. He worked with SeeD scientists Sarah Hearne and Terence Molnar on his Master of Science thesis, identifying genetic resources with resistance to the maize leaf disease “tar spot complex” (TSC) by using genome-wide association study (GWAS) and genomic selection.

David Gonzalez (L) scores maize plants for signs of tar spot disease alongside SeeD scientist Terence Molnar (R) in the state of Chiapas, Mexico. Photo: Jennifer Johnson

“The software and databases SeeD develops for analyzing genotypic and phenotypic data are novel tools that can be used for research as well as academic purposes,” Gonzalez said. “They are a valuable resource that can be utilized by academic institutions to train students in genetic analysis.”

Gonzalez attended the CIMMYT training course “Technologies for Tropical Maize Improvement,” where he learned about new tools for field trial design, data analysis, doubled haploid technology, molecular markers, GWAS and genomic selection.

“This training, as well as the valuable help and support from CIMMYT scientists, really helped me develop myself professionally,” he said. “It was exciting to work with such an ambitious project, doing things that have never been done before to discover and utilize maize and wheat genetic diversity for the benefit of farmers. I look forward to using what I’ve learned in my future career to develop varieties that meet the needs of farmers in Latin America.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Learning partnerships turn research into results for Mexican agriculture

“CIMMYT is famous for helping farmers all over the world, but what fewer people know is that they also help Mexican researchers and students who will become the next generation of researchers through the courses and workshops they offer,” said Alejandro Ledesma, maize researcher at Mexico’s National Forestry, Agricultural and Livestock Research Institute (INIFAP). Above, Ledesma (L), receives certificate from CIMMYT Director General Martin Kropff, Juan Burgueño Ferreira, Head of CIMMYT’s Biometrics and Statistics Unit, and Kevin Pixley, Head of the Genetic Resources Program, at a course on statistical analysis of genetic and phenotypic data for breeders held at CIMMYT. Photo: CIMMYT
“CIMMYT is famous for helping farmers all over the world, but what fewer people know is that they also help Mexican researchers and students who will become the next generation of researchers through the courses and workshops they offer,” said Alejandro Ledesma, maize researcher at Mexico’s National Forestry, Agricultural and Livestock Research Institute (INIFAP). Above, Ledesma (L), receives certificate from CIMMYT Director General Martin Kropff, Juan Burgueño Ferreira, Head of CIMMYT’s Biometrics and Statistics Unit, and Kevin Pixley, Head of the Genetic Resources Program, at a course on statistical analysis of genetic and phenotypic data for breeders held at CIMMYT. Photo: CIMMYT

The Seeds of Discovery (SeeD) project seeks to empower the next generation of Mexican scientists to use maize and wheat biodiversity to effectively meet the needs of Mexican agriculture in the future. By providing professional agricultural research and development opportunities for current and future maize and wheat scientists, SeeD works to ensure that the materials they develop will reach those who need them most. For this reason, SeeD is developing a platform of publicly available data and software tools that enable the efficient use of maize and wheat genetic resources. These genetic resources, or biodiversity, include more than 28,000 maize and 140,000 wheat samples, known as accessions, that are conserved in CIMMYT’s seed bank and available to researchers worldwide.

Genetic resources are the raw materials or building blocks used to develop new maize and wheat varieties needed to meet the demands of a growing population in a changing climate. Many of these maize and wheat accessions contain positive traits such as drought tolerance or disease resistance, which, if bred into new varieties, have the potential to improve food security and livelihoods in countries such as Mexico in the global south.

However, the specific potential impact of SeeD on Mexican agriculture and society will only be realized if breeders and scientists effectively use the products resulting from the project. By inviting researchers, professors and students to participate in workshops, training courses and diverse research projects, a growing cadre of scientists is learning how to use the databases and software tools developed by SeeD and validating their utility.

Cynthia Ortiz places DNA samples into a thermal cycler in the CIMMYT Biosciences laboratory. Photo: CIMMYT/J. Johnson

“Sharing the knowledge generated by SeeD and making it available to the scientific community will help accelerate the development of new varieties that will benefit long-term food security in Mexico and the world,” said Cynthia Ortiz, a graduate student in biotechnology at the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV) in Mexico City.

Ortiz is conducting research for her Master of Science thesis mentored by SeeD scientist Sukhwinder Singh, who is helping her map the quantitative trait loci (QTL) for phenological and grain yield-related traits in wheat varieties created by crossing synthetic wheat varieties with elite lines. She has participated in two SeeD workshops focusing on wheat phenotyping for heat, drought and yield as well as on the use of the maize and wheat molecular atlas, where she learned to use SeeD software such as Flapjack and CurlyWhirly to visualize the results of genetic diversity analyses.

“The materials SeeD has developed have opened the door for identifying genetic resources with positive traits such as heat and drought tolerance, or resistance to pests and diseases that affect crops all over the world,” Ortiz said. “And the best part is that at the same time, they have sought to protect the genetic diversity of these crops, using the native biodiversity we have in Mexico and the world to confront the challenge of ensuring food security.”

David Gonzalez, a recent graduate of the Chapingo Autonomous University in Texcoco, a city about 30 km (20 miles) from Mexico City, agrees. He worked with SeeD scientists Sarah Hearne and Terence Molnar on his Master of Science thesis research, identifying genetic resources with resistance to the maize leaf disease “tar spot complex” (TSC) by using genome-wide association study (GWAS) and genomic selection.

David Gonzalez (L) scores maize plants for signs of tar spot disease alongside SeeD scientist Terence Molnar (R) in the state of Chiapas, Mexico. Photo: CIMMYT/J. Johnson

“The software and databases SeeD develops for analyzing genotypic and phenotypic data are novel tools that can be used for research as well as academic purposes,” Gonzalez said. “They are a valuable resource that can be utilized by academic institutions to train students in genetic analysis.”

Gonzalez attended the CIMMYT training course “Technologies for Tropical Maize Improvement,” where he learned about new tools for field trial design, data analysis, doubled haploid technology, molecular markers, GWAS and genomic selection.

