Skip to main content

Location: China

An Example of International Cooperation: China and CIMMYT

Awais Rasheed has established a high-throughput KASP molecular breeding platform and made outstanding contributions to promoting China-Pakistan cooperation. He has discovered and validated 90 KASP markers available for wheat breeding, accounting for 60 percent of similar markers internationally, which are widely used in China and 15 other countries.

Read the full story here.

China, Pakistan launched joint wheat breeding lab

On March 2, the China-Pakistan Joint Wheat Molecular Breeding International Lab (“Joint Lab”) was launched, funded by the Science and Technology Partnership Program, Ministry of Science and Technology of China, with the joint support from China‘s Ministry of Agriculture and Rural Affairs, National Agriculture Research Center of Pakistan and the International Maize and Wheat Improvement Center (CIMMYT).

The joint lab aims to develop new varieties with high yield and resistance to disease, enhancing breeding capacity and wheat production in Pakistan, where wheat is the largest food crop.

Read the original article: China, Pakistan launched joint wheat breeding lab

Xiplomacy: China, LAC countries embrace new era of win-win cooperation

An article in the Big News Network examines opportunities for collaboration between China and Latin America and the Caribbean, referencing work between China and the International Maize and Wheat Improvement Center (CIMMYT).

Bram Govaerts, director general of CIMMYT, said the collaboration with China can be regarded as one of the mutually beneficial examples of working together to safeguard the world’s food security.

CIMMYT and China together can be partners,” said Govaerts. “CIMMYT can work with China for new wheat varieties that can fight climate change, for new maize varieties that can sustain new diseases.”

Read the original article: Xiplomacy: China, LAC countries embrace new era of win-win cooperation

CIMMYT-China workshop aims to facilitate future collaborations to battle climate change

Hybrid maize seed and ears of the Yunrui 88 variety, developed using CIMMYT and Chinese germplasm. It is high-yielding, resistant to important diseases, and drought tolerant, and farmers report that the ears can be stored for longer and are better for animal feed. It was released in 2009 and is now the most popular hybrid in the area. (Photo: Michelle DeFreese/CIMMYT)

The negative effects of climate change on food systems are felt across political boundaries, so creating sustainable remediation steps are best accomplished through global collaboration. In that spirit, the International Maize and Wheat Improvement Center (CIMMYT) and the Chinese Academy of Agricultural Sciences (CAAS) convened the China-CIMMYT Workshop on Climate Change & Food Crops Production on December 6, 2022.

Participants included principal investigators of China’s National Key Technology Research and Development Program, representatives of Chinese agricultural universities, CIMMYT scientists and representatives from a variety of international organizations. The agenda featured discussions regarding research priorities, efforts to establish best practices in classifying and prioritizing climate risks and identifying potential crucial points for future cooperation between CIMMYT and China.

After the welcome address from Wheat Breeder and Country Representative for China Zhongzhu He, Thomas Lumpkin, CIMMYT Director General Emeritus provided the introduction to global climate issues and their effects on agriculture, particularly staple crops like wheat.

“All climate change mitigation strategies must account for their effect on food production systems, the aim of this convening was to facilitate discussions among climate change scientists, crop breeders and agronomists,” said Lumpkin. “Global issues require global solutions and so collaboration among institutions is pivotal.”

Tek Sapkota, CIMMYT Agricultural Systems and Climate Change Scientist, presented a framework for quantifying GHG emissions and mitigation potential for food systems, key research objectives of the One CGIAR initiative MITIGATE+, an initiative aimed to reduce annual global food systems emissions by 7% by 2030.

Three other CIMMYT scientists presented at the workshop. Wei Xiong, Senior Scientist, Crop Modeler, focused on genotype-environment interactions and its implication on breeding. Urs Schulthess, Remote Sensing Scientist, presented state-of-the-art results on the effects of temperature and vapor pressure deficit on radiation use efficiency of wheat. Huihui Li, Scientist, Quantitative Geneticist, discussed expanding genome wide association mapping and genomic selection to include climatic factors, highlighting novel methods to bring genes and climate together to accelerate breeding cycles.

