Skip to main content

Location: China

What will Yunnan farmers do when the rain stops?

farmer-yunnanprovince
comparison-drought-tolerant-maize
cimmyt-yunrui47
farmers-huanyanmin
maizebreeders

Farmers in Yunnan Province are increasingly reacting to climate change by using maize seed for drought conditions developed by CIMMYT in collaboration with the Yunnan Academy of Agricultural Sciences.

Forming part of southwest China’s rugged terrain, the Yunnan Province mountain chains create spectacular vistas in every direction. Unfortunately, the scenic landscapes also make life tough for farmers. Only 5% of the province is cultivated land. Still, agriculture is a pillar of the provincial economy, and maize is the most commonly grown crop.

Faced with a mean elevation of over 2,000 meters and average slopes as steep as 19 degrees, Yunnan farmers have adapted by growing maize on the hills and mountains. This so-called “down-slope cultivation” has fed Yunnan for generations, but it has drawbacks, like increased erosion. Yunnan is one of the areas in China most seriously affected by erosion.

Missing the monsoon?
Besides their tremendous ability to adapt, farmers have one other ally in the continual struggle to grow maize in this unlikely environment: the monsoon. Yunnan Province has a subtropical climate and an average annual rainfall of more than a meter—very generous for maize—and most of which normally falls during the growing season, May to October.

But today’s farmers in Yunnan have a new concern: what happens when the monsoon fails to appear? It’s not a hypothetical question. In 2010, severe weather in southwest China resulted in the region’s worst drought in a century. In the months prior, large swaths of Yunnan hadn’t received adequate rainfall. Then the rainy season ended early, temperatures rose, and drought set in, ultimately affecting more than 60 million people and destroying billions of dollars worth of crops. In 2011, drought re-occurred in eastern Yunnan, affecting a large area of maize.

Now farmers are left wondering if these phenomena are flukes or part of a larger trend. In fact, climate change models suggest the fluctuations in rainfall will continue and increase in intensity. Yunnan’s maize farmers may no longer be able to count on the monsoon.

Better maize: Part of the answer
The solution, put simply, is to change. And helping farmers to change from the only thing they’ve ever known takes patient expertise. Some of that has come from a team led by Dr. Fan Xingming, Director General, Institute of Food Crops, Yunnan Academy of Agricultural Sciences (YAAS), in partnership with CIMMYT.

Drawing on sources from CIMMYT’s maize and wheat seed bank—which conserves 27,000 unique collections of maize seed—Fan and his group have developed 22 hybrids, several of which possess improved performance under drought and multiple disease resistance. Because they produce consistently higher yields and better incomes for Yunnan farmers, the hybrids have been a hit. Today they cover approximately 200,000 hectares—15% of Yunnan’s annual maize area—and have increased farmers’ incomes by approximately USD 200 million between 2000 to 2010. One of those developed, Yunrui 47, is drought tolerant and performed well in 2011 in severely droughted areas in Yunnan, including Zhaotong, Wenshan, Xuanwei, and Huize.

Some are more resistant to insect infestation and rot than older maize varieties. Because of this, their grain can be stored longer. Instead of selling their harvest in January when prices are low, farmers can keep it until June, when prices are better. The hybrid Yunrui 88 is high-yielding and resistant to several of the region’s most damaging maize diseases, according to Dan Jeffers, a CIMMYT maize breeder based in Kunming. “Yunrui 88 has been highly resistant to maize dwarf mosaic, resistant to leaf blights, and shows intermediate resistance to ear rot,” he says. “In addition, it yields an average of around 9 tons per hectare of grain.”

Another of the hybrids, Yunrui 8, is an example of quality protein maize, a high-lysine and high-oil hybrid that is more nutritious for humans and farm animals, as well as being highly resistant to ear rots. Yunrui 8 has been recommended by the Ministry of Agriculture of China as the leading national variety in 2010. It is the most popular hybrid in Yunnan, with a cumulative coverage of 0.5 million hectares in the province.

Farmers have testified to the nutritional quality of the hybrid grain. Huan Yuanmin and her husband grew Yunrui 8 on 4.6 hectares for 3 years. Utilizing the profits from their surplus harvests, they bought 200 pigs and fed them hybrid maize grain. “We noticed that with the hybrid maize, our animals grew faster and were more robust,” says Huan. “The sows gave more milk, so suckling pigs could be weaned three-to-five days ahead of the normal of 28 days.” This in turn raised the family’s profits. “Even the skin and hair of the pigs became shinier,” she added.

International partnerships bring benefits for farmers
Staff of YAAS began collaborating with CIMMYT in 1976. Over the decades, that relationship was strengthened by the personal visits of CIMMYT regional maize staff and the late Nobel Peace Prize Laureate and wheat breeder, Dr. Norman Borlaug. According to Fan, CIMMYT germplasm was the basis for Yunnan’s strong maize production and breeding program. “CIMMYT experts have helped Yunnan in many ways, including training and sharing expertise,” he said. “I really appreciate this and sincerely hope we can continue cooperating, progressing in maize breeding, and developing more hybrids that will allow farmers to contribute to the food security of people in less developed areas.”

For more information: Dan Jeffers, maize breeder (d.jeffers@cgiar.org)


Related story:

  • HarvestPlus-China field day exhibits maize hybrids in southwestern China

Plowing through poverty

CIMMYT E-News, vol 6 no. 4, June 2009

As part of the global work to test and disseminate conservation agriculture, CIMMYT and partners have introduced and promoted new agricultural machinery in Bangladesh, helping farmers to improve their crop yields, food security, and livelihoods.

Continue reading

New maize and new friendships to beat Thai drought

CIMMYT E-News, vol 5 no. 3, March 2008

CIMMYT fosters regional partnerships and provides seed to help researchers in Thailand get drought resistant maize to farmers.

“We are very, very dry,” says farmer Yupin Ruanpeth. “Last year we had a drought at flowering time and we lost a lot of yield.” In fact, she explains, during the last five years, her family’s farm has suffered from severe drought three times in a row. The soil is good and in a year with no drought they can harvest five tons of maize per hectare, but last year they could only harvest three tons per hectare.