“This training, as well as the valuable help and support from CIMMYT scientists, really helped me develop myself professionally,” he said. “It was exciting to work with such an ambitious project, doing things that have never been done before to discover and utilize maize and wheat genetic diversity for the benefit of farmers. I look forward to using what I’ve learned in my future career to develop varieties that meet the needs of farmers in Latin America.”

SeeD is a joint initiative of CIMMYT and the Mexican Ministry of Agriculture (SAGARPA) through the MasAgro project. SeeD receives additional funding from the CGIAR Research Programs on Maize (MAIZE CRP) and Wheat (WHEAT CRP), and from the UK’s Biotechnology and Biological Sciences Research Council (BBSRC).

Mobilizing gene bank biodiversity in the fight against climate change

Ancestors of modern wheat (R) in comparison with an ear of modern cultivated wheat (L). Photo: Thomas Lumpkin/CIMMYT.

In a world where the population is expected to reach 9 billion by the year 2050, grain production must increase to meet rising demand. This is especially true for bread wheat, which provides one-fifth of the total calories consumed by the world’s population. However, climate change threatens to derail global food security, as instances of extreme weather events and high temperatures reduce agricultural productivity and are increasing faster than agriculture can naturally adapt, leaving our future ability to feed the global population uncertain. How can we ensure crop production and food security for generations to come?

In order to continue feeding the planet, it is imperative that we identify crop varieties that display adaptive and quality traits such as drought and heat stress tolerance that will allow them to survive and flourish despite environmental stresses. For this reason, a recent study by Sehgal et al., “Exploring and mobilizing the gene bank biodiversity for wheat improvement,” was conducted to characterize wheat seed samples in the CIMMYT germplasm bank to identify useful variations for use in wheat breeding.

The study analyzed the genetic diversity of 1,423 bread wheat seed samples that represent major wheat production environments around the world, particularly regions that experience significant heat and drought. The tested samples included synthetic wheat varieties, which are novel bread wheat varieties created by making crosses between the progenitors of modern bread wheat, durum wheat and wild grassy ancestors; landraces, which are local varieties developed through centuries of farmer selection; and elite lines that have been selectively bred and adapted. The samples were analyzed through genotyping-by-sequencing, a rapid and cost-effective approach that allows for an in-depth, reliable estimate of genetic diversity.

The results of the study suggested that many of the tested landraces and synthetics have untapped, useful genetic variation that could be used to improve modern wheat varieties. When combined with elite wheat germplasm, this genetic variation will increase stress adaptation and quality traits as well as heat and drought tolerance, thus leading to new wheat varieties that can better survive under climate change. The study also found new genetic variation for vernalization, in which flowering is induced by exposure to cold, and for glutenin, a major wheat protein responsible for dough strength and elasticity. Based on the information generated by the study, over 200 of the diverse seed samples tested have been selected for use in breeding, since they contain new specific forms of genes conferring drought and heat stress tolerance. This new genetic diversity will help bread wheat breeding programs around the world create new varieties to feed the world’s growing population in a changing environment.

This research is part of CIMMYT’s ongoing Seeds of Discovery (SeeD) project, which is funded by the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, as well as the CGIAR Research Program on Wheat (WHEAT). SeeD works to unlock the genetic potential of maize and wheat genetic resources by providing breeders with a toolkit that enables their more targeted use in the development of better varieties that address future challenges, including those from climate change and a growing population.

To read the full study, please click here:

Citation:

Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Pierre CS, Payne T, et al. (2015) Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE 10(7): e0132112. doi:10.1371/journal.pone.0132112

Related Publications:

Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change (2015) Lopes, M.S., El-Basyoni, I., Baenziger, P.S., Sukhwinder-Singh, Royo, C., Ozbek, K., Aktas, H., Ozer, E., Ozdemir, F., Manickavelu, A., Ban, T., Vikram, P.

Coping with climate change: the roles of genetic resources for food and agriculture, Food and Agriculture Organization of the United Nations (FAO)

CIMMYT scientist receives award from China for wheat research

Award recipients (L-R) Minggang Xu, Shaokun Li, Ming Zhao, and Zhonghu He. Photo: CIMMYT
Award recipients (L-R) Minggang Xu, Shaokun Li, Ming Zhao, and Zhonghu He. Photo: CIMMYT

BEIJING, China (CIMMYT) – Top wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT) and other research institutions are the recipients of a prestigious award from China’s State Council.

Zhonghu He, distinguished scientist and country liaison officer in China, together with CIMMYT’s long-term collaborators from the Chinese Academy of Agricultural Science and agricultural science academies in seven provinces, received the award for developing high yielding, disease resistant, and broadly-adapted varieties from CIMMYT germplasm. China’s President Xi Jinping and Prime Minister Li KeQiang of the State Council attended the ceremony last week at the Great Hall of The People in Beijing.

“This award is the result of more than 30 years of CIMMYT-China collaboration, reflecting the importance of our work in the country” said He. The award recognized work leading to 18,000 CIMMYT wheat accessions stored in Chinese gene banks, adaptation of CIMMYT wheats to China through multi-locational trials and molecular markers, successful breeding for multiple resistance to rusts and powdery mildew based on adult plant resistance, the development and extension of 45 leading varieties derived from CIMMYT germplasm and the training of Chinese scientists. This success is also largely due to the long-term commitment of CIMMYT scientists such as Sanjaya Rajaram, Ravi Singh, and Javier Peña.

Wheat harvest in Songzanlinsi, Yunnan, China. Photo: R. Saltori
Wheat harvest in Songzanlinsi, Yunnan, China. Photo: R. Saltori

CIMMYT and China started collaborating in the early 1970s, shuttle breeding between Mexico and China to improve wheat disease resistance was initiated in the mid-1980s, and the CIMMYT-China Office was opened in 1997. More than 20 Chinese institutes have been involved in germplasm exchange and training.