In the workshop’s closing remarks, Wei reiterated CIMMYT’s commitments to continued collaboration with Chinese institutions and outlined next steps, such as CIMMYT’s commitment to increasing global agricultural resilience via novel research, partnerships, and increased engagement. Wei also detailed methods to identify new mechanisms and funding channels to promote global cooperation, such as One CGIAR initiatives and funding from national partners, including the CAAS.

Rear fish in a rice paddy? Old ways can future-proof food production

In an op-ed for the South China Morning Post, Bram Govaerts, Director General at the International Maize and Wheat Improvement Center (CIMMYT), and Essam Yassin Mohammed, Interim Director General of WorldFish and acting Senior Director of Aquatic Food Systems of CGIAR, explore the role of the research community in developing future-proof strategies to address challenges to the global agrifood system.

Through examples from Egypt, Malaysia and Mexico, the authors explain the benefits of “co-culture”, such as when different crop species are grown together.

This innovation centers on co-design, combining farmer-centric models and new measurement tools that allow scientific advances to benefit a variety of smallholder production systems.

Read the original article: Rear fish in a rice paddy? Old ways can future-proof food production

Inspiring future generations of scientists

Evidence shows that for every US $1 invested in anticipatory action to safeguard lives and livelihoods, up to US $7 can be saved by avoiding losses in disaster-affected communities, highlighting the power of agricultural research and development that can be continued by the scientists of the future.

This message was reiterated at the Global Food Security Forum for Young Scientists on December 2-3, designed to bring together scientists, scholars, and innovators from different subjects to discuss their research findings and exchange innovative ideas on all aspects of global food security. The event was co-organized by Huazhong Agricultural University (HZAU), China, the International Food Policy Research Institute (IFPRI), the International Maize and Wheat Improvement Center (CIMMYT), and the Leibniz Institute of Agricultural Development in Transition Economies (IAMO).

Topics included the resilience of global food systems and food supply chains, change of dietary patterns and transition of agrifood systems, digital and smart food production, and sustainable agricultural development and maintenance of the environment.

On behalf of CIMMYT Director General Bram Govaerts, agronomist Iván Ortiz-Monasterio presented at the launch event. “Investing in agriculture and a safe and peaceful future is something that CIMMYT and China can build together,” explained Monasterio. “We can develop networks and platforms of collaboration. You have excellent research institutes, and we can combine our capabilities.”

Govaerts then presented a plenary session on the power of young researchers to transform agri-food systems (above), reflecting on the disruption to global supply chains caused by the conflict between Russia and Ukraine, the COVID-19 pandemic, climate change, and high levels of inflation.

“For you as the young, new generation, for you as scientists that need to design the future, it is very important to ask you one central question: when historians pick up their pens and write the story of the 21st century, what will it say about you?” asked Govaerts, as he emphasized training opportunities through the CIMMYT Academy and stories from young scientists at CIMMYT, such as Leonardo Crespo-Herrera, recent winner of the 2022 Japan International Award for Young Agricultural Researchers.

At the conclusion of the conference, Govaerts was also appointed as an advisor of the Global Food Security Forum for Young Scientists.

Cover photo: Iván Ortiz-Monasterio presents at the launch of the Global Food Security Forum for Young Scientists, December 2022. (Photo: CIMMYT)

CIMMYT leads innovation sprint to deliver results to farmers rapidly

Smallholder farmers, the backbone of food systems around the world, are already facing negative impacts because of climate change. Time to adapt climate mitigation strategies is not a luxury they have. With that in mind, the Agriculture Innovation Mission for Climate (AIM4C) facilitates innovation sprints designed to leverage existing development activities to create a series of innovations in an expedited timeframe.

At the UN COP27 in Egypt, AIM4C announced its newest round of innovation sprints, including one led by the International Center for Maize and Wheat Improvement (CIMMYT) to enable smallholder farmers to achieve efficient and effective nitrogen fertilizer management. From 2022 to 2025, this sprint will steer US $90 million towards empowering small-scale producers in Africa (Kenya, Malawi, Morocco, Tanzania, and Zimbabwe), Asia (China, India, Laos and Pakistan), and Latin America (Guatemala and Mexico).

