Zhuang Qiaosheng (center) receives CIMMYT delegations in Beijing in 1997. (Photo: CIMMYT)
Zhuang Qiaosheng passed away in Beijing on May 8, 2022, at the age of 105. He was the most celebrated wheat breeder in China and enjoyed a high reputation in the international community.
As a leader of Wheat Breeding Program at Chinese Academy of Agricultural Sciences (CAAS), Zhuang developed 20 high-yielding and disease-resistant winter wheat varieties from 1947 to 1995, with a total planting area of 28 million hectares in achieving notable yield increase.
Zhuang served as a member of the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) from 1984 to 1987. He made great contributions to the collaboration between CIMMYT and China, including the opening of the CIMMYT office in China and the establishment of a shuttle breeding project for improving scab resistance.
Zhuang Qiaosheng (center) with Sanjaya Rajaram (left) and Tom Lumpkin in Beijing in 2017. (Photo: CIMMYT)
He did everything possible to enlarge CIMMYT activities in China before fully retiring in 2015.
He was a close friend to many CIMMYT staff, including the late distinguished scientist Sanjaya Rajaram. He also strongly recommended He Zhonghu, distinguished scientist and CIMMYT Country Representative for China, to work at CIMMYT as a postdoctoral fellow in 1990.
The CIMMYT community sends its deepest condolences to the Zhuang family.
As wheat blast continues to infect crops in countries around the world, researchers are seeking ways to stop its spread. The disease — caused by the Magnaporthe oryzae pathotype Triticum — can dramatically reduce crop yields, and hinder food and economic security in the regions in which it has taken hold.
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other international institutions looked into the potential for wheat blast to spread, and surveys existing tactics used to combat it. According to them, a combination of methods — including using and promoting resistant varieties, using fungicides, and deploying strategic agricultural practices — has the best chance to stem the disease.
The disease was originally identified in Brazil in 1985. Since then, it has spread to several other countries in South America, including Argentina, Bolivia and Paraguay. During the 1990s, wheat blast impacted as many as three million hectares in the region. It continues to pose a threat.
Through international grain trade, wheat blast was introduced to Bangladesh in 2016. The disease has impacted around 15,000 hectares of land in the country and reduced average yields by as much as 51% in infected fields.
Because the fungus’ spores can travel on the wind, it could spread to neighboring countries, such as China, India, Nepal and Pakistan — countries in which wheat provides food and jobs for billions of people. The disease can also spread to other locales via international trade, as was the case in Bangladesh.
“The disease, in the first three decades, was spreading slowly, but in the last four or five years its pace has picked up and made two intercontinental jumps,” said Pawan Singh, CIMMYT’s head of wheat pathology, and one of the authors of the recent paper.
In the last four decades, wheat blast has appeared in South America, Asia an Africa. (Video: Alfonso Cortés/CIMMYT)
The good fight
Infected seeds are the most likely vector when it comes to the disease spreading over long distances, like onto other continents. As such, one of the key wheat blast mitigation strategies is in the hands of the world’s governments. The paper recommends quarantining potentially infected grain and seeds before they enter a new jurisdiction.
Governments can also create wheat “holidays”, which functionally ban cultivation of wheat in farms near regions where the disease has taken hold. Ideally, this would keep infectable crops out of the reach of wheat blast’s airborne and wind-flung spores. In 2017, India banned wheat cultivation within five kilometers of Bangladesh’s border, for instance. The paper also recommends that other crops — such as legumes and oilseed — that cannot be infected by the wheat blast pathogen be grown in these areas instead, to protect the farmers’ livelihoods.
Other tactics involve partnerships between researchers and agricultural workers. For instance, early warning systems for wheat blast prediction have been developed and are being implemented in Bangladesh and Brazil. Using weather data, these systems alert farmers when the conditions are ideal for a wheat blast outbreak.
Researchers are also hunting for wheat varieties that are resistant to the disease. Currently, no varieties are fully immune, but a few do show promise and can partially resist the ailment depending upon the disease pressure. Many of these resistant varieties have the CIMMYT genotype Milan in their pedigree.
“But the resistance is still limited. It is still quite narrow, basically one single gene,” Xinyao He, one of the co-authors of the paper said, adding that identifying new resistant genes and incorporating them into breeding programs could help reduce wheat blast’s impact.
Wheat spikes damaged by wheat blast. (Photo: Xinyao He/CIMMYT)
The more the merrier
Other methods outlined in the paper directly involve farmers. However, some of these might be more economically or practically feasible than others, particularly for small-scale farmers in developing countries. Wheat blast thrives in warm, humid climates, so farmers can adjust their planting date so the wheat flowers when the weather is drier and cooler. This method is relatively easy and low-cost.
The research also recommends that farmers rotate crops, alternating between wheat and other plants wheat blast cannot infect, so the disease will not carry over from one year to the next. Farmers should also destroy or remove crop residues, which may contain wheat blast spores. Adding various minerals to the soil, such as silicon, magnesium, and calcium, can also help the plants fend off the fungus. Another option is induced resistance, applying chemicals to the plants such as jasmonic acid and ethylene that trigger its natural resistance, much like a vaccine, Singh said.