Chinese wheat breeders have increasingly used CIMMYT breeding stocks to generate new wheat varieties, with CIMMYT germplasm contributing about 7 percent of the genetic material in Chinese wheat varieties during the past three decades and about 9 percent after 2004. More than 26 percent of all major wheat varieties released in China since 2000 contain CIMMYT germplasm, contributing to higher yield potential, rust resistance, and better quality wheat. Overall, 3.8 million to 10.7 million tons of added wheat grain worth between $ 1.2 billion and $ 3.4 billion (based on 2011 prices) have been produced as a result of CIMMYT germplasm, according to the “Impact of CIMMYT Wheat Germplasm on Wheat Productivity in China” authored by Jikun Huang and his colleagues at the Center for Chinese Agricultural Policy of the Chinese Academy of Science (CAS).

Cross-regional efforts produce a toolbar for direct seeding of maize

Cheap, light, versatile… and locally manufactured

Direct seeding of maize using a two-wheel tractor has been made possible over the past decade or so by manufacturing companies in China, India, and Brazil (among others) that produce commercially available seeders. Several of these seeders have been tested for the past two or three years in Ethiopia, Kenya, Tanzania, and Ethiopia under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian International Food Security Research Center (AIFSRC).

One of the best performing commercially available seeders (in terms of field capacity, precision in seed rate and planting depth, crop emergence, etc.) is manufactured by the Brazilian company Fitarelli. However, this seeder is expensive (above US$ 4,000), difficult to maneuver (especially in small fields), and lacks versatility (minimum row spacing is 80 cm).

In response, several initiatives have aimed at producing toolbar-based seeders to be manufactured locally and cheaply, that could be used in different configurations (to seed one, two, or more rows) and could perform other operations (such as forming planting beds). One such toolbar is the Gongli seeder, which is well suited to sow small grain crops such as wheat and rice in Asian fields, but not maize under typical field conditions in Africa. Two years ago, Jeff Esdaile, inventor of the original Gongli, and Joseph Mutua, from the Kenya Network for Dissemination of Agricultural Technologies, produced a modified version of the Gongli – the Gongli Africa + ­ thanks to funding from CRP MAIZE (as reported in Informa No. 1862). In parallel, another toolbar using a different design was produced by Jelle Van Loon and his Smart Mechanization/Machinery and Equipment Innovation team at CIMMYT-Mexico.

Both the Gongli Africa + and the Mexican toolbar have their strengths and their weaknesses. Both have also been judged as too heavy by local service providers. Thus, CRP MAIZE and the Syngenta Foundation for Sustainable Agriculture co-funded a two-week session (8-27 October) in Zimbabwe to develop a “hybrid toolbar” having the strengths of both the Gongli Africa + and the Mexican toolbar but weighing under 100 kg. Jeff Esdaile, Joseph Mutua, and Jelle Van Loon spent the entire two weeks manufacturing three prototypes of the hybrid at the University of Zimbabwe. The two-week session also served as hands-on training for staff of three of Zimbabwe’s major manufacturing companies of agricultural equipment (Zimplow LTD, Bain LTD, and Grownet LTD) as well as representatives of the informal sector.

The hybrid toolbar is expected to sell for a quarter of the price of a Fitarelli seeder, although its performance (in terms in term of field capacity, fuel consumption, precision, and crop emergence) is expected to be equivalent. Its weight suits the needs of local service providers better and it is infinitely more versatile (several configurations are possible depending on the desired row spacing, soil conditions, the amount of mulch, etc.). The hybrid toolbar will be thoroughly tested in Zimbabwe during the coming months. A prototype will be shipped to Bangladesh and another to Mexico for further testing and to share the design.

 

A Fitarelli seeder is good at establishing a maize crop under no-till conditions, but expensive, difficult to operate in small fields, and heavy. Photo: Frédéric Baudron

The first hybrid toolbar being tested at CIMMYT-Harare. It is cheap, easy to maneuver, light, and versatile. Three local companies and informal sector representatives have been trained to manufacture it locally. Photo: Frédéric Baudron

 

Agriculture can help the world meet climate change emission targets

Precision levelers are climate-smart machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil, rather than running off or collecting in uneven land. This allows much more efficient water use and saves energy through reduced irrigation pumping, compared to traditional land leveling which uses animal-powered scrapers and boards or tractors. It also facilitates uniformity in seed placement and reduces the loss of fertilizer from runoff, raising yields. (Photo: CIMMYT)
Precision levelers are climate-smart machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil, rather than running off or collecting in uneven land. This allows much more efficient water use and saves energy through reduced irrigation pumping, compared to traditional land leveling which uses animal-powered scrapers and boards or tractors. It also facilitates uniformity in seed placement and reduces the loss of fertilizer from runoff, raising yields. (Photo: CIMMYT)

As world leaders meet in Paris this week to agree on greenhouse gas emission targets, we in the field of agricultural research have a powerful contribution to make, by producing both robust estimates of the possible effects of climate change on food security, and realistic assessments of the options available or that could be developed to reduce agriculture’s contribution to greenhouse gas emissions.

Agriculture is estimated to be responsible for about a fifth of global greenhouse gas emissions, and this share is increasing most rapidly in many developing countries; it may even increase as fossil fuels become scarcer and phased out in other sectors.

The solution being put forward today is climate-smart agriculture (CSA), which involves three components: adaptation, mitigation, and increased productivity. Adaptation is essential to cope with the impacts that cannot be avoided and to maintain and increase the global food supply in the face of resource constraints; mitigation can lessen but not prevent future climate changes.

Though CSA has been held up as an answer to the challenges presented by climate change, some would argue that it is no more than a set of agricultural best practices. Indeed, this is what lies at the heart of the approach.

In addition to making agriculture more efficient and resilient, the overall purpose remains to sustainably increase farm productivity and profitability for farmers. This is why over the last few years we have begun talking about the ‘triple win’ of CSA: enhanced food security, adaptation, and mitigation. But those who dismiss CSA as mere best practice ignore the value of seeing through the climate change lens, and guiding research to respond to expected future challenges.

To begin with, crop performance simulation and modeling, in combination with experimentation, has an important role to play in developing CSA strategies for future climates.