Geographically, the Thai province of Nakhon Sawan lies only a short drive from lush lowland paddy fields, but it seems a world away. In this region the rainy season (between May and September) brings enough water for a single crop, usually of maize or cassava, and in the dry season the fields lie fallow. Almost all maize in Thailand is rainfed, grown under similar conditions

mar01At the Thai Department of Agriculture’s Nakhon Sawan Field Crops Research Center, Pichet Grudloyma, senior maize breeder, shows off the drought screening facilities. Screening is carried out in the dry season, so that water availability can be carefully controlled in two comparison plots: one well-watered and one “drought” plot, where watering is stopped for two weeks before and two weeks after flowering. Many of the experimental lines and varieties being tested this year are here as the result of the Asian Maize Network (AMNET). Funded by the Asian Development Bank, this CIMMYT-led project has brought together scientists from the national maize programs of five South East Asian countries to develop drought tolerant maize varieties and deliver them to farmers.

AMNET achievements

“We already have two releases under AMNET,” explains Grudloyma. These are varieties produced by the national maize program, focusing prior to AMNET on resistance to the disease downy mildew, which have also proved themselves under drought screening. The first, Nakhon Sawan 2, was released in 2006. The second, experimental hybrid NSX 042029, has been popular in farmer participatory trials and with local seed companies, and is slated for release in 2008. “This is the best hybrid we have,” says Grudloyma with pride. “It’s drought tolerant, disease resistant, and easy to harvest by hand.” The two hybrids incorporate both CIMMYT and Thai breeding materials, a legacy of Thailand’s long relationship with the Center.

In current work under AMNET, the Thai breeders are crossing lines from the national breeding program with new drought tolerant materials provided each year by CIMMYT. “We screen for drought tolerance in the dry season and downy mildew resistance in the rainy season, and take the best materials forward each year,” explains Grudloyma. “We now have many promising hybrids coming though.”

Funding from the project has also had a big impact on the team’s capacity to screen those hybrids. “We had a small one to two hectare facility before; now we have four hectares with a perfect controlled-irrigation system. Because we’ve been in AMNET, we have good varieties and good fieldwork and screening capacity. This is leading to other projects, for example we’re currently working with GCP [the Generation Challenge Program].” Thailand has also taken on a role in seed distribution, receiving and sharing seed from the AMNET member countries, and testing the varieties on the drought screening plots at the Research Center.

Sharing knowledge across borders

mar02For Grudloyma, this collaborative approach is a big change. “We’ve learned a lot and gained a lot from our friends in different countries. We each have different experiences, and when we share problems we can adapt knowledge from others to our own situations.”

The Thai researchers can come up with many examples of things they have learned from their AMNET partners. “We saw the very friendly relationships between a number of seed companies and the Vietnam team, and we tried to modify the way we worked in Thailand,” says Grudloyma. “This year we shared promising hybrids with seed companies before release. Before that we just worked with farmers and small seed producers, and the seed companies could buy seed after varieties were released.” The result has been wider distribution of new drought tolerant varieties: this year the group received orders for enough parental materials for NSX 042029 to produce 300 tons of seed.

“We learned how to evaluate farmer preferences better from the Philippines team,” adds Amara Traisiri, an entomologist working on responding to these preferences. “We now use their method in all our field trials with farmers and we’re getting a more accurate picture of what farmers want.” This information caused the group to include ease of hand harvest as another trait to consider in their breeding program, after realizing how important it is to farmers. And the learning continued at this month’s annual regional training meeting. “Today, we learned a system for farmer participatory trials,” says Grudloyma, referring to a session on planning and analyzing trial data from CIMMYT maize breeder Gary Atlin. “With these new ideas to direct us we’ll be able to get better results.”

Almost all Thai maize farmers grow improved hybrid varieties, and for Ruanpeth, her priorities are clear. “Drought tolerance is very important”, she says, and dismisses other traits, such as yellow color. “No, I want varieties that are drought tolerant.” She likes to try the latest hybrids and has grown more than 10 commercial varieties. She eagerly accepts the suggestion from Grudloyma’s team to try their new hybrids on a small area this year.

The project has built capacity and relationships that will endure, according to Grudloyma. “Our station is now very good at working with drought,” he says, “and we’ll continue cooperation and providing germplasm. We already have plans for collaboration with China and Vietnam.” CIMMYT’s role in providing germplasm and access to new knowledge and technologies has been vital, as has its leadership. “It’s very hard to get hold of germplasm from anywhere except CIMMYT,” says Grudloyma. “It’s also difficult to come together: we needed an international organization to coordinate and facilitate regional interaction. With CIMMYT everything is easier.”

For more information: Kevin Pixley (k.pixley@cgiar.org)

Quality and quantity: China-CIMMYT wheats take prize

CIMMYT E-News, vol 4 no. 12, December 2007

dec03Three high-quality wheat varieties developed by researchers from the Shandong Academy of Agricultural Science and the Chinese Academy of Agricultural Science (CAAS), drawing on CIMMYT wheat lines and technical support, were sown on more than 8 million hectares during 2002-2006, according to a recent CAAS economic study. They contributed an additional 2.4 million tons of grain—worth USD 513 million, with quality premiums.

“Improving processing quality has become an extremely important objective for sustainable development of the wheat industry in China,” says Zhonghu He, CIMMYT wheat expert in the country and researcher at the Chinese Academy of Agricultural Science (CAAS). He was part of a joint research team from CAAS and Shandong Academy of Agricultural Science (Shandong AAS) that combined Chinese and CIMMYT wheat lines to develop three outstanding varieties for making pan breads and noodles—mainstays on Chinese dinner tables.

The three varieties were sown cumulatively on more than 8.0 million hectares in China during 2002-2006, adding an additional 2.4 million tons of grain to Chinese wheat production and some USD 411 million to wheat farmers’ incomes, according to analyses by the Agricultural Economy and Development Institute of CAAS. “Farmers benefited by an additional USD 101 million in quality-based premiums,” says He, “and USD 8 million more was generated through marketing seeds of these varieties. Finally, the improved quality of these wheats has greatly benefited the milling and food industries.”