Currently, fungicide use, including the treatment of seeds with the compounds, is common practice to protect crops from wheat blast. While this has proven to be somewhat effective, it adds additional costs which can be hard for small-scale farmers to swallow. Furthermore, the pathogen evolves to survive these fungicides. As the fungus changes, it can also gain the ability to overcome resistant crop varieties. The paper notes that rotating fungicides or developing new ones — as well as identifying and deploying more resistant genes within the wheat — can help address this issue.
However, combining some of these efforts in tandem could have a marked benefit in the fight against wheat blast. For instance, according to Singh, using resistant wheat varieties, fungicides, and quarantine measures together could be a time-, labor-, and cost-effective way for small-scale farmers in developing nations to safeguard their crops and livelihoods.
“Multiple approaches need to be taken to manage wheat blast,” he said.
CIMMYT and JAAS representatives signed the agreement to establish a screening facility for Fusarium head blight in Nanjing, China.
The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Center for Agriculture in the Dry Areas (ICARDA), recently announced a partnership with the Jiangsu Academy of Agricultural Sciences (JAAS) in China to open a new screening facility for the deadly and fast-spreading fungal wheat disease Fusarium head blight, or FHB.
The new facility, based near the JAAS headquarters in Nanjing, aims to capitalize on CIMMYT’s world-class collection of disease-resistant wheat materials and the diversity of the more than 150,000 wheat germplasm in its Wheat Germplasm Bank to identify and characterize genetics of sources of resistance to FHB and, ultimately, develop new FHB-resistant wheat varieties that can be sown in vulnerable areas around the world.
“The participation of JAAS in the global FHB breeding network will significantly contribute to the development of elite germplasm with good FHB resistance,” said Pawan Singh, head of wheat pathology for CIMMYT.
“We expect that in 5 to 7 years, promising lines with FHB resistance will be available for deployment by both CIMMYT and China to vulnerable farmers, thanks to this new station.”
Fusarium head blight is one of the most dangerous wheat diseases. It can cause up to 50% yield loss and produce severe mycotoxin contamination in food and feed, which affects farmers in the form of increased health care and veterinary care costs, and reduced livestock production.
Even consuming low to moderate amounts of Fusarium mycotoxins may impair intestinal health, immune function and fitness. Deoxynivalenol (DON), a mycotoxin the fungus inducing FHB produces, has been linked to symptoms including nausea, vomiting, and diarrhea. In livestock, Fusarium mycotoxin consumption exacerbates infections with parasites, bacteria and viruses — such as occidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry and swine respiratory disease.
In China, the world’s largest wheat producer, Fusarium head blight is the most important biotic constraint to production.
The disease is extending quickly beyond its traditionally vulnerable wheat growing areas in East Asia, North America, the southern cone of South America, Europe and South Africa — partly as a result of global warming, and partly due to otherwise beneficial, soil-conserving farming practices such as wheat-maize rotation and reduced tillage.
“Through CIMMYT’s connections with national agricultural research systems in developing countries, we can create a global impact for JAAS research, reaching the countries that are expected to be affected the expansion of FHB epidemic area,” said Xu Zhang, head of Triticeae crops research group at the Institute of Food Crops of the Jiangsu Academy of Agricultural Sciences.
The new collaborative effort will target Fusarium head blight research but could potentially expand to research on other wheat diseases as well. Wheat blast, for example, is a devastating disease that spread from South America to Bangladesh in 2016. Considering the geographical closeness of Bangladesh and China, a collaboration with CIMMYT, as one of the leading institutes working on wheat blast, could have a strong impact.
Although the platform is new, the two institutions have a longstanding relationship. The bilateral collaboration between JAAS and CIMMYT began in early 1980s with a shuttle breeding program between China and Mexico to speed up breeding for Fusarium head blight resistance. The two institutions also conducted extensive germplasm exchanges in the 1980s and 1990s, which helped CIMMYT improve resistance to Fusarium head blight, and helped JAAS improve wheat rust resistance.
Currently, JAAS and CIMMYT are working on Fusarium head blight under a project funded by the National Natural Science Foundation of China called “Elite and Durable Resistance to Wheat Fusarium Head Blight” that aims to deploy resistance genes/QTL in Chinese and CIMMYT germplasm and for use in wheat breeding.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.
ABOUT JAAS:
Jiangsu Academy of Agricultural Sciences (JAAS), a comprehensive agricultural research institution since 1931, strives to make agriculture more productive and sustainable through technology innovation. JAAS endeavors to carry out the Plan for Rural Vitalization Strategy and our innovation serves agriculture, farmers and the rural areas. JAAS provide more than 80% of new varieties, products and techniques in Jiangsu Province, teach farmers not only to increase yield and quality, but also to challenge conventional practices in pursuit of original ideas in agro-environment protection. For more information, visit home.jaas.ac.cn/.