In a publication titled “Adapting maize production to climate change in sub-Saharan Africa,” several CIMMYT scientists concluded that temperatures in sub-Saharan Africa will likely rise by 2.1°C by 2050 based on 19 climate change projections. This is anticipated to have an extreme impact for farmers in many environments. Because it takes a long time to develop and then deploy adaptation strategies on a large scale, they warned, there can be no delay in our work.

This explains why CIMMYT is taking the initiative in this area, seeking support to develop advanced international breeding platforms to address the difficulty of developing drought-tolerant wheat, or bringing massive quantities of drought- and heat-tolerant maize to farmers through private sector partners in Africa and Asia.

Our insights into the causes and impacts of climate change lead us to important research questions. For example, how can farmers adopt practices that reduce the greenhouse gas footprint of agriculture while improving yield and resilience?

Colleagues at CIMMYT have challenged the idea that the practice of no-till agriculture (which does not disturb the soil and allows organic matter to accumulate) contributes significantly to carbon sequestration. I think it is important that we, as scientists, explore the truth and be realistic about where opportunities for mitigation in agriculture lie, despite our desire to present major solutions. It is also important to take action where we can have the greatest impact, for example by improving the efficiency of nitrogen fertilizer use.

Nitrous oxide emissions from agriculture have a climate change potential almost 300 times greater than carbon dioxide, and account for about 7% of the total greenhouse gas emissions of China. Improved nutrient management could reduce agricultural greenhouse gas emissions by the equivalent of 325 Mt of carbon dioxide in 2030. Overall, supply-side efficiency measures could reduce total agricultural emissions by 30%.

Some practices, such as laser land leveling, fall into both the adaptation and mitigation categories. Preparing the land in this way increases yields while reducing irrigation costs, the amount of water used, nutrients leached into the environment, and emissions from diesel-powered irrigation pumps.

Findings such as this offer real hope of reducing the severity of climate change in the future, and help us build a case for more investment in critical areas of agricultural research.

For climate-smart agriculture, the challenge of feeding more people and reducing emissions and environmental impact is not a contradiction but a synergy. We are improving our ability to predict the challenges of climate change, and proving that it is possible to greatly reduce agricultural emissions and contribute to global emission goals.

To face challenges such as climate change, we need high quality multi-disciplinary science combined with approaches to address problems at the complex systems level. Since my involvement in early large-scale studies, such as Modeling the Impact of Climate Change on Rice Production in Asia (CABI/IRRI, 1993), I am pleased to see that so much progress has been made in this regard and encouraged that our research is contributing to greater awareness of this vital issue and solutions to address it.

CIMMYT scientist Ravi Singh receives honor for wheat genetics, breeding

15273920523_9dd77c5145_o
Distinguished scientist and wheat breeder Ravi Singh at the CIMMYT Toluca research station in Mexico in October 2014. CIMMYT/Julie Mollins

EL BATAN, Mexico (CIMMYT) – Scientist Ravi Singh has been named a Fellow of the American Association for the Advancement of Science (AAAS) this week for his “distinguished contributions to the field of agricultural research and development, particularly in wheat genetics, pathology and breeding.”

Singh, who leads wheat improvement and rust resistance research at the International Center for Maize and Wheat Improvement (CIMMYT), is among 347 members awarded the honor this year by the scientific organization AAAS, which also publishes the journal “Science.”

The fellows were honored due to their scientifically or socially distinguished efforts to advance science or its applications.

During more than 30 years at CIMMYT, Singh has made significant contributions to enhancing food security throughout the developing world. His work has led to the application of durable resistance to control fungal wheat rust diseases, which result in almost $3 billion in crop losses a year. As a result of this work, many farmers do not need to protect their crops with costly fungicides, boosting the potential for organic farming.

Singh’s research has shown that globally effective, durable resistance to leaf, yellow and stem rust fungi in wheat involves interactions of slow rusting genes that have additive effects and that the accumulation of four or five of these genes results in a level of resistance comparable to immunity.

His research group has identified 11 diverse slow rusting genes and discovered that some slow rusting genes confer partial resistance to multiple diseases. These include genes Lr34/Yr18/Sr57/Pm38Lr46/Yr29/Sr58/Pm39Lr67/Yr46/Sr55/Pm46 for leaf, yellow and stem rusts, and powdery mildew, respectively.

Singh was a co-investigator for research that led to the cloning of pleiotropic geneLr34, a landmark in understanding the genetic mechanism for slow rusting resistance that is conferred by a unique gene belonging to ABC (ATP Binding Cassette) transporter of PDR (Pleiotropic Drug Resistance) subfamily.

His research team have identified and designated 25 genes in wheat, including: Sr8bSr55Sr57 and Sr58 for stem rust resistance; Lr31Lr46Lr61Lr68 and Lr72 for leaf rust resistance; Yr18, Yr27, Yr28, Yr29, Yr30Yr31Yr46Yr54 and Yr60 for yellow rust resistance; Pm39 and Pm46 for powdery mildew resistance; Bdv1 for barley yellow dwarf virus tolerance; SuLr23 for suppression of leaf rust resistance; Sb1 for spot blotch resistance; and Ltn1Ltn2 and Ltn3 for leaf tip necrosis.

More recently, his research group identified various Quantitative Trait Loci that confer slow rusting resistance to stem rust including the highly virulent Ug99 stem rust race-group.

Singh was also part of the global research team that isolated the wheat gene Lr67, revealing how it hampers fungal pathogen growth through a novel mechanism. CIMMYT scientists created and field tested genetic mutations of Lr67, to pinpoint the gene’s exact location in the wheat genome.

CIMMYT-derived wheat cultivars with durable rust resistance cover more than 25 million hectares in the developing world, contributing billions of dollars through enhanced yield potential and yield savings in epidemic years.

Singh’s research team has also developed various widely grown current wheat varieties in various countries with enhanced grain yield potential of five to 15 percent combined with heat and drought tolerance and good processing quality.