“When we talk to farmers, they tell us they want validated farming practices tailored to their specific conditions to achieve greater productivity and increase their climate resilience,” said Sieg Snapp, CIMMYT Sustainable Agrifood Systems (SAS) program director who is coordinating the sprint. “This sprint will help deliver those things rapidly by focusing on bolstering organic carbon in soil and lowering nitrous oxide emissions.”

Nitrogen in China

Working with the Chinese Academy of Agricultural Sciences (CAAS), the sprint will facilitate the development of improved versions of green manure crops, which are grown specifically for building and maintaining soil fertility and structures which are incorporated back into the soil, either directly, or after removal and composting. Green manure can significantly reduce the use of nitrogen-based fertilizers, which prime climate culprits.

“There are already green manure systems in place in China,” said Weidong Cao from CAAS, “but our efforts will integrate all the work being done to establish a framework for developing new green manure crops aid in their deployment across China.”

Triple wins in Kenya

The Kenya Climate Smart Climate Project, active since 2017, is increasing agricultural productivity and building resilience to climate change risks in the targeted smallholder farming and pastoral communities. The innovation sprint will help rapidly achieve three wins in technology development and dissemination, cutting-edge innovations, and developing sets of management practices all designed to increase productive, adaption of climate smart tech and methods, and reduce greenhouse gas (GHG) emissions.

Agricultural innovations in Pakistan

The Agricultural Innovation Program (AIP), a multi-disciplinary and multi-sectoral project funded by USAID, led by CIMMYT, and active in Pakistan since 2015, fosters the emergence of a dynamic, responsive, and competitive system of science and innovation that is ‘owned’ by Pakistan and catalyzes equitable growth in agricultural production, productivity, and value.

“From its beginning, AIP has been dedicated to building partnerships with local organizations and, smallholder farmers throughout Pakistan, which is very much in line with the objectives and goal as envisioned by Pakistan Vision 2025 and the Vision for Agriculture 2030, as Pakistan is a priority country for CIMMYT. However, a concerted effort is required from various players representing public and private sectors,” said Thakur Prasad Tiwari, senior scientist at CIMMYT. “Using that existing framework to deliver rapid climate smart innovations, the innovation sprint is well-situated to react to the needs of Pakistani farmers. “

Policies and partnerships for innovations in soil fertility management in Nepal

The Nepal Seed and Fertilizer (NSAF) project, funded by USAID and implemented by CIMMYT, facilitates sustainable increases in Nepal’s national crop productivity, farmer income, and household-level food and nutrition security. NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective extension, including the use of digital and information and communications technologies. The project facilitated the National Soil Science Research Centre (NSSRC) to develop new domain specific fertilizer recommendations for rice, maize, and wheat to replace the 40 years old blanket recommendations.

Under NSAFs leadership, the Ministry of Agriculture and Livestock Development (MOALD) launched Asia’s first digital soil map and has coordinated governmental efforts to collect and analyze soil data to update the soil map and provide soil health cards to Nepal’s farmers. The project provides training to over 2000 farmers per year to apply ISFM principles and provides evidence to the MOALD to initiate a balanced soil fertility management program in Nepal and to revise the national fertilizer subsidy policy to promote balanced fertilizers. The project will also build efficient soil fertility management systems that significantly increase crop productivity and the marketing and distribution of climate smart and alternative fertilizer products and application methods.

Public-private partnerships accelerate access to innovations in South Asia

The Cereal Systems Initiative for South Asia (CSISA), established in 2009, has reached more than 8 million farmers by conducting applied research and bridging public and private sector divides in the context of rural ‘innovation hubs’ in Bangladesh, India, and Nepal. CSISA’s work has enabled farmers to adopt resource-conserving and climate-resilient technologies and improve their access to market information and enterprise development.

