Skip to main content

Location: Bangladesh

For more information, contact CIMMYT’s Bangladesh office.

CSISA wheat breeders plan for future gains in South Asia

Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle
Participants from four south Asian countries attended CSISA’s annual review meeting at Karnal, India. Photo: Bal Kishan Bhonsle

The growing interest of national agriculture research system (NARS) of South Asia in genetic gains and seed dissemination work in Cereal Systems Initiative for South Asia (CSISA) objective 4 (wheat breeding), 50 scientists from Bangladesh, Bhutan, India and Nepal assembled at Karnal, India on September 2-3, 2015 for the 7th Wheat Breeding Review Meeting of this project. The meeting was organized by CIMMYT’s Kathmandu office with support from CIMMYT-Delhi/Karnal office and led by Dr. Arun Joshi. Dr. Ravish Chatrath, IIWBR provided strong support as local organizer.

The other CIMMYT participants were Etienne Duveiller, Uttam Kumar and Alistair Pask. Participants included representatives of: the Wheat Research Centre of Bangladesh (Dinajpur); Bangladesh Agriculture Research Institute (BARI), Ghazipur; India’s Directorate of Wheat Research (DWR), Karnal and Shimla; the Indian Agricultural Research Institute (IARI), Delhi and Indore; Punjab Agricultural University, Ludhiana; Banaras Hindu University, Varanasi; the University of Agricultural Sciences, Dharwad; Uttarbanga Krishi Vishwa Vidyalaya, Coochbehar, West Bengal; Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur and Powarkheda; Govind Vallabh Pant University of Agriculture and Technology, Pantnagar; Indian Institute of Science Education and Research (IISER), Kolkata, Mohanpur, Distt. Nadia, W. Bengal; Nepal’s National Wheat Research Program (NWRP), Bhairahwa; Nepal Agricultural Research Institute (NARI); Khumaltar of Nepal Agricultural Research Council (NARC) and Renewable Natural Resources (RNR), Research and Development Centre (RDC), Bajo, Bhutan.

The CSISA meeting began with remarks by the chief guest, Dr. Indu Sharma, Director, IIWBR, Karnal along with Dr. Md. Rafiqul Islam Mondal, Director General, BARI; Etienne Duveiller, CIMMYT, Delhi and Arun Joshi, CIMMYT, Kathmandu. Within a wider framework of discussing issues concerning wheat improvement, the CSISA meeting reviewed the progress of the 2014-15 cycle, and established work plans for the coming crop cycle. Arun Joshi presented a summary of the achievements in wheat breeding over last 6 years and highlighted the impressive results obtained in varietal release, seed dissemination and impact in farmer fields. Dr. Etienne informed he challenges of climate change and the ways our program should be shaped to handle these issues. Dr. Mondal expressed his happiness that CSISA wheat breeding has been very successful in contributing to enhancement of wheat production and producitity in Bangladesh and other countries through a vigourous wheat breeding and seed dissemination with strong linkage with national centres.

Dr. Indu Sharma highlighted the significance of collaborative research with a regional perspective and told the audience about the successes being achieved by CSISA in wheat research especially in handling rust resistance and heat tolerance in south Asia. She expressed his appreciation for new research efforts under CSISA and said that “the South Asia-CIMMYT collaboration is paramount to the food security and livelihood of the farmers.” She also said that seeing new challenges there is much more need for such collaborative research efforts for the economic prosperity and good health of agriculture sector in south Asia.

Four review sessions were conducted, chaired by NARS colleagues Dr. Indu