Award-winning wheat and work

The research team has received two Scientific Progress Awards from China’s State Council, as well as awards from the Shandong Provincial Government (2003) and Beijing Municipal Government (2006). In December 2007, in a ceremony in the Great Hall of the People, the team was given the 2007 Award for Outstanding Agricultural Technology in the Asia-Pacific Region of the Consultative Group on International Agricultural Research (CGIAR). “This is the only research team in the Chinese agricultural community that has produced such impact and received such high honors from the provincial and central governments in recent years,” says He.

The wheat quality research team also established methodologies to test for Chinese noodle quality and for applying molecular markers. “A total of 72 scientific papers have been published in refereed journals on this work, including 19 in leading international journals,” says He. “Besides being used throughout China, the molecular marker and noodle evaluation procedures are widely used in Australia and at CIMMYT.”

Decades of strong partnership

Chinese and CIMMYT wheat researchers have carried on joint research since the early 1970s, helping both parties to develop varieties with enhanced disease resistance and higher yields, among other traits. CIMMYT has contributed particularly to the quality of Chinese wheats. Two of the varieties emerging from the work described above were improved for grain quality through cross-breeding with the CIMMYT wheat genotype Saric F74. The breeder who developed them, Liu Jianjun, attended CIMMYT training courses and did his MSc thesis on noodle quality under the supervision of He and of Roberto J. Peña, head of industrial quality at CIMMYT. CIMMYT and China have jointly organized more than a dozen training courses, workshops, and conferences involving at least 1,000 Chinese researchers.

New CAAS-CIMMYT effort to confront climate change and killer strain of wheat disease

On 04 December 2007, CAAS and CIMMYT launched a three-year joint breeding initiative worth USD 1 million per year to develop new wheat varieties that tolerate heat and drought—helping farmers face climate change—and that resist major diseases of the crop.
“Of particular concern is the new, virulent strain of stem rust, Ug99, which appeared in eastern Africa eight years ago but has since moved on prevailing winds to the Middle East and could soon threaten the vast wheat lands of Asia,” says He. “One of the varieties, Jimai 20, developed by the CAAS-Shandong team, was the only wheat cultivar from China to show high resistance to Ug99 in field screening in Kenya.”

For more information: Zhonghu He, wheat breeder (zhhe@public3.bta.net.cn)

Value from building human capacity

CIMMYT E-News, vol 4 no. 6, June 2007

CIMMYT helps build scientific strength in Turkey.

When you first meet Gul Erginbas and Elif Sahin standing side by side in an experimental wheat plot in Turkey, what stands out are the differences between them. One is dressed very traditionally, head and body covered, the other is in close-fitting denim jeans. It seems these two young postgraduate students could not be less alike. But when it comes to science the external differences disappear. These are two committed and talented young people who hope to make a difference in their own country. They are already making a difference for CIMMYT.

“I really depend on them,” says Julie Nicol, the CIMMYT soil-borne disease pathologist, based in Turkey. “We work in close collaboration with the Turkish Ministry of Agriculture and several universities. Both women have started working on their doctoral degrees, supervised by key university experts and myself. This is a highly effective way to build capacity in applied research both for Turkey and the world.” Having bright and committed students on the ground is also very beneficial to CIMMYT.

The Anadolu Research Institute at Eskisehir is one of Turkey’s oldest and most important agricultural research stations, especially for winter wheat breeding. It is about a three-hour drive east of the capital city, Ankara, on the broad and rolling Anatolian plateau. At this station CIMMYT (together with ICARDA and Turkey) works in winter wheat breeding and also in Nicol’s area of specialization, finding ways to reduce the threat to wheat from pathogens in the soil, the microscopic worms and fungi that cause damage underground long before the impacts are seen in the part of the wheat plant that is above the ground.

Both Sahin and Erginbas have supervisors at their own universities in Turkey but having a CIMMYT scientist like Nicol as a co-advisor really helps. “She brings us a global perspective and makes sure we work with care and precision,” says Elif. “And she really knows the field. It is easy to learn from her,” adds Gul. “With this experience, I hope I can contribute to science in Turkey in the future.”

jun07Erginbas is just beginning work on a project to screen wheat for resistance to a disease called crown rot. It is caused by a microscopic fungus in the soil called Fusarium culmorum (related to but not the same as the Fusarium fungus that causes head blight in wheat) and can cause farmers serious loss of yield. Her first tests have been with plants grown in a greenhouse on the station. Later she will expand her work to the field and as part of her program will spend some time in Australia with the Commonwealth Scientific and Industrial Research Organization (CSIRO). Since there is some evidence that the fungus that causes crown rot can survive for up to two years in crop residues, there is a great interest in this work as more farmers adopt reduced tillage and stubble retention on their land.

Sahin is focusing on an underground pest called the cereal cyst nematode, a tiny worm that can cause great damage to the root system of the plant. It can be responsible for losses of up to 40% of rainfed winter wheat in Turkey and there is evidence that the nematodes are very widespread in west Asia, North Africa, northern India and China. Sahin, funded by a scholarship from the Turkish funding body TUBITAK, is looking for sources of resistance to the pest.

jun06These pathogens are especially damaging when wheat is grown under more marginal conditions, and so the work in Turkey that these two young students are doing may have its greatest impact where farmers struggle the most.

For more information: Julie Nicol, pathologist (j.nicol@cgiar.org)

AMBIONET: A Model for Strengthening National Agricultural Research Systems

CIMMYT E-News, vol 3 no. 6, June 2006

june03A USAID-funded study by Rutgers economist Carl Pray concludes that present and future impacts of the Asian Maize Biotechnology Network (AMBIONET)—a forum that during 1998-2005 fostered the use of biotechnology to boost maize yields in Asia’s developing countries—should produce benefits that far exceed its cost.

Organized by CIMMYT and funded chiefly by the Asian Development Bank (ADB), AMBIONET included public maize research institutions in China, India, Indonesia, the Philippines, Thailand, and Vietnam. “Despite the small investment—about US$ 2.4 million from ADB and US$ 1.3 million from CIMMYT—the network was successful in increasing research capacity, increasing research output, and initiating the development of technology that should benefit small farmers and consumers,” Pray says.