The Improved Maize for Tropical Asia (IMTA) is employing modern maize breeding techniques to develop and deploy new, climate-resilient maize hybrids, including traits important for identified niche markets across tropical Asia.
Vice minister Qu (center) and his delegation stand for a group photo with CIMMYT’s leadership and Chinese students and scientists. (Photo: Gerardo Mejía/CIMMYT)
Qu Dongyu, China’s Vice Minister of Agriculture and Rural Affairs, and candidate for the position of Director-General of the Food and Agriculture Organization of the United Nations (FAO), visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) in Mexico on March 16, 2019. He had already visited CIMMYT in 2006.
Vice minister Qu was greeted by students and CIMMYT scientists from China, the director general, the deputy director general and members of the management team. Qu and his delegation learned about CIMMYT’s latest initiatives and toured the campus.
CIMMYT’s director general Martin Kropff explained the organization’s strategic focus on agri-food systems: “Our mandate is on maize and wheat but we think broadly. Our researchers use a systems approach and work on using these two crops to improve peoples’ livelihoods, which is our ultimate goal.”
Qu expressed his career-long efforts for integrating multi-disciplinary approaches to tackle global challenges and said that he was “happy to see CIMMYT combining breeding — for which CIMMYT is famous — with value-added approaches to bring together science, farmers and industry.”
With innovation and the end user playing key roles in the vice minister’s agenda, Qu enjoyed learning about the Excellence in Breeding Platform’s target product profiles work and two-way communication channels from innovation hubs in Mexico.
The director of CIMMYT’s Genetic Resources program, Kevin Pixley (third from left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Gerardo Mejía/CIMMYT)
During the visit, Qu was also introduced to CIMMYT’s small-scale machinery, which is used around the world to sustainably intensify production. CIMMYT often sources machines, such as seed planters and harvesters, from China to provide effective and efficient solutions that add tangible value for smallholders at an appropriate price point.
Bringing together advanced technology and inexpensive tools, CIMMYT pioneered the GreenSeeker, a handheld tool to advise farmers on the appropriate amount of nitrogen fertilizer to add to their crops. This tool gives farmers the double benefit of increased profitability and reduced negative environmental impacts. The director of CIMMYT’s Sustainable Intensification program, Bruno Gérard, showed a machine-mountable version of this tool, which could connect to a two-wheel tractor and automatically add the appropriate amount of fertilizer.
Gérard also explained CIMMYT’s efforts to develop mechanization as a service, pointing to the manual on developing mechanization service providers, jointly developed by CIMMYT and FAO: “Mechanization has the potential to improve environmental sustainability, farm productivity and reduce labor drudgery. If mechanization is to be adopted at scale and sustainably, in most cases it has to be provided through service provision to smallholder farmers.”
At the end of the visit, to underline the shared commitment to collaboration that began in the 1970s, Kropff and Qu signed a memorandum of understanding for the establishment of a China-CIMMYT joint laboratory for maize and wheat improvement.
CIMMYT’s director general Martin Kropff (left) and vice minister Qu Dongyu sign a memorandum of understanding for the establishment of a joint laboratory for maize and wheat improvement. (Photo: Gerardo Mejía/CIMMYT)
DNA is often referred to as the blueprint for life. It contains codes to make the proteins, molecules and cells essential for an organism’s growth and development. Over the last decade, scientists have been figuring out how specific sections of DNA in maize and wheat are associated with physical and genetic traits, such as grain size and drought resistance.
Quantitative geneticist Huihui Li with the International Maize and Wheat Improvement Center (CIMMYT) helps link this new genetic knowledge with traditional crop breeding, to speed up the development of improved maize and wheat varieties. Li’s research uses cutting-edge genomics, computational biology and statistical tools to turn data into useful information for plant breeders.
“Breeders always accumulate big amounts of data, most of the time they need efficient tools to mine the stories from this data. That’s part of our job in the Biometrics and Statistics Unit,” she explained.
Her research helps breeders more quickly and accurately predict which maize and wheat varieties in the CIMMYT gene bank have the traits they seek to create improved varieties. For example, if a plant breeder wanted to develop a hybrid maize variety with high protein levels and pest resistance, Li could help by identifying which parental varieties would have these traits.
It takes about ten years for crop breeders to develop a new hybrid. Removing some of the guesswork during the early stages of their experiments could reduce this time significantly. With increasing environmental pressures from climate change and population growth, releasing better crop varieties more quickly will be vital to ensure there is enough food in the future.
Li says her family and experience growing up in China greatly influenced her career choice.
“Through my grandfather’s experience as the head of the Bureau of Agriculture and Forestry, I learned that there were many people in China suffering from hunger, poverty and malnutrition,” she said.
Li realized that these issues were prevalent throughout the developing world when her mother left China for two years to serve as a foreign aid doctor in Cameroon.
“As a ten-year-old girl, I told myself that I should make my contribution to reduce hunger and poverty, and improve human nutrition in the future,” Li recalled. “I always ask myself, ‘What’s my value to humanity?”