More recently, the team also initiated breeding wheat with enhanced levels of grain zinc and iron concentration in grain, which are being tested in India and Pakistan to improve the nutrition of women and children with chronic micronutrient deficiency.

Singh has penned 200 peer reviewed journal articles, 26 book chapters/extension publications, 80 published symposia, and 212 symposia abstracts that he has authored and co-authored.

He has also received the “Outstanding CGIAR Scientist Award,” the 2015 China Friendship Award, and awards from China’s provincial governments in Sichuan, Yunnan and Xinjiang. He is a fellow of the American Society of Agronomy, Crop Science Society of America, American Phytopathological Society and the National Academy of Agricultural Sciences of India.

Singh and the other new AAAS fellows will be presented with an official certificate and a gold and blue rosette pin in February during the organization’s 2016 annual meeting in Washington, D.C.

New paths ahead for agricultural research

CIMMYT contributions are present in more than 26% of all major wheat varieties in China after 2000, according to a 2014 study by the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Science. (Photo: CIMMYT)
CIMMYT contributions are present in more than 26% of all major wheat varieties in China after 2000, according to a 2014 study by the Center for Chinese Agricultural Policy (CCAP) of the Chinese Academy of Science. (Photo: CIMMYT)

Since joining CIMMYT in June 2015, I’ve had the opportunity to learn first-hand the impact of its work around the world, and the appreciation for our work among our peers, partners, and friends.

For example, in China, three decades of partnership with CIMMYT have added $ 3.4 billion to wheat output, and Australia, a donor country, has benefited to the tune of A$ 30 million per year on an in-vestment in CIMMYT of just A$ 1 million. A recent study found that around $33 million invested in CGIAR wheat breeding yields $2-5 billion worldwide. When the devastating maize lethal necrosis disease broke out in eastern Africa in 2011, CIMMYT led a response to get resistant varieties in farmers’ fields within just four years.

Even from such few examples, it is clear that wherever CIMMYT is involved, we have a valuable and unique contribution to make.

There are many challenges to be addressed in the world, from insecurity and population movements to our changing climate. Fundamental to most is the issue of how we practice agriculture to sustainably feed the world, and maize and wheat rank among the most important crops for food security, responsible for 25% of global protein and calorie consumption. What is needed is sustained and increased investment in agricultural research, and organizations such as CIMMYT and its partners to carry it out.

The recently-adopted sustainable development goals respond to this need. Among them are the objectives of ending malnutrition by 2030, doubling the productivity and incomes of small-scale producers, especially women, introducing sustainable and resilient agricultural practices, and ensuring access to the world’s treasure of genetic diversity.

There is a clear consensus between CIMMYT’s work and global priorities identified at the highest level; the question is how we can use our partnerships to effectively mobilize resources in pursuit of these goals.

Traditional donors are rightly concerned about aid dependency, leading a call to move from aid to trade. In practice, this means working more closely with the agrifood sector to ensure that consumers always enjoy access to affordable, appropriate, safe, and nutritious food.
Another answer is that many of the poor no longer live in poor countries. Emerging economies are increasingly important partners in their own development, and in the development of other nations in similar circumstances.

Finally, there is always value in greater coordination and collaboration with new partners. Many development NGOs make extensive use of agricultural research, but too few are closely involved in it.

Agricultural research must be responsive to the needs of society, and can only be scaled out and sus-tained by governments, the private sector, and NGOs. Nonetheless, core funding for agricultural research is essential to the impacts it generates. Funding organizations themselves enable the employment of the brightest minds, development of effective institutional capacities, and the flexibility to engage in overlooked but essential research priorities.

In 2016, CIMMYT will celebrate its 50th anniversary. Fifty years of impact felt in farmers’ fields around the world, of continually expanding our research portfolio and collaboration with partners so that, to-day, CIMMYT is more prepared than ever before to respond to global needs. But it is not enough. New business models, strategies, and partnerships are needed for agricultural research to fulfill its promise to the world. The upcoming CIMMYT strategy for 2016-2030 will set out a framework for our future.

DG Martin Kropff’s 100 day perspective

OneCIMMYTMartin Kropff, CIMMYT Director General, emphasized CIMMYT’s achievements and new ways forward during a talk commemorating his first 100 days as DG, at CIMMYT headquarters in El Batбn, Mexico, on 20 October 2015.

After meeting 250 staff, partners and Board of Trustee members from around the world at Science Week 2015 and observing the organization in Mexico and several offices abroad, Kropff began initiating processes to frame a new strategy.

Globally, US$ 2.1 billion to US$ 5.7 billion are attributed annually to CGIAR wheat improvement. Thanks to CIMMYT support, 52,000 tons of drought tolerant maize seed were released in Africa in 2014. Kropff witnessed the work behind these impacts directly through his first 100 days of travel in China, India and Pakistan. In addition, he witnessed CIMMYT’s partnership with Australia at the International Wheat Conference and MasAgro’s success in collaborating with seed companies and farmers throughout Mexico.

“Institutional changes and strengthening internal processes will be key to realizing the success of our mission and fundraising goals to foster a healthy organizational culture,” Kropff stated during the talk.

Kropff emphasized that cuts in funding to CGIAR Research Programs are affecting all centers. “We must be more innovative, efficient, and donor-savvy than ever before,” he said. “The attention to food production that came after the 2008 food price crisis has shifted now to climate change, nutrition, and the refugee crisis. In response, a fundraising strategy for large initiatives will be implemented, targeting new donors and ways to reach them.

Kropff has been working with a team and management committee on a new strategy that will soon be finalized. “One CIMMYT’s” unifying vision and mission will emphasize scientific excellence, capacity building, and impact through partnerships. “In addition to getting better varieties to farmers faster,” Kropff said, “we are proposing the creation of a ‘CIMMYT Academy’ to consolidate training and capacity-building and bring in added research contributions from Ph.D. students of universities worldwide.”

He assured staff that CIMMYT would continue to adapt and foster innovative thinking to realize its vision of research-for-development on maize and wheat agrifood systems, thereby contributing to a world with less poverty, healthier and more prosperous people, more resilient ecosystems, and fewer global food crises.