Benefits already seen in the field, with more to come

Pray estimates that farmers in Thailand and Southern China are already gaining nearly US$ 200,000 a year by sowing downy-mildew-resistant hybrids from the project. Pray’s future projections are much more dramatic. An example is drought tolerant maize: if such varieties are adopted on just a third of Asia’s maize area and reduce crop losses by one-third, farmers stand to gain US$ 100 million a year. Furthermore, in India AMBIONET has improved knowledge, capacity, and partnerships with private companies; a 1% increase in yield growth from this improvement would provide US$ 10 million per year, according to Pray.

Emphasis on applied work pays off

AMBIONET’s applied approach stressed formal training and attracted Asian researchers to work on maize germplasm enhancement and breeding. This included graduate students, scientists who switched from an academic to an applied-research focus, and advanced-degree scientists with experience in DNA markers and mapping for maize. Many noted that the partnering of molecular geneticists with breeders strengthened their interactions and the exchange of expertise. The project also boosted funding for maize breeding research. Several AMBIONET labs used project money to leverage significant institutional and government grants. Major research programs emerged from AMBIONET in India and China.

In a 2003 interview, Shihuang Zhang, leader of a project team at the Chinese Academy of Agricultural Sciences’ (CAAS) Institute of Plant Breeding, said: “AMBIONET came along at the ideal time for us. We were able have some of our young people trained and start our lab. Then in 1998 and 1999, China changed the way research was funded. We
were able to get big projects for molecular breeding.” The CAAS group used the initial money, equipment, training, and advice from AMBIONET to start the fingerprinting, mapping, and a markers lab, as well as to hire leading national maize breeding and molecular genetics experts. According to Pray, this eventually converted the group into China’s major maize molecular breeding and enhancement program.

Region-wide sharing

Benefits were not confined just to individual labs, as groups shared knowledge and resources across borders. The Indonesian team, for example, sent two young scientists for extended training in the laboratory of B.M. Prasanna, at the Indian Agricultural Research Institute in New Delhi. Veteran Indonesian maize breeder Firdaus Kasim reported this to be extremely useful: “Prasanna showed our scientists how to do downy mildew and genetic diversity research. He was a very good teacher. After they came back they made a lot of progress.” Prasanna also provided lines that the Indonesian trainees fingerprinted in diversity studies and 400 primers (markers) for downy mildew resistance.

Lines, data, and markers from AMBIONET are in use region-wide. For example, sugarcane mosaic virus was identified as a serious constraint in several countries, and partners are using resistant lines developed under AMBIONET. Based on information from diversity studies conducted under the project, Vietnamese researchers are developing hybrids that resist lodging and are drought tolerant.

A regional program that worked

Research projects provided the focal point for AMBIONET, with training activities, annually meetings, and the technical backstopping contributing to the programs’ success. “The combination of collaboration, cooperation, and competition
was impressive,” says Pray, in the study’s closing statement. “This is the way good, collaborative research is supposed to work.”

For more information contact Jonathan Crouch (j.crouch@cgiar.org)

New Publication Presents Outcomes of Eighth Asian Regional Maize Workshop

January, 2005

New Publication Presents Outcomes of Eighth Asian Regional Maize Workshop

A copy of the Proceedings of the Eighth Asian Maize Workshop is now available in PDF form. The workshop, which took place during 5 – 8 August 2002 in Bangkok, Thailand, was titled “New Technologies and Technology Delivery Systems for the New Millennium.” Jointly organized by CIMMYT, Kasetsart University, and Thailand’s Department of Agriculture, the event drew more than 150 participants from Asia and invited speakers from Latin America and Africa. The 61 papers included in the proceedings cover molecular tools for maize improvement, genetics and breeding, crop management, biotic and abiotic stresses affecting maize, technology adoption and dissemination, and country reports. Published by CIMMYT, it was edited by G. Grinivasan, P.H. Zaidi, B.M. Prasanna, F. Gonzalez, and K. Lesnick. In addition to the PDF, seven hundred paper copies are available.

Slated for September 2005, the Ninth Asian Regional Maize Workshop will convene in Beijing, China. For further information, please contact Dr. Zhang Shihuang, CAAS, Beijing, China. Executive Secretary, Organizing Committee, 9th ARMW. Email: cshzhang@public.bta.net.cn

The PDF can be found here: http://staging.cimmyt.org/english/docs/proceedings/armw/contents.htm

The call for maize mounts in Asia

February, 2005

1AsiaThe demand for maize in Asia is expected to skyrocket in the next two decades, driven primarily by its use for animal feed. In the uplands of seven Asian countries, however, demand is also increasing in the farming households who eat the maize crops they grow. CIMMYT and the International Fund for Agricultural Development (IFAD) have recently completed a project promoting food and livelihood security for upland farmers in Asia who depend on maize for food and feed.

By 2020, the International Food Policy Research Institute (IFPRI) estimates that demand for maize in all developing countries will surpass the demand for wheat and rice, with Asia accounting for over half of this growth. Responding to these predictions, teams of researchers visited farmers in the uplands of China, India, Indonesia, Nepal, the Philippines, Thailand, and Vietnam to discover ways in which maize technologies could improve livelihoods.

2Asia

To further develop maize improvement recommendations, national workshops and seven publications built upon the farmer surveys. Careful planning and appropriate procedures on the part of scientists and policy makers will ensure an easier transition as farmers face the oncoming demand. A clear message that emerged from the study in Vietnam, for example, was the need to help farmers apply sustainable practices to avoid degrading natural resources—particularly in fragile, marginal settings—as the demand intensifies.

These conclusions were drawn by researchers conducting rapid rural appraisals with farmers in commercial and semi commercial systems in the up- and lowlands of these seven countries. The second stage of fieldwork entailed more in-depth participatory rural appraisals in marginal, isolated areas and involved village leaders and groups of farmers. Details on the sociological, agro-economical, environmental, and technological aspects of maize production were assembled, and the resulting publications can be viewed, downloaded, or ordered here.