She studied bio-mathematics and quantitative genetics at Beijing Normal University and Cornell University before joining CIMMYT in 2010 as a consultant.
“I wanted to join CIMMYT because it works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming,” Li explained. “Also, CIMMYT provided a platform where I could collaborate with scientists worldwide and receive academic and career-boosting trainings.”
She became staff in 2012 and is currently based out of the CIMMYT office in Beijing. In addition, Li is an adjunct associate professor with the Chinese Academy of Agricultural Sciences (CAAS). She helps CAAS scientists improve their experimental design and better incorporate genetic information into their crop breeding.
“I love doing research,” Li said. “I’m a curious person so if I can solve a problem, I feel very happy, but I really want my research to have value – not just for myself – but for the world.”
Huihui Li’s work contributes to Seeds of Discovery (SeeD), a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project and the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).
The visiting delegation pose for a photo with CIMMYT representatives in El Batan, Mexico. Photo: CIMMYT.
On October 23, 2018, the International Maize and Wheat Improvement Center (CIMMYT) welcomed a delegation of government officials from Sichuan Province, China, for the signing of a memorandum of understanding.
The Vice Governor of the Sichuan Province Government, Yao Sidan, led the delegation, which included representatives from the provincial government, the Sichuan Forestry Department, Chongzhou Municipal Government, and the Sichuan Academy of Agricultural Sciences (SAAS).
They met with CIMMYT’s Deputy Director General, Marianne Bänziger; the Director of the Global Wheat Program, Hans Braun; the Director of the Sustainable Intensification Program, Bruno Gerard; and the Head of Bread Wheat Improvement and Rust Research, Ravi Singh.
CIMMYT representatives presented the center’s current research agenda in China and discussed with Sichuan officials possible opportunities for strengthening collaboration.
Sichuan is the fourth most populated province in China, with a population of 91 million, over two-thirds of whom live in rural areas. The province is rich in natural resources and has a cultivated land area of 10 million hectares. Despite its rapid development over the past decades, 1.7 million of Sichuan’s inhabitants still live in poverty and food security remains a key priority. In order to improve standards of living, it is important to ensure that Sichuan residents not only have enough food, but that they can harvest and consume high-quality crops.
Looking into the future of a long partnership
“CIMMYT’s support and collaboration is very important for us,” explained Yao. Collaboration between CIMMYT and the Sichuan Academy of Agricultural Sciences has contributed to a significant improvement in standards of living within the province over the last 30 years, but there is scope for deepening and widening the partnership in order to continue improving maize and wheat production in the region.
Maize and wheat research is particularly advanced at the Sichuan Academy of Agricultural Sciences. Many of its scientists are already working closely with CIMMYT researchers, but further collaboration is required to tackle ongoing wheat production and quality challenges.
“CIMMYT has enjoyed many years of collaboration with scientists in Chengdu,” said Singh, “and though there has been successful development of wheat varieties using CIMMYT germplasm, production and quality is still being affected by challenges such as yellow rust and rising water levels of the Yellow and Yangtze rivers.” However, he explained, CIMMYT can offer wheat materials for greater quality.
Gerard highlighted that as one of the world leaders in terms of conservation agriculture, China can play a key role in reducing global agriculture’s environmental footprint. CIMMYT also stands to learn from China’s expertise on agricultural technologies, he added, particularly with regard to precision agriculture, small-scale mechanization, and other tools that would prove useful to farmers in other regions of the world.
Another possible area for collaboration is researching the effects of radiation on yield loss and crop quality. There is evidence that wheat yields in other countries are significantly reduced by high levels of pollution, but the full effects of radiation on yield loss are still not very well understood, particularly in China. There is also scope to strengthen cooperation on seed industries, the use of specialty maize, diversification and aflatoxins.
Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.
Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.
“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”
Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.
“We call the project drinking security,” added Xiong.
Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.
“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.
Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.
“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”
But in China, Xiong explained, agriculture still falls under government control.
“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”
The team will use their simulation models to recommend policies that benefit farmers and the environment.
Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.
After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El Batán, Mexico, working on sustainable intensification.
Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.
Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT
What stands between a smallholder farmer and a bag of climate-adapted seeds? In many cases, it’s the hesitation to take a risk. Farmers may want to use improved varieties, invest in new tools, or diversify what they grow, but they need reassurance that their investments and hard work will not be squandered.
Climate change already threatens crops and livestock; one unfortunately-timed dry spell or flash flood can mean losing everything. Today, innovative insurance products are tipping the balance in farmers’ favor. That’s why insurance is featured as one of 10 innovations for climate action in agriculture, in a new report released ahead of next week’s UN Climate Talks. These innovations are drawn from decades of agricultural research for development by CGIAR and its partners and showcase an array of integrated solutions that can transform the food system.