Global conference underscores complex socio-economic role of wheat

plant-specimensSYDNEY, Australia, October 9 (CIMMYT) – A recent gathering of more than 600 international scientists highlighted the complexity of wheat as a crop and emphasized the key role wheat research plays in ensuring global food security now and in the future.

Specialist scientists and other members of the global wheat community attended two back-to-back wheat symposiums stretching over nine days from September 17 to 25 in Sydney, Australia. The first, a workshop hosted by the Borlaug Global Rust Initiative (BGRI), focused on Ug99 wheat rust disease. At the second, the five-day International Wheat Conference, which is held every five years, scientists dissected topics ranging from the intricate inner workings of the wheat genome to nutritional misrepresentations of wheat in the popular media.

Hans Braun, head of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Wheat Research Program, delivered a keynote presentation focused on new research, which shows that about 70 percent of spring bread and durum wheat varieties released in developing countries over the 20-year period between 1994 and 2014 were bred or are derived from wheat lines developed by scientists working for the CGIAR consortium of agricultural researchers. On a global basis, more than 60 percent of the released varieties are related to CIMMYT or International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm.

Benefits of CGIAR wheat improvement research, conducted mainly by CIMMYT and ICARDA, range from $2.8 billion to $3.8 billion a year, he said, highlighting the economic benefits of international collaboration in wheat improvement research.

“Investment in agricultural research pays a huge dividend,” said Martin Kropff, CIMMYT’s director general, during a keynote address. “Investment in public research is a ‘triple win,’ leading to more food and income for the rural poor, lower prices for the urban poor, and extra stability and income for farmers in developed donor countries such as Australia, where gains are tens of millions a year.”

Bram Govaerts, who heads sustainable intensification efforts for CIMMYT in Latin America and leads the MasAgro project, demonstrated how minimal soil disturbance, permanent soil cover, and crop rotation can simultaneously boost yields, increase profits and protect the environment. Under MasAgro, some 400,000 hectares have been planted using improved technologies and agronomic practices; more than 200,000 producers are involved, of which 21 percent are women.

Sanjaya Rajaram, former CIMMYT wheat program director and 2014 World Food Prize laureate, described how wheat production must increase from the current 700 million metric tons a year to 1 billion metric tons a year by 2050 in order to keep up with population growth. Wheat currently provides 20 percent of calories and 20 percent of protein in the global human diet, he said, adding that the world’s food supply also faces the threat of climate-change related global warming.

“To date, scientists have been unable to sufficiently increase yields to meet demand through hybridization,” Rajaram said. “It’s time to invest in biotechnology to ensure yields can provide nourishment for an ever-hungrier planet. Simultaneously, we must maintain balance in the food chain and restore depleted carbon in the soil. Such concerns as disease resilience, seed diversity, water management and micronutrient imbalance must also be tackled.”

Ethiopia-based CIMMYT scientist David Hodson provided a retrospective on 10 years of Ug99 stem rust surveillance, while Kenya-based CIMMYT scientist Sridhar Bhavani provided an overview of progress made in breeding durable adult plant resistance to rust diseases and combining rust resistance in high yielding backgrounds over the past decade.

The Ug99 virulent disease threatens food security as it creeps steadily from its origin in Uganda towards the breadbasket regions of Asia.

“Technology can help us fight Ug99 stem rust, but we’re always going to need good field pathologists and researchers on the ground,” said Hodson, who also runs the Rust Tracker website.

Despite efforts to develop wheat that is resistant to damaging stem, stripe, and leaf rusts, these diseases, which have existed for 10,000 years, will continue to thwart scientists, said Philip Pardey, a professor in the Department of Applied Economics at the University of Minnesota, adding that the annual global investment in wheat rust research should be $108 million a year in perpetuity.

Pardey determined in a recent study that global losses from all three rusts average at least 15.04 tons a year, equivalent to an average annual loss of about $2.9 billion.

Jessica Rutkoski, a quantitative geneticist who works as an adjunct associate scientist at CIMMYT and an assistant professor at Cornell University, discussed the implications of new technologies for more durable resistance to rust.

Wheat physiology was also under discussion, with CIMMYT physiologists Matthew Reynolds and Gemma Molero delivering presentations on phenotyping, pre-breeding strategies, genetic gains, and spike photosynthesis. Their work also involves the use of ancient landraces, which may hold the secret to creating wheat resilient to global warming caused by climate change.

CIMMYT’s Alexey Morgunov demonstrated how a number of ancient landrace genotypes grown by farmers in Turkey have shown signs that they are resistant to abiotic and biotic stresses, which could help in the development of heat and disease resistant wheat varieties.

CIMMYT’s Zhonghu He discussed progress on wheat production and genetic improvement in China, while Sukhwinder Singh described his work characterizing gene bank biodiversity and mobilizing useful genetic variation – pre-breeding – into elite breeding lines. Bhoja Basnet covered hybrid wheat breeding at CIMMYT.

A session on nutrition and wheat targeted some of the myths swirling around wheat and gluten. CIMMYT’s Velu Govindan gave an update on his research into breeding and delivering biofortified high zinc wheat varieties to farmers. Zinc deficiency limits childhood growth and decreases resistance to infections.

Kropff also delivered a keynote presentation on wheat and the role of gender in the developing world, which preceded the BGRI Women in Triticum Awards, presented by Jeanie Borlaug Laube, daughter of the late Nobel Peace Prize laureate and CIMMYT wheat breeder Norman Borlaug.

Kropff explained that each component of the strategy for research into wheat farming systems at CIMMYT includes a gender dimension, whether it is focused on improving the evidence base, responding to the fact that both women and men can be end users and beneficiaries of new seeds and other technologies, or ensuring that gender is considered part of capacity-building efforts.

Bekele Abeyo, CIMMYT wheat breeder and pathologist for sub-Saharan Africa, won a $100 prize in the BGRI poster competition for his poster explaining the performance of CIMMYT-derived wheat varieties in Ethiopia.