In addition to CIMMYT and IFAD, the project involved collaboration with IFPRI, Stanford University, senior officials of national research programs, and ministries of agriculture.

Quality Analysis for Wheat

CIMMYT E-News, vol 2 no. 9, September 2005

quality1CIMMYT’s wheat quality lab expands and upgrades to meet growing demand of wheat for diverse food uses.

If you live in the Middle East or North Africa, you probably eat couscous. Chapati, a type of flat bread, accompanies meals in India. Many have noodles with meals in China. As varied as these foods are, they all come from wheat but require different characteristics to be considered of “good quality”—so that the wheat will mill and bake well for the desired preparation. CIMMYT works to provide farmers worldwide with wheat that will be valued in their area and has recently expanded capacity to meet growing demand, which for developing countries is nearing 300 million tons of wheat per year.

“To make a wheat variety good for both the farmer and the eater, you need to consider yield, disease resistance, and quality,” says Roberto J. Peña, Head of Grain Quality at CIMMYT. Peña works with breeders at CIMMYT and national programs all over the world to test wheat quality. Traits such as yield and disease resistance are obvious at harvest, but examining quality traits such as starch content and elasticity require complex and time-consuming tests. These difficult tasks have become easier with a new laboratory and upgraded technologies.

To reduce the time it takes to screen for quality traits, CIMMYT has equipped a quality laboratory in Ciudad Obregon in northwestern Mexico, in addition to the lab at headquarters. Now thousands of wheat lines can be screened for quality immediately after being harvested in Obregon. CIMMYT wheat breeders can see the results before they plant the next round of wheat lines. Looking at desirable quality traits much earlier in the breeding process will save time, money, and plot size as it will be easier for breeders to plant only wheat with high quality and all of the other traits they are looking for.

Peña intends to make more use of techniques like near infrared spectroscopy (NIR) analysis and marker-assisted selection (MAS) to enhance the efficiency of quality testing. “By screening thousands of lines quite simply, we are able to have a clear vision of what wheat lines aren’t going to be useful—we’re implementing modern technologies for improving end-use and nutritional quality,” he says.

Near infrared spectroscopy can be used to evaluate grain texture, starch, protein, elasticity, and mineral content. By looking into these attributes it is possible to determine whether the environment or crop management influenced the quality—all of this without the effort of milling the wheat into flour, making dough, and finally baking it. When the tests are complete, the same grain can be planted and the breeder knows what to expect.

By using MAS data from CIMMYT’s molecular biology lab, Peña and his team can take a glimpse at a particular wheat line’s DNA to determine if particular genes are present or absent. They can also see what genes have a more relevant role in defining quality, as well as tell if wheat carries high or low levels of protein. For example, if wheat has high levels of protein, it will be more elastic. In the future, they hope to start testing for the presence of specific genes associated with milling efficiency and starch properties.

By continuing to select for quality, CIMMYT hopes to enable farmers to grow wheat for quality food, whether it be couscous, chapati, or sliced bread.

For further information, contact Roberto J. Peña (j.pena@cgiar.org).

“Hot spots” in Maize for Dry Regions in the Developing World

CIMMYT E-News, vol 2 no. 10, October 2005

hotspotA new genomic map that applies to a wide range of maize breeding populations should help scientists develop more drought tolerant maize.

Throughout the developing world, drought is second only to soil infertility as a constraint to maize production, and probably reduces yields worldwide by more than 15 percent (more than 20 million tons) annually. Lines have now been drawn on a new battleground: a map of the chromosomes that shows important areas that help maize resist drought.

Of the world’s three most important cereal crops (rice, wheat, and maize), maize has the most complex genetic structure. As maize has been bred and adapted to many different growing environments, selection has produced a crop that contains significant differences in levels of genetic diversity. But many genes and genetic sequences should be the same or similar. Scientists are hopeful that genetic traits for drought tolerance can be found in such shared genomic sections, across a wide range of tropical maize types. A new consensus map of genes across maize populations may be the key to identifying universal genetic “hot spots,” those genomic regions that confer drought tolerance in diverse settings to varying degrees.

hotSpot2
“Are there any regions in the maize genome that come out as ‘hot spots’?” Jean-Marcel Ribaut and his team have asked. Known to scientists as quantitative trait loci (QTL), these regions tell scientists approximately where the genes determining a particular plant trait are located. The QTL is not a gene itself but a genomic region in which genes of interest are probably located. Prior genomic maps of QTLs for drought tolerance in tropical maize applied only to specific maize lines or populations. The CIMMYT team and partners have developed a single map that combines available drought QTL data from many trials of different tropical maize types in diverse environments. “Having all the QTL information integrated into a single map should allow us to identify the outstanding genomic regions involved in drought tolerance,” Ribaut says.

Scientists have measured drought related traits such as ear number, chlorophyll, and carbohydrate content of maize plants in the field, and have extracted and analyzed DNA from the same plants in order to plot the traits on the genomic maps. Ribaut, now Director of the Generation Challenge Programme, and CIMMYT molecular geneticist Mark Sawkins hope to link the traits they measured in the field with regions in the maize DNA.

“The idea is ambitious,” says Ribaut, “for it should allow maize breeders to select the right parents for drought tolerant maize by ensuring they have these important regions on their genome.”

With funding from the Rockefeller Foundation, members of the project team will give courses on this approach in to NARS scientists in Kenya and China over the coming months.

For further information, contact Jean-Marcel Ribaut (j.ribaut@cgiar.org) or Mark Sawkins (m.sawkins@cgiar.org).

Fellows Program, World Food Prize Laureates Highlight Borlaug’s 90th

March, 2004

borlaug_photo1US Secretary of State Colin Powell paid tribute to Iowa and in particular to one man, known as the father of the Green Revolution, who was born there 90 years ago.

“On behalf of the American people, on behalf of President Bush, we gather to thank heaven for the great state of Iowa,” Powell said at a State Department ceremony to announce the 2004 World Food Prize Laureates on 29 March. “Most of all, we salute Iowa’s own, Norman Borlaug, for creating the World Food Prize and for his own prize winning work against hunger.”