Index insurance is making a difference to farmers at the frontlines of climate change. It is an essential building block for adapting our global food system and helping farmers thrive in a changing climate. Taken together with other innovations like stress-tolerant crop varieties, climate-informed advisories for farmers, and creative business and financial models, index insurance shows tremendous promise.
The concept is simple. To start with, farmers who are covered can recoup their losses if (for example) rainfall or average yield falls above or below a pre-specified threshold or ‘index’. This is a leap forward compared to the costly and slow process of manually verifying the damage and loss in each farmer’s field. In India, scientists from the International Water Management Institute (IWMI) and the Indian Council of Agricultural Research (ICAR), have worked out the water level thresholds that could spell disaster for rice farmers if exceeded. Combining 35 years of observed rainfall and other data, with high-resolution satellite images of actual flooding, scientists and insurers can accurately gauge the extent of flooding and crop loss to quickly determine who gets payouts.
The core feature of index insurance is to offer a lifeline to farmers, so they can shield themselves from the very worst effects of climate change. But that’s not all. Together with my team, we’re investigating how insurance can help farmers adopt new and improved varieties. Scientists are very good at developing technologies but farmers are not always willing to make the leap. This is one of the most important challenges that we grapple with. What we’ve found has amazed us: buying insurance can help farmers overcome uncertainty and give them the confidence to invest in new innovations and approaches. This is critical for climate change adaptation. We’re also finding that creditors are more willing to lend to insured farmers and that insurance can stimulate entrepreneurship and innovation. Ultimately, insurance can help break poverty traps, by encouraging a transformation in farming.
Insurers at the cutting edge are making it easy for farmers to get coverage. In Kenya, insurance is being bundled into bags of maize seeds, in a scheme led by ACRE Africa. Farmers pay a small premium when buying the seeds and each bag contains a scratch card with a code, which farmers text to ACRE at the time of planting. This initiates coverage against drought for the next 21 days; participating farms are monitored using satellite imagery. If there are enough days without rain, a farmer gets paid instantly via their mobile phone.
ACRE makes it easy for Kenyan farmers to get insurance. Source
Farmers everywhere are businesspeople who seek to increase yields and profits while minimizing risk and losses. As such, insurance has widespread appeal. We’ve seen successful initiatives grow rapidly in India, China, Zambia, Kenya and Mexico, which points to significant potential in other countries and contexts. The farmers most likely to benefit from index insurance are emergent and commercial farmers, as they are more likely than subsistence smallholder farmers to purchase insurance on a continual basis.
It’s time for more investment in index insurance and other innovations that can help farmers adapt to climate change. Countries have overwhelmingly prioritized climate actions in the agriculture sector, and sustained support is now needed to help them meet the goals set out in the Paris Climate Agreement.
MEXICO CITY (CIMMYT) – Zhonghu He, CIMMYT distinguished scientists and country liaison office in China, was one of a small number of scientists invited to the recent 19th Congress of the Chinese Communist Party. He was selected based on his outstanding contributions in wheat research.
Left to Right: Mr Jin Liu (chairperson), Dr Huajun Tang (CAAS president), Dr Zhonghu He (CIMMYT scientist), Lingling Wei (CAAS scientist), Yijun Shen (MOA scientist), Jihe Ling, farmer from Jiangxi province. Photo courtesy of Zhonghu He
He gave a keynote presentation on agriculture and wheat research to the assembly, together with eight ministers including the Minister of Agriculture, Changfu Han, in an open discussion forum at The Great Hall of the People, with coverage by Chinese and global media.
Zhonghu He with His Excellence Changfu Han, Minister of Agriculture in China. Photo courtesy of Zhonghu He
His presentation emphasized the nutritional and health value of wheat-based foods and the environmental benefits of wheat, particularly the role of winter wheat in protecting protect the soil during winter and spring.
He also described the importance of international germplasm exchange and collaboration.
CIMMYT has been a valued partner of the Chinese Academy of Agricultural Science (CAAS) and other national and provincial organizations for several decades. Genetic contributions of CIMMYT breeding are present in more than 26% of all major wheat varieties released in China after 2000 and over 350 Chinese researchers have taken part in CIMMYT wheat training programs since 1970.
Zhonghu He on CCTV News. Photo courstesy of Zhonghu He
Farmer weeding maize field in Bihar, India. Photo: M. DeFreese/CIMMYT.
India needs to tackle greenhouse gas emissions from its rice and livestock sectors according to a study by CIMMYT and partners. Researchers say this can and must be done in ways that improve yields, and sustain food and nutrition security.
Paradoxically, India is also the world’s second largest food producer, and agriculture is a vital part of the country’s economy. Indian agriculture also accounts for about 18% of the country’s greenhouse gas emissions, making agriculture a key sector for climate action. In fact, India’s government has already indicated willingness to reduce emissions from agriculture as part the Paris Climate Agreement, in an effort to keep global warming below the 2-degree target. To take action, the country’s leaders need to know where to focus their efforts, and find ways to reduce emissions without compromising food and nutrition security.