“Farmers in South Asia have become familiar with the value addition that participating in applied research can bring to innovations in their production systems,” said Timothy Krupnik, CIMMYT systems agronomist and senior scientist. “Moreover, CSISA’s work to address gaps between national and extension policies and practices as they pertain to integrated soil fertility management in the context of intensive cropping systems in South Asia has helped to accelerate farmers’ access to productivity-enhancing innovations.”

CSISA also emphasizes support for women farmers by improving their access and exposure to improved technological innovations, knowledge, and entrepreneurial skills.

Sustainable agriculture in Zambia

The Sustainable Intensification of Smallholder Farming systems in Zambia (SIFAZ) is a research project jointly implemented by the UN Food and Agriculture Organization (FAO), Zambia’s Ministry of Agriculture and CIMMYT designed to facilitate scaling-up of sustainable and climate smart crop production and land management practices within the three agro-ecological zones of Zambia. “The Innovation Sprint can take advantage of existing SIFAZ partnerships, especially with Zambia’s Ministry of Agriculture,” said Christian Thierfelder, CIMMYT scientist. “Already having governmental buy-in will enable quick development and dissemination of new sustainable intensification practices to increase productivity and profitability, enhance human and social benefits while reducing negative impacts on the environment.”

Cover photo: Paul Musembi Katiku, a field worker based in Kiboko, Kenya, weighs maize cobs harvested from a low nitrogen trial. (Florence Sipalla/CIMMYT)

CIMMYT and Join Hope sign partnership agreement

CIMMYT and Join Hope sign a partnership agreement on November 14. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and Join Hope have cemented their partnership at a research cooperation agreement signing ceremony on November 14.

Join Hope produce seed products including maize, wheat, cotton, and soybean, as well as fertilizers, agricultural films and other products. The company will be providing some funding for five years and will receive access to CIMMYT’s international wheat nurseries and some maize inbred lines, in addition to training and other services. The funding will strengthen CIMMYT’s research efforts in China and create opportunities for training in Pakistan.

CIMMYT and China have developed a win-win partnership that was established back in 1974,” said CIMMYT Director General Bram Govaerts. “Over 48 years, we have collaborated and advanced research for agricultural development in the areas of breeding, genomic research, and sustainable farming systems.”

Through this partnership, as much as 10.7 million tons of grain has been added to China’s wheat output. More than 26,000 CIMMYT wheat accessions were introduced and stored in China, and more than 300 wheat cultivars derived from CIMMYT germplasm have been released in China and are currently grown on nearly 10 percent of the Chinese wheat production area.

“The cooperation agreement that we sign today is another step in the right direction,” continued Govaerts. “It will bring us closer to the Chinese farmer and grain consumers who we all aim to serve.”

Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

Collaboration between China and the International Maize and Wheat Improvement Center (CIMMYT) is an example of a mutually beneficial partnership working to safeguard global food security.

Wheat pathologist and geneticist Zhognhu He explained the spread of plant diseases such as wheat scab, which is spreading due to factors such as climate change and could threaten grain security and food safety. His work in wheat disease resistance using the vast germplasm resources in China is helping farmers worldwide.

China has also provided thousands of wheat germplasm resources to CIMMYT’s genebank in Mexico, contributing towards the development of new varieties.

Read the original article: Feature: Reciprocal cooperation between China, int’l agricultural research agency safeguards food security

‘Perennial’ rice saves time and money, but comes with risks

The largest real-world test of grains that grow year after year without replanting is showing promise for saving money, helping the environment, and reducing labor in China.

Initial trials with perennial rice as part of the Sustainable Agrifood Systems (SAS) program by the International Maize and Wheat Improvement Center (CIMMYT) suggest the crop could be a game changer for agriculture and food security.

The next phase of the research will determine whether farmers wish to adopt Perennial Rice 23 (PR23), which has been developed by breeding an Asian variety of rice with a wild, perennial relative from Nigeria.