A team of Kenyan scientists were recognized for their contribution to the protection of the global wheat supply from Ug99 stem rust disease. Plant pathologist Ruth Wanyera and wheat breeders Godwin Macharia and Peter Njau of the Kenya Agriculture and Livestock Research Organization received the 2015 BGRI Gene Stewardship Award.

CIMMYT wheat breeder Ravi Singh wins China’s Friendship Award

Ravi_Award1EL BATAN, Mexico (CIMMYT) – Gains in China’s agricultural productivity over the past 30 years are due in large measure to smallholder farmers who have readily adopted innovative farming practices introduced by scientists, said a top wheat breeder during a speech at the country’s annual Friendship Awards.

Ravi Singh, a chief wheat breeder and distinguished scientist at the International Maize and Wheat Improvement Center (CIMMYT), was among 50 foreigners from 21 countries working in China, who received the prestigious award in Beijing last month in recognition of their contributions to China’s development.

“China is now the largest wheat producer in the world and continues to increase production and productivity while reducing the amount of land sown with wheat by about 20 percent – it’s a remarkable success story,” Singh said.

“I commend and salute the Chinese government for rigorously supporting agricultural research and development, and more importantly farmers, with transformative policies that were crucial to achieve goals.”

Singh’s key contributions to China’s agricultural development over the past 30 years involve sharing improved germplasm, knowledge about rust-disease resistance genetics and leading various types of training, including mentoring post-doctoral Ph.D. graduates as part of an agreement between CIMMYT and the Chinese government.

The Friendship Award, first established to recognize experts from the Soviet Bloc in the 1950s, abolished in the 1960s during the Cold War and reintroduced in the 1990s, is China’s highest award for foreign experts who have made outstanding contributions to the country’s economic and social progress. Since its reinstatement, 1,449 Friendship Awards have been conferred, according to the Xinhua news agency.

CIMMYT scientist Ravi Singh receives Friendship Award from China's Vice-Premier Ma Kai. CIMMYT/Handout
CIMMYT scientist Ravi Singh receives Friendship Award from China’s Vice-Premier Ma Kai. CIMMYT/Handout

“The new generation of well-trained Chinese scientists with access to modern laboratories and field facilities are well equipped to find innovative solutions to the challenge of feeding an ever-increasing global population,” Singh said, referring to U.N. projections that the current population of 7.3 billion will increase 33 percent to 9.7 billion by 2050.

“I feel deeply grateful and satisfied with the remarkable progress China has made in enhancing food productivity and incomes of millions of women and men small-scale farmers who embraced innovations and responded to the crucial responsibility of enhancing food production,” he added.

Currently, the country consumes almost 117 million tons of wheat a year and produces about 130 million tons of wheat a year, according to the Wheat Atlas. China, home to 1.4 billion people, is the most populated country in the world and represents 19 percent of the world’s population, the U.N. Department of Economic and Social Affairs reports.

Several CIMMYT scientists have received the China Friendship Award, including the 2014 World Food Prize laureate Sanjaya Rajaram, with whom Singh initiated his career at CIMMYT.

Additionally, Hans Braun, head of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, noted agronomist Thomas Lumpkin, CIMMYT’s director general from 2008 to 2015, and scientists Surindar Vasal, Jose Luis Araus and Ken Sayre have been honored with the Friendship Award in previous years. Vasal was jointly awarded the World Food Prize with Eva Villegas in 2000.

“The Chinese government and people will never forget the positive contribution that foreign experts have made to China’s development and progress,” said the country’s Vice Premier Ma Kai at the 2015 Friendship Award ceremony.

Singh has also received three provincial friendship awards from China.

Martin Kropff visits China

Martin Kropff made his first official visit to China as CIMMYT Director General from 28 August to 1 September. He was accompanied by his wife and by Thomas Lumpkin, CIMMYT’s former DG. Major activities included meeting with Jiayang Li, President of the Chinese Academy of Agricultural Sciences (CAAS), and visiting the potential site for a new China-CIMMYT center in Tongzhou, located an hour’s drive from CAAS headquarters. Kropff also met with Jiangguo Zhang, Vice-Minister and Administrator of the State Administration of Foreign Expert Affairs (SAFEA), and officially presented a statue of Norman Borlaug to him in recognition of SAFEA and Jiangguo Zhang’s personal support for the CIMMYT-China collaboration.

The visitors from CIMMYT also had a fruitful discussion with the China Scholarship Council (SCC), which has sponsored 18 visiting scientists at CIMMYT. Liu Jinghui, SCC Secretary General, was very impressed with CIMMYT’s impact both worldwide and in China and agreed to increase the allowance of visiting scientists and postgraduate students from US$ 900 per month to US$ 1400 at CIMMYT HQ and all regional offices. Each year, SCC will offer more than 10 scholarships, ranging from 12 to 24 months, to train at CIMMYT. A memorandum of understanding between CIMMYT and SCC will be signed soon. In addition to these activities, Kropff visited China’s National Nature Science Foundation and met with CIMMYT Board Member Feng Feng.

Kropff also visited the CIMMYT office at CAAS and attended presentations by CIMMYT staff stationed at four locations. He mentioned that he will continue the work Tom Lumpkin did in China, which is the reason they decided to travel together. Maize and wheat are, respectively, the first and third leading crop in China. CIMMYT has worked with China for over 35 years; it opened its China office in 1997 and will continue to expand its collaboration.

Zero-till wheat raises farmers’ incomes in eastern India, research shows

Farmer-with-wheat-harvest
Photo Credit: Vinaynath Reddy / CIMMYT

In a study published last month in Food Security, CIMMYT researchers reported that wheat farmers’ total annual income increased by 6% on average with the introduction of zero tillage (ZT) in Bihar.

While studies done in the past in the eastern Indo-Gangetic Plains (IGP) have shown ZT impacts in field trials or controlled environments, this research is believed to be the first that studied actual impacts in farmers’ fields in eastern India.