Indian agriculture’s climate ‘hotspots’
A new study uncovers some answers to this question, and offers insights into how dietary shifts might influence future emissions. The study, Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation, was done by researchers from the International Maize and Wheat Improvement Center (CIMMYT) and partners at the University of Aberdeen and the London School of Hygiene & Tropical Medicine. Using the empirical model Cool Farm Tool, researchers analyzed the farm-level greenhouse gas emissions of 20 major food commodities in India, and two types of food products emerged as the worst culprits: rice and animal products such as meat, milk and eggs.
When looking at the level of emission per unit of area and unit of product, rice was the top source of emissions in agriculture. Continuously flooded paddies release huge amounts of methane, especially compared to intermittently flooded or irrigated rice land. The scientists found that the total global warming potential of rice on a per hectare basis was even higher than what was being reported in existing literature and at the national level.
Meat, eggs and milk were also found to have high emissions per unit of production. The authors warn that animal products will contribute an increasing share to overall emissions as India’s middle class grows, traditions evolve, and diets shift towards consumption of more animal products. That said, it will probably not match the rapid trajectory towards meat consumption of other large countries like China, due to India’s cultural preference for a lacto-ovo-vegetarian diet.
No tradeoff between mitigation and food security
The revelation of India’s agricultural emission ‘hotspots’ are a crucial step towards action. “These findings can help farmers, researchers and policy makers to understand and manage these emissions, and identify mitigation responses that are consistent with India’s food security and economic development priorities,” according to CIMMYT scientist Tek Sapkota, who co-authored the paper. “Agriculture is an important sector of the economy,” he said. “If India is to reduce its total emissions then agriculture has to play its part,” he explained, mentioning that emissions from agriculture must decline worldwide in order to meet the 2°C warming target.
In the UN climate discussions on agriculture, there has been ongoing resistance among some countries about promoting mitigation in agriculture, due to fears that this could compromise food security and nutrition. This is a “misconception” according to Dr. Sapkota. “Many agricultural practices advocated to increase production and increase the capacity of a system to cope with climate change also happen to reduce emissions,” he explained. The paper’s authors emphasize that mitigation must be a co-benefit of improved and more efficient agronomic practices, and interventions will need to consider the nutritional and health implications. Negotiators at the upcoming UN climate talks in Bonn should take note as they mull a decision on agriculture.
Sustainable solutions
There are many approaches and technologies in agriculture that can contribute to food and nutrition security and at the same time deliver climate change adaptation and mitigation services. Dr. Sapkota is part of a team undertaking a detailed analysis of mitigation options, their national level mitigation potential and associated cost of their adoption to come up with total technical mitigation potential sector of Indian agriculture. This study is coming out very soon, and will help build a more complete picture of the solutions available.
A new study finds sustainable agriculture can cut emissions in India. Photo: M. DeFreese/CIMMYT.
As an example, Dr. Sapkota points to conservation agriculture, which is based on the principles of minimum soil disturbance, continuous soil cover and diversified crop rotation. Conservation agriculture techniques can increase production in a sustainable way, by improving water use efficiency, reducing fertilizer consumption and reducing machinery use and fuel consumption. Through this approach, “you can reduce production costs, without compromising yield. In some instances you can increase yields. It’s a win-win from every perspective,” he says. Farmers are already getting more precise at managing nutrients, using several tools like the GreenSeeker and the , and techniques such as drilling fertilizer into the soil instead of broadcasting it. They are also using decision support systems like Nutrient expert and the Crop Manager, to help them determine how much fertilizer to apply, at the right time and in the right place. These approaches have been shown to reduce the amount of fertilizer needed while maintaining and even increasing yields.
In a similar vein, Alternative Wetting and Drying of rice fields, which otherwise remain continuously flooded, can reduce methane emissions substantially. In Vietnam and the Philippines, farmers have successfully used this method and reduced methane emissions by 48% without reducing yield.
In the livestock sector, there several ways to address emissions, including improved manure management, changing feed rations, growing feed crops in a more sustainable way, and feeding animals crop residues that would otherwise be burned.
Although the study points out food products with a particularly high climate footprint, it’s important not to think about solutions on a commodity-by-commodity or crop-by-crop basis, according to Dr. Sapkota. “Farmers grow crops in a system and we need system-based solutions,” he says. “For example, in the rice-wheat system in Indo-Gangetic Plains, if you want to go for conservation agriculture you cannot just focus on one crop. The way you manage water, energy,nutrients and other resources for one crop will have repercussions on other crops,” he explains.
The results of this study are an important starting point. “India is moving in the right direction,” says Dr. Sapkota. “Now there needs to be more research to show the effectiveness of technical mitigation options which can reduce emissions without compromising yield and profit,” he says. The government must also work closely with people on the ground: “There must be more awareness among extension workers and farming communities that they are part of this movement to tackle climate change,” he adds.
At this year’s UN Climate Talks, CIMMYT is highlighting innovations that can help farmers overcome climate change. Read more stories in this series and follow @CIMMYT for the latest updates.