US Secretary of Agriculture Ann Veneman joined Powell in honoring Dr. Borlaug’s 90th birthday in Washington DC. In front of more than 200 guests, including FAO Director General Jacques Diouf, USAID Administrator Andrew Natsios, World Bank Vice President and CGIAR Chair Ian Johnson, CGIAR Director Francisco Reifschneider, and CIMMYT Director General Masa Iwanaga, Veneman described the Norman E. Borlaug Agricultural Science and Technology Fellows Program to be inaugurated by the United States Department of Agriculture.

“Thanks to Dr. Borlaug’s pioneering work in the 1960’s to develop varieties of high-yielding wheat, countless millions of men, women and children, who will never know his name, will never go to bed hungry,” Powell said. “Dr. Borlaug’s scientific breakthroughs have eased needless suffering and saved countless lives. And Dr. Borlaug has been an inspiration to new generations across the globe who have taken up the fight against hunger and have made breakthroughs of their own.”

A tribute to Dr. Borlaug’s individual pursuit of using science and technology to fight hunger, the Fellows Program will focus on strengthening agriculture in developing countries by incorporating and advancing new science and technology. Proposed by Texas A&M University’s Agriculture Program and established by the USDA, it will give scientific training to fellows from developing countries and support exchanges among university faculty, researchers, and policy makers.

borlaug_photo2

The program aims to prepare professionals who want to lead developing countries in agricultural research and education while embracing the values that Dr. Borlaug’s life and work represent. It will be managed by the USDA’s Foreign Agricultural Service, the US Agency for International Development, the US Department of State, land grant colleges, and Texas A&M University, where Dr. Borlaug is professor emeritus.

In 2004, an initial group of fellows from around the world—especially Africa, Latin America, and Asia—will begin training or research programs at US schools, government agencies, private companies, international agricultural research centers such as CIMMYT, and nonprofit institutions. The program will span such diverse areas as biotechnology, food safety, marketing, economics, and natural resource conservation, and it will include studies of policies and regulations to foster the use of new technology.

The US$ 2 million research grant given to the Texas Agriculture Experiment Station by USDA-Cooperative State Research, Education, and Extension Service will be managed by a Consultative Committee, which comprises representatives from universities, foundations, government agencies, and countries affiliated with Dr. Borlaug’s work. This committee will serve as a donor council, advise on the selection and placement of fellows, and evaluate the program.

At the US State Department, Secretary of State Powell named the new World Food Prize Laureates: Yuan Long Ping of China and Monty Jones of Sierra Leone, who have made advances in high-yielding rice.

borlaug_photo3
Borlaug founded the World Food Prize in 1986 to honor people who have made important contributions to improving the world’s food supply. Endowed since 1990 by businessman and philanthropist John Ruan, this international award recognizes achievements of people who have improved the quality, amount, or accessibility of food in the world to advance human development.

World Food Prize Laureate Yuan has revolutionized rice cultivation in China. Known as the Father of Hybrid Rice, he helped cultivate the first successful and widely grown hybrid rice varieties in the world. More than 20 countries have adopted his hybrid rice, and his breeding methods have helped provide food for tens of millions of people.

World Food Prize Laureate Jones, formerly a rice breeder at WARDA—the Africa Rice Center—in Cîte d’Ivoire, successfully made fertile inter-specific African and Asian rice crosses that combined the best characteristics of both gene pools. This “New Rice for Africa,” or NERICA, has higher yields and better agronomic characteristics for African conditions.

Jones and Yuan will receive a $250,000 prize to share in October.

borlaug_photo4

Dr. Borlaug has dedicated 60 years to building knowledge and fostering development in poor countries. Since the mid-1940s, when he arrived in Mexico to work on an agricultural project that was the forerunner of CIMMYT, he has worked tirelessly in the cause of international agricultural research. The innovative wheat varieties that he and his team bred in Mexico in the 1950s enabled India and Pakistan to prevent a massive famine in the mid-1960s and to initiate the Green Revolution. This achievement earned Dr. Borlaug the Nobel Prize in 1970 and created extensive support for a network of international agricultural research centers, known as the Consultative Group on International Agricultural Research (CGIAR).

In order to meet the 1996 World Food Summit goal of cutting in half the number of chronically hungry people by 2015, Powell said the international community must reduce the number of undernourished people by an average rate of 22 million people per year. The current rate is only a decrease of 6 million people per year. Of the more than 800 million severely malnourished people in the world, 80 percent are women and children, he said, but famine is entirely preventable in the 21st century.

More information on the Borlaug Fellows Program: http://www.usda.gov/Newsroom/0125.04.html

More information on the World Food Prize: http://www.worldfoodprize.org

CIMMYT–China Wheat Quality Conference Highlights 10 Years of Collaboration

June, 2004

iwqc_group
Which food crop is traded in larger quantities than any other in the world? The answer is wheat, and China produces more of it than any other country. With more than 150 participants from 20 countries in attendance, CIMMYT and China held their first joint wheat quality conference in Beijing from 29 to 31 May. The conference focused on progress in China’s wheat quality research, educated participants about quality needs of the milling industry and consumers, and promoted international collaboration.

In recent years, advanced science has been making wheat more nutritious, easy to process, and profitable. Scientists can improve quality characteristics such as grain hardness, protein content, gluten strength, color, and dough processing properties. Quality improvement, however, is not an objective, one-wheat-fits-all-purposes kind of business. Wheat end products vary by region and require grain with different characteristics. For example, 80% of wheat in China is used for noodles and dumplings, but the desired wheat quality for those products might not be appropriate for pasta in Italy or couscous in North Africa.

“You can see a wide variation of wheat use reflecting cultural influences over many centuries,” says CIMMYT Director General Masa Iwanaga, who gave a keynote presentation at the conference about the benefits of adding value to wheat to improve the livelihoods of poor people. Iwanaga says he is impressed by China’s wheat quality research and emphasis on biotechnology in recent years.

Participants from major wheat producing regions such as China, Central Asia, India, the European Union, Eastern Europe, the United States, and Australia presented updates on a variety of topics related to the global wheat industry and quality management. The participants included experts in genomics, breeding, crop management, cereal chemistry, and the milling industry, among others.