Read the original article: ‘Perennial’ rice saves time and money, but comes with risks

CIMMYT and China: A successful partnership since 1974

The International Maize and Wheat Improvement Center (CIMMYT) is a non-profit international organization focused on applied agricultural research and training. It empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Established in 1974, the research partnership between the People’s Republic of China and CIMMYT is improving the lives of millions of people in China through science-driven, evidence-based solutions. CIMMYT has five offices and over 20 collaborators throughout China.

The CIMMYT–China collaboration over four decades has added some 10.7 million additional tons of wheat to China’s national wheat output. Since 2000, CIMMYT germplasm has been planted on more than one million hectares across the country.

We look forward to many more years of collaboration to improve the lives of millions of people in China and the world.

Cover photo: An agricultural landscape in Yunnan Province, China. (Photo: Michelle DeFreese/CIMMYT)

Forging collaborative ties from south to south

He Zhonghu presents at the Second International Wheat Congress in Beijing. (Photo: Fei Wei/CAAS)

More than 900 experts from 67 countries gathered for the Second International Wheat Congress, which took place from September 12-16 in-person in Beijing and online, to exchange ideas on how to improve the development of the wheat industry around the world, and call for increased global cooperation in the scientific and technological innovation of wheat to guarantee food security.

The International Maize and Wheat Improvement Center (CIMMYT) was honored to be one of the three organizers of this major world-class event, together with the Crop Science Society of China (CSSC) and the Institute of Crop Sciences of the Chinese Academy of Agricultural Sciences (ICS-CAAS).

This Congress as part of Wheat Initiative activity was established three years ago after the merger of two important conferences: the International Wheat Genetics Symposium and the International Wheat Conference. On this occasion, with Future Wheat: Resilience and Sustainability as the central theme, key issues included: use of diversity; evolution and germplasm; Triticeae genome structure and functional genomics; breeding and new technologies; crop management under climate change; biotic and abiotic resistance and physiology; and processing quality, nutrition, and human health.

In her capacity as co-host of the congress, Claudia Sadoff, CGIAR Executive Managing Director, stressed that the global partnership between China and CGIAR has been of special importance in strengthening achievements in scientific research.

“The priority is to increase grain yields, disease resistance, climate resilience, and nutritional quality through breeding modernization,” said Sadoff. “This is especially important as we are facing a food system crisis, with wheat at its heart. The global food crisis requires a system approach to stabilize wheat supply.”

Bram Govaerts, Director General of CIMMYT, reiterated this point, indicating that “meetings like this can be source of concrete proposals for consolidating enabling partnerships that will lead to the enduring transformation of wheat based agri-food systems worldwide”.

What’s next for global wheat?

Asking what’s next is a disturbing question when faced with a crop like wheat that is an important commodity for more than 35% of the world’s population, with global production exceeding 760 million tons in 2020. The same question that Alison Bentley, Director of CIMMYT’s Global Wheat Program, seeks to respond to build future resilience.

“It is important that we understand where the risks are in our global food system so that we can respond to and address the impacts,” Bentley explained, while presenting a roadmap for future wheat research and development, where food security and nutrition plays a decisive role taking in consideration the effects of climate change and population growth.

Zhonghu He, CIMMYT Distinguished Scientist and Country Representative for China, said, “Thanks to the fact that this Congress was a hybrid event, there was a large online participation of researchers, students and representatives of entities from developing countries – a fact that reiterates the importance of the work that we have been doing together and can promote even further in the face of the challenges that we face today in terms of conflict, high cost of living, climate change and COVID-19.”

More than 900 experts from 67 countries united to discuss improved collaboration in wheat research and development. (Photo: Fei Wei/CAAS)

China and CIMMYT

China and CIMMYT have worked side-by-side on wheat and maize research for the past 40 years in areas such as varietal breeding, genomics research, sustainable farming systems, and training. China is the largest wheat producer and consumer in the world, and China has always considered CIMMYT as a strategic win-win partner for wheat research.