Members of National Technical Committee of NSB evaluating BAW 1260, the breeding line used to develop BARI Gom 33. Photo: CIMMYT
DHAKA, Bangladesh (CIMMYT) — As wheat farmers in Bangladesh struggle to recover from a 2016 outbreak of a mysterious disease called “wheat blast,” the country’s National Seed Board (NSB) released a new, high-yielding, blast-resistant wheat variety, according to a communication from the Wheat Research Centre (WRC) in Bangladesh.
Called “BARI Gom 33,” the variety was developed by WRC using a breeding line from the International Maize and Wheat Improvement Center (CIMMYT), a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, according to Naresh C. Deb Barma, Director of WRC, who said the variety had passed extensive field and laboratory testing. “Gom” means “wheat grain” in Bangla, the Bengali language used in Bangladesh.
“This represents an incredibly rapid response to blast, which struck in a surprise outbreak on 15,000 hectares of wheat in southwestern Bangladesh just last year, devastating the crop and greatly affecting farmers’ food security and livelihoods, not to mention their confidence in sowing wheat,” Barma said.
Caused by the fungus Magnaporthe oryzae pathotype triticum, wheat blast was first identified in Brazil in 1985 and has constrained wheat farming in South America for decades. Little is known about the genetics or interactions of the fungus with wheat or other hosts. Few resistant varieties have been released in Brazil, Bolivia and Paraguay, the countries most affected by wheat blast.
The Bangladesh outbreak was its first appearance in South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and over a billion inhabitants eat wheat as main staple.
Many blast fungal strains are impervious to fungicides, according to Pawan Singh, a CIMMYT wheat pathologist. “The Bangladesh variant is still sensitive to fungicides, but this may not last forever, so we’re rushing to develop and spread new, blast-resistant wheat varieties for South Asia,” Singh explained.
The urgent global response to blast received a big boost in June from the Australian Centre for International Agricultural Research (ACIAR), which funded an initial four-year research project to breed blast resistant wheat varieties and the Indian Council of Agricultural Research (ICAR), which also provided grant to kick-start the work in South Asia. Led by CIMMYT, the initiative involves researchers from nearly a dozen institutions worldwide.
Chemical controls are costly and potentially harmful to human and environmental health, so protecting crops like wheat with inherent resistance is the smart alternative, but resistance must be genetically complex, combining several genes, to withstand new mutations of the pathogen over time.
Key partners in the new project are the agricultural research organizations of Bangladesh, including the Bangladesh Agricultural Research Institute (BARI), and the Instituto Nacional de Innovación Agropecuaria y Forestal in Bolivia, which will assist with large-scale field experiments to select wheat lines under artificial and natural infections of wheat blast.
Other partners include national and provincial research organizations in India, Nepal and Pakistan, as well as Kansas State University (KSU) and the U.S. Department of Agriculture-Agricultural Research Services (USDA-ARS). The U.S. Agency for International Agricultural Development (USAID) has also supported efforts to kick-start blast control measures, partnerships and upscaling the breeding, testing and seed multiplication of new, high-yielding, disease resistant varieties through its Feed the Future project.
BARI Gom 33 was tested for resistance to wheat blast in field trials in Bolivia and Bangladesh and in greenhouse tests by the USDA-ARS laboratory at Fort Detrick, Maryland. International partnerships are critical for a fast response to wheat blast, according to Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program.
“Worldwide, we’re in the middle of efforts that include blast surveillance and forecasting, studies on the pathogen’s genetics and biology, integrated disease management and seed systems, as well as raising awareness about the disease and training for researchers, extension workers, and farmers,” said Braun.
With over 160 million people, Bangladesh is among the world’s most densely populated countries. Wheat is Bangladesh’s second most important staple food, after rice. The country grows more than 1.3 million tons each year but consumes 4.5 million tons, meaning that imports whose costs exceed $0.7 billion each year comprise more than two-thirds of domestic wheat grain use.
WRC will produce tons of breeder’s seed of BARI Gom 33 each year. This will be used by the Bangladesh Agricultural Development Corporation (BADC) and diverse non-governmental organizations and private companies to produce certified seed for farmers.
“This year WRC will provide seed to BADC for multiplication and the Department of Agricultural Extension will establish on-farm demonstrations of the new variety in blast prone districts during 2017-18,” said Barma.
As an added benefit for the nutrition of wheat consuming households, BARI Gom 33 grain features 30 percent higher levels of zinc than conventional wheat. Zinc is a critical micronutrient missing in the diets of many of the poor throughout South Asia and whose lack particularly harms the health of pregnant women and children under 5 years old.
With funding from HarvestPlus and the CGIAR Research Program on Agriculture for Nutrition, CIMMYT is leading global efforts to breed biofortified wheat with better agronomic and nutritional quality traits. The wheat line used in BARI Gom 33 was developed at CIMMYT, Mexico, through traditional cross-breeding and shared with Bangladesh and other cooperators in South Asia through the Center’s International Wheat Improvement Network, which celebrates 50 years in 2018.