The US, Australia, Canada, and the EU see Asia as a good market for their wheat, says Javier Peña, head of industrial quality at CIMMYT. Asian foods such as noodles have been becoming more popular in the west, says Peña, while traditional western wheat-based foods have been gaining popularity in Asia. The milling industry has been growing to meet this increasing demand. “It was evident that globalization is influencing consumers’ preferences,” he says.

Conference participant and CIMMYT wheat breeder Morten Lillemo thinks the organizers did a good job assembling top lecturers to provide information. Chinese wheat breeders have been paying a lot of attention to improving quality, he says, and participants now understand the characteristics that traditional Chinese end products require.

“China is the largest wheat producer in the world, but the quality of their wheat is highly variable, even for traditional products like steamed bread and noodles,” says Lillemo. “For me it was most interesting to learn about the wheat quality work going on in China, which challenges they have, and how they are dealing with them.”

The 10-year-long CIMMYT–China collaboration has been fruitful. Chinese wheat has been used to develop new varieties with Fusarium and Karnal bunt disease resistance, high yield potential, and agronomic traits such as lodging resistance and rapid grain filling. In turn, CIMMYT has helped to improve the productivity, disease resistance, and processing quality of Chinese wheats. It has also developed human resources and helped build research infrastructure.

“The progress China has made in this period has been impressive in the areas of molecular biology, breeding, and food processing,” says Peña, who thought the conference covered a good balance of topics, ranging from genetics to consumer preferences. “The government is really supporting the research. They have new buildings and modern equipment for molecular biology and wheat quality testing.”

The Quality and Training Complex sponsored by the Chinese Academy of Agricultural Sciences and CIMMYT is a new effort. It offers a testing system for various wheat-based foods, facilities for genetic studies and other research using molecular markers, and training for graduates, postdoctoral fellows, and visiting scientists.

Along with improved wheat and better cropping practices that help farmers save money on costly inputs, such as water, Iwanaga believes that more marketable maize and wheat grain will be important for improving the profitability of maize and wheat production in developing countries. He would like to increase the benefits that farmers reap from their harvests by bettering a range of traits, including taste, texture, safety, and nutrition with added protein or vitamins. That way, farmers can earn more money from better quality wheat.

Conference presentations covered a wide range of topics: molecular studies of the evolution of the wheat genome; new tools to assess heat tolerance and grain quality in wheat genotypes; molecular genetic modification of wheat flour quality; the biochemical and molecular genetic study of glutenin proteins in bread wheat and related species; the molecular investigation of storage product accumulation in wheat endosperm; molecular and conventional methods for assessing the processing quality of Chinese wheat; challenges for breeding high-quality wheat with high yield potential; the impact of genetic resources on breeding for breadmaking quality in common wheat; wheat quality improvement by genetic manipulation and biosafety assessment of transgenic wheat lines; and quality characteristics of transgenic wheat lines.

The conference was organized by the Chinese Academy of Agricultural Sciences / National Wheat Improvement Center, the Chinese Academy of Science, CIMMYT, BRI Australia, Limagrain, and the Crop Science Society of China. It was sponsored by the Ministry of Science and Technology, the Ministry of Agriculture, the National Nature Science Foundation of China, the Grains Research and Development Corporation, and Japan International Cooperation Agency.

For information: Zonghu He

The real worth of wheat diversity

What is diversity worth? That is the issue addressed by “Economic Analysis of Diversity in Modern Wheat,” a new collaborative publication that explores the economics, policies, and complications of modern wheat diversity.

Everyone wants the best, and farmers are no different. But when a large number of wheat farmers opt to sow the same improved varieties on large extensions of cropland, long-term diversity could be sacrificed for relative short-term gains.

Continue reading

Aguas negras: An agricultural revolutions buds in Mexico

Just outside Mexico City, a group of farmers who grow maize and other crops using sewage water are adopting cutting-edge conservation agriculture techniques to save on irrigation and reduce their costs.

Geraldo GĂĄlvez Orozco is a man with wrinkles as deep as his voice and hair that is decidedly neither gray nor white. After concluding his 40-year career as a math professor GĂĄlvez went looking for a new challenge and found it in farming.

Gálvez is a 79-year-old Hidalgo native who has been farming in the Mezquital Valley for 15 years. The valley is nestled in the rolling mountains of southwest Hidalgo State, situated 60 kilometers north of the country’s capital, Mexico City. It is a region known for many things; the Mezquital trees that canvas its hills, an arid climate, and surprisingly, a thriving agricultural sector. Despite the region’s parched soils—the Mezquital Valley receives an average of only 527 mm of rainfall each year— about half of the valley’s residents are farmers.

Putting waste to work

Since 1789, Hidalgo’s farmers have relied heavily on an unusual form of irrigation—wastewater from Mexico City. The valley’s farmers use the sewage water, referred to as ‘aguas negras’ or black water, to irrigate 563 square kilometers of grain. It is the largest wastewater-irrigation system in the world.

Using sewage water to irrigate food crops may raise the suspicions of some, but 10% of the world’s crops are irrigated using some form of sewage, according to the IRC International Water and Sanitation Centre. Farmers in India, China, Pakistan, Jordan, and Israel apply the practice. Wastewater is spiked with nutrients or ‘natural fertilizers’, so crops are enriched without the added cost of fertilizer. Precautions are taken to ensure the crops irrigated by the aguas negras are of the highest quality. By Mexican law, farmers can only use sewage water to irrigate cereal and fodder crops. Maize and alfalfa are the most popular.

Adopting in the face of change

Today, the farmers of the Mezquital Valley are facing change. Within the next two years, the black water irrigation supply will decrease due to a new government initiative to purify Mexico City’s wastewater and reuse it within city limits.

To reduce their water use and maintain their soils, farmers in Hidalgo are switching from traditional agriculture practices to an innovative way of farming that is used extensively in Argentina, Australia, Brazil, Canada, and the USA.