ZT allows direct planting of wheat without plowing, sowing seeds directly into residues of the previous crop on the soil surface, thus saving irrigation water, increasing soil organic matter and suppressing weeds.

“We found that the prevailing ZT practice, without full residue retention, used by farmers in Bihar has led to an average yield gain of 498 kilogram per hectare (19%) over conventional tillage wheat, which is in contrast to the results of a recent global meta-analysis” says Alwin Keil, Senior Agricultural Economist, CIMMYT and the lead author of this study.

The global meta-analysis published last year compared crop yields in ZT and conventionally tilled production systems across 48 crops in 63 countries. It reported that ZT is only profitable in rainfed systems and when it is combined with full residue retention and crop rotation. “However, in Bihar, marginal and resource-poor farmers cannot afford to leave the full residue in the field as they use the rice straw to feed their livestock,” says Keil.

According to Keil, the divergent findings of the meta-analysis may be caused by the fact that most of the reviewed studies were conducted in moderate climatic zones (U.S., Canada, Europe, China) and results were aggregated across various crops.

Bringing a Wheat Revolution to Eastern India

Compared to the prosperous northwestern states, the eastern IGP is characterized by pervasive poverty and high population density, and its resource-poor farmers are more prone to the risks of climate change. Bihar has the lowest wheat yields in the IGP with an average of 2.14 tons per hectare.

To feed a growing wheat-consuming population, Bihar currently imports wheat largely from Punjab, where yields have stagnated over the last five years due to an over-exploitation of resources, especially water.

While ZT is widespread on the mechanized farms of Punjab and Haryana, seat of the first Green Revolution in India, farmers in the eastern IGP are yet to benefit. “There is also evidence that the positive effect of ZT is larger in areas with low agricultural productivity (generally low yields, such as Bihar) than in areas with higher productivity (such as Punjab, for instance),” remarks Keil.

Increasing Access among Smallholders

The study concludes that ZT users reap substantial benefits, and that this technology could help close the growing yield gap between production and consumption of wheat in Bihar. A 19% yield increase would translate into a production increase of 950,000 MT, which exceeds the total wheat imports into Bihar (868,000 MT in 2011).

However, with low ownership of tractors and ZT drills, large-scale adoption of ZT in eastern India hinges on an expansion of the network of service providers, who can custom-hire these kinds of services to smallholder farmers.

With public and private sector partners, the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) has supported the development of ZT service providers among tractor owners by facilitating the purchase of ZT drills and providing technical trainings and know-how since 2009. Consequently, the number of ZT service providers in Bihar increased from 17 in 2011 to 1,624 in 2014, servicing a total of approximately 44,700 acres.

“Furthermore, we found that only 32% of non-users of ZT in our sample were aware of the technology. Hence, increasing the number of service providers to enhance farmers’ access to ZT has to go hand-in-hand with large-scale information campaigns to raise their awareness of the technology,” says Keil.

Sustainable intensification in China: doing more with less

Transplanting rice seedlings into ZT wheat stubble in Litong, China. Photo: Yuan Hanmin

As part of CIMMYT’s ongoing collaboration with the Ningxia Academy of Agriculture and Forestry Sciences and the building of an innovation platform there, we have refurbished our site and undertaken a number of trials that reflect the concepts of sustainable intensification, which increases food production from existing farmland while minimizing pressure on the environment.

The site at Litong just outside the city of Wuzhong in Ningxia Province has been modified and now boasts a paved parking area, all-weather access roads and field paths, and an array of signage that explains CIMMYT’s activities and the history of conservation agriculture undertaken by CIMMYT-China in this part of the country.

Zero-till rice transplanting

On the left, an irrigated ZT field; on the right, a conventionally prepared field (yet to be irrigated), 35 days after transplanting. Photo: Jack McHugh/CIMMYT
On the left, an irrigated ZT field; on the right, a conventionally prepared field (yet to be irrigated), 35 days after transplanting.
Photo: Jack McHugh/CIMMYT

CIMMYT recently tested a zero-tillage (ZT) rice transplanting operation with a 9 row transplanter from Jiangsu province. The idea came from viewing a short video taken some years ago of a conventional transplanter being used under ZT conditions in Bangladesh. In Ningxia, recently harvested wheat fields were irrigated and rice seedlings were planted into standing wheat stubble without any further modification to the planter. In contrast, rice was conventionally transplanted in an adjacent field, which required two days of field preparation including inversion plowing, leveling and puddling at an extra cost of USD $375 per hectare.

Zero-till rice transplanting not only saves time, labor and fuel, but also minimizes soil disturbance, maximizes residue retention, and mitigates moisture and nutrient loss. Results from these trials will demonstrate the effectiveness of transplanting rice into ZT winter wheat standing stubble.

Relay and intercropping

Monocropping farming systems are predominant in Ningxia, with the same crop planted year after year. The region has very cold winters and short summers, but with the use of short season varieties and relay cropping, double-cropping and crop rotations can be realized in the region. Double-cropping is a form of sequential cropping in which two crops are grown in sequence within a year on a piece of land by seeding or transplanting one before or after harvesting the other.

Winter wheat and peanut intercropping followed by relay-cropping maize into immature winter wheat. Photo: Jack McHugh/CIMMYT
Winter wheat and peanut intercropping followed by relay-cropping maize into immature winter wheat.
Photo: Jack McHugh/CIMMYT

To that end, five maize cultivars were relay-planted into winter wheat on 17 June, around two weeks before harvest; the plot was previously intercropped with 24 peanut varieties. The advanced winter wheat lines were harvested in late June and yielded quite well for the region. We expect to harvest the maize from late September to early October 2015.

Zero-till and early maturing grain crops are key to double-cropping in the region; however, the current wheat variety – Ningdong 11 – is late in maturing. Next year, the earlier maturing Ningdong 10 will be used, with emphasis on residue retention and increased stubble height during harvest, before seeding maize directly and/or transplanting rice. However, the current Chinese-made Turbo Happy Seeders will need to be modified to cope with the rougher soil surfaces encountered under ZT to ensure better seeding depth control.