Stable window 1 and 2 (W1W2) funding from CGIAR enabled CIMMYT and partners to react quickly and screen breeding lines in Bolivia, as well as working with KSU to identify sources of wheat blast resistance. The following W1 funders have made wheat blast resistance breeding possible: Australia, the Bill & Melinda Gates Foundation, Canada, France, India, Japan, Korea, New Zeland, Norway, Sweden, Switzerland, the United Kingdom and the World Bank. The following funders also contributed vital W2 funding: Australia, China, the United Kingdom (DFID) and USAID.
Global food production must increase by 70 percent to meet a population of more than 9 billion in 2050. India, with a current population of 1.3 billion and rising, is central to this challenge. Photo: M. DeFreese/CIMMYT
EL BATAN, Mexico (CIMMYT) – A new study identifies the key ways to keep up with India’s rising food demand while minimizing greenhouse gas emissions.
Global food production must increase by 70 percent to meet a population of more than 9 billion in 2050. India, with a current population of 1.3 billion and rising, is central to this challenge.
As incomes rise in developing countries, many go through ‘nutrition transition’ away from staple crops towards high greenhouse gas-producing foods like meat and dairy. India, however, has a cultural preference for a lacto-ovo-vegetarian diet — dairy, eggs, and plant-based products — and is likely to differ in this regard from similar developing countries, like China or Brazil.
In India, the majority of greenhouse gas emissions from agriculture are produced from agricultural inputs, farm machinery, soil displacement, residue management and irrigation.
Authors in a recent study from the International Maize and Wheat Improvement Center (CIMMYT) have identified higher emissions from continuously flooded rice, compared to rice which has more frequent periods of water drainage, and a wide range of emissions for other crops due to variation in fertilizer application.
The United Nations Framework Convention on Climate Change has placed emphasis on mitigation of greenhouse gases from agriculture and a number of strategies have been proposed. Measuring emissions from different crops and management systems can help identify the most efficient way to reduce future greenhouse gas emissions while keeping up with food demand.
Genomic regions associated with root traits under drought stress in tropical maize (Zea mays L.). Zaidi, P.H., Seetharam, K., Krishna, G., Krishnamurthy, S.L., Gajanan Saykhedkar, Babu, R., Zerka, M., Vinayan, M.T., Vivek, B. In: PLoS One, vol.11, no.10: e0164340.
Global challenges and urgency for partnerships to deploy genetic resources. Sukhwinder-Singh, Vikram, P., Sansaloni, C.P., Pixley, K.V. In: Indian Journal of Plant Genetic Resources, vol. 29, issue 3, p. 351-353.
High accuracy of predicting hybrid performance of Fusarium head blight resistance by mid‑parent values in wheat. Miedaner, T., Schulthess, A., Gowda, M., Reif, J.C., Longin, F.H. In: Theoretical and Applied Genetics, vol 130, no. 2, p. 461–470.
Identification and functional characterization of the AGO1 ortholog in maize. Dongdong Xu, Hailong Yang, Cheng Zou, Wen-Xue Li, Yunbi Xu, Chuanxiao Xie In: Journal of integrative plant biology, vol.58, no.8, p.749-758.
Identification of genomic associations for adult plant resistance in the background of popular South Asian wheat cultivar, PBW343. 2016. Huihui Li, Sukhwinder-Singh, Bhavani, S., Singh, R.P., Sehgal, D., Basnet, B.R., Vikram, P., Burgueño, J., Huerta-Espino, J. In: Frontiers in Plant Science, vol.7, no.1674, p.1-18.
Genomic Selection for increased yield in Synthetic-Derived Wheat. 2017. Dunckel, S., Crossa, J., Shuangye Wu, Bonnett, D.G., Poland, J. In: Crop Science, v. 57, p. 713-725.
Germinate 3: development of a common platform to support the distribution of experimental data on crop wild relatives. 2017. Shaw, P., Raubach, S. Hearne, S., Dreher, K.A., Glenn Bryan, McKenzie, G., Milne, I., Gordon Stephen, Marshall, D. In: Crop Science, v. 57, p.1-15.
Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation. 2017. Vetter, S.H., Sapkota, T.B., Hillier, J., Stirling, C., Macdiarmid, J.I., Aleksandrowicz, L., Green, R., Joy, E.J.M., Dangour, A.D., Smith, P. In: Agriculture, Ecosystems and Environment v. 237, p. 234-241.
How climate-smart is conservation agriculture (CA)? its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. 2017. Thierfelder, C., Chivenge, P., Mupangwa, W., Rosenstock, T., Lamanna, C., Eyre, J.X. In: Food Security, vol. 9, no. 3, p. 537–560.
Identification and molecular characterization of novel LMW-m and -s glutenin genes, and a chimeric -m/-i glutenin gene in 1A chromosome of three diploid Triticum species. 2017. Cuesta, S., Alvarez, J.B., Guzman, C. In: Journal of Cereal Science, v. 74, p. 46-55.