From arithmetic to agronomy

GĂĄlvez started experimenting with conservation agriculture-based practices eight years ago when he heard of its benefits from a fellow farmer. He began by trying zero-tillage, a practice whereby crops are seeded directly into field residues without plowing, and a key proponent of resource-conserving farm practices. Today, on the three-hectare farm where GĂĄlvez grows maize and oats, maize husks and cobs litter the ground. Husks and cobs that assure any curious passer-bys that GĂĄlvez indeed practices conservation agriculture, as leaving crop residue is another foundational principle.

“Since switching to conservation agriculture, I have noticed a small increase in my yields compared to what I used to produce under irrigation, but I don’t do it for the yields. Living in a climate like this, keeping my soils in good condition is my number one priority,” Gálvez says, “that’s why I practice conservation agriculture.”

According to FermĂ­n HernĂĄndez MĂ©ndez, a graduate of CIMMYT’s conservation agriculture-certification course and a technician with the Mexican subsidiary of Monsanto, ASGROW seed company, GĂĄlvez isn’t the only farmer in Hidalgo changing his ways. “In Hidalgo, conservation agriculture is a revolution,” said HernĂĄndez, “Farmers are adopting the practice because they know that a change is coming— a change that is most likely going to strain their soils.”

The work of the Mexico-based Conservation Agriculture Program in the Mezquital valley is funded principally by the Mexican Agricultural Secretariat under the MasAgro initiative and by Monsanto-ASGROW, as well as with support from numerous foundations and local organizations.
The work of the Mexico-based Conservation Agriculture Program in the Mezquital valley is funded principally by the Mexican Agricultural Secretariat under the MasAgro initiative and by Monsanto-ASGROW, as well as with support from numerous foundations and local organizations.

For soil’s sake

It can be seen in the Mezquital Valley, as well as around the globe, that farmers who have practiced traditional agriculture for generations are adopting conservation agriculture. This is because today, more than ever before, global changes are threatening agriculture and food security worldwide.

Climate change, drought, soil degradation, and a rapidly growing populace are taking effect, and traditional farming practices can’t keep up. In the face of this adversity, farmers are switching to sustainable farming practices –practices that use fewer resources, facilitate healthy, nutrient-rich soils, and improve farmers’ yields.

Conservation agriculture is a forward-thinking way of farming based on three principles: minimum soil movement, covering the soil surface with crop residues and/or living plants, using crop rotations to avoid the build-up of pests and diseases. These principles are widely adaptable and can be used for a variety of different crops in varied soil types and environments.

Sustainable and beneficial

Mezquital Valley farmers receive record yields due to their nutrient-rich irrigation system. Farmers in Mexico’s highlands – where crops rely on precipitation alone – are not so lucky, but because of conservation agriculture’s water-saving benefits, these farmers have produced acceptable yields in dry years when neighboring fields withered. During the 2009 drought in the Central Highlands, farmers who practiced conservation agriculture harvested up to 125% more maize than those who farmed the traditional way.

Other attractive benefits of conservation agriculture are its cost and labor savings. Reducing or eliminating plowing allows farmers to sow and fertilize a field in a single sweep, rather than multiple passes. Decreasing machinery use saves time, fuel, money, and wear and tear on machinery.

Combining higher yields with lower costs, conservation agriculture allows farmers in rainfed areas to earn more and save more. This meant an average net return that was almost twice as high as the earnings of traditional practitioners. The average net return of Mexican highlands farmers who practice conservation agriculture was more than 800 USD per hectare compared to the approximate 400 USD per hectare that conventional highlands farmers reaped. It is no secret that conservation agriculture is putting more money in farmers’ pockets and more food in mouths around the world.

A smooth transition

Although the benefits of conservation agriculture are numerous, its adoption worldwide faces hurdles. One is the competition for crop residues, which often have great value as forage. Also, farmers are skeptical about shifting from the traditional farming method, including tillage, which they and their peers have practiced for generations.

As a conservation agriculture-certified technician, Hernández works to help smooth the transition. “It’s nothing more than a question of culture,” he replied, when asked why some farmers are hesitant to adopt the new principles. “It’s not that they don’t believe us or think we mean ill, it’s simply that they are afraid of change.”

Yet these hurdles begin to appear less daunting as farmers face rising temperatures, sky-rocketing fuel prices, and looming water shortages, not to mention mounting demands to grow more food grains locally, rather than importing them. To help farmers, researchers are exploring and promoting flexible ways to apply conservation agriculture. For instance, they suggest that farmers keep a minimum of 30% ground cover year-round. The remaining residues can be used or sold as forage. The new system also opens opportunities for more diversified cropping, including growing fodder crops, which can provide additional income for farmers.

Patience paying off

“I’m not worried for myself, I have all I need. I am worried for my children. The land needs to stay healthy and fertile for the future generations,” Gálvez says as his shoes, one step behind his wooden cane, crunch through the corn husks and stalks that blanket his fields. The air is dry and the sun is searing, yet Gálvez’s crops seem at home in their arid environment.

Version 3.2 of the QTL IciMapping software released

QTL IciMapping is freely-available public software capable of building high-density genetic maps and mapping quantitative trait loci (QTLs). Compared with previous versions, the latest version has five new features: dominant/recessive markers are considered in recombination frequency estimation, map construction and QTL mapping; a new functionality called IMP can be used to build an integrated map from multiple genetic linkage maps sharing common markers; a new tool called 2pointREC can be used to estimate the pair-wise recombination frequency in biparental populations; many more markers can be handled by this software— for example, it can perform map construction and QTL mapping of more than 5000 markers; and linkage map figures are improved.

The software is project-based; kernel modules for building linkage maps were written using C#, those for QTL mapping were written using Fortran 90/95, and the interface was written using C#. QTL IciMapping runs on 32 and 64-bit computers with Windows XP/Vista/7 and .NET Framework 2.0(x86)/3.0/3.5. Research and development of the software was supported mainly by the CGIAR Generation Challenge Program, National 863 Program, 973 Program, and the Natural Science Foundation of China. The latest version is freely available (here). For more information, contact Dr. Jiankang Wang (jkwang@cgiar.org or wangjk@caas.net.cn).