These four decades of work are reflected in results, such as the fact that more than 26,000 accessions of wheat preserved in CIMMYT’s genebank were introduced and are stored in China. This has enabled collaborative research on this cereal to add up to 10.7 million tons of grain, worth $3.4 billion USD. It has also enabled more than 200 Chinese scientists and students working in wheat to visit CIMMYT´s global headquarters in Mexico to receive training courses and complete thesis research.

In recognition of the partnership between China and CIMMYT, six wheat varieties derived from CIMMYT germplasm received national awards in China and seven scientists were awarded the China Friendship Award, the highest recognition of international scientists for their contribution to China. In 2016, CIMMYT received the International Science and Technology Cooperation Award from China State Council.

The 3rd International Wheat Congress will be held in Australia in 2024.

China calls on G20 to support CGIAR to boost global food security

Representatives from the G20 Foreign Ministers’ meeting on July 7-8. (Credit: Antara Foto/Pool/Sigid Kurniawan/rwa.)

The G20 Foreign Ministers’ meeting held on July 7-8 in Bali saw Chinese State Councillor and Foreign Minister, Wang Yi, highlight support for CGIAR as part of a proposed cooperation initiative to boost global food security.

Foreign Minister Wang Yi highlighted the need to help CGIAR increase innovation and build cooperation on agricultural science and technology among countries. Addressing the meeting, Wang said the food and energy sectors are crucial for the healthy performance of the world economy and the effective implementation of the UN 2030 Agenda for Sustainable Development. 

His statement was made shortly before the signing of Letters of Intent for Cooperation between the Chinese Academy of Agricultural Sciences (CAAS) and two CGIAR Research Centers, the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI).  

CIMMYT, IRRI and CAAS intend to establish a joint Center in Hainan to address global food security through advances in wheat and rice breeding. The collaboration aims to enhance the environmental sustainability of rice and wheat based agri-food systems, promote biodiversity conservation, combat climate change, and improve the health and welfare of growers and consumers. 

Jean Balié, Regional Director, South East Asia and Pacific, CGIAR, and Director General of IRRI said: “Our new agreement solidifies and updates a longstanding and fruitful partnership. Today we face a different and growing set of challenges to our food, land and water systems, and we welcome the opportunity to strengthen knowledge and information exchange from across CGIAR that will contribute to a transformation of global food, land and water systems.” 

CIMMYT Director General, Bram Govaerts added: “This state-of-the-art breeding center will help us develop and deploy the new nutritious, high-yielding and resilient varieties that Asian farmers need to feed and nurture the most populous region of the world sustainably or within planetary boundaries.” 

In three decades of collaboration, CAAS and CGIAR have cooperated on germplasm exchange, breeding new varieties of crops, and providing opportunities for staff collaboration, development and training. 

In wheat research, the partnership has added as much as 10.7 million tons of grain – worth $3.4 billion – to China’s national wheat output. Additionally, eight CIMMYTscientists have won the Chinese Friendship Award – the highest award for foreign experts who have made outstanding contributions to China’s economic and social progress. 

A reaffirmation of Chinese support for CGIAR comes on a tide of growing recognition that more investment is needed to tackle hunger.  

Earlier in the year the G7 Foreign Ministers’ Communiqué underlined the urgent need to address risk in global food systems citing this as a top foreign policy objective. At the same time, the G7 Agricultural Ministers Communiqué cautioned that slowing down work to address longer term goals of food systems transformation, in order to address short term food crises, will have negative consequences in the medium and long term. In this context CGIAR’s System Board Chair, Marco Ferroni, recently highlighted the need for world leaders to look at the big picture to solve the food crisis.

China to build international agricultural breeding center in Hainan

The Chinese Academy of Agricultural Sciences (CAAS), the International Maize and Wheat Improvement Center (CIMMYT) and the International Rice Research Institute (IRRI) are establishing a breeding center in Sanya, Hainan Province, China.

The international cooperation will be conducive to the exploration and utilization of germplasm resources of the research organizations, biological breeding research, technical training, and the innovation of the global seed industry.

Read more: https://english.news.cn/20220714/df773960de9f42ba898341e27cdb3f09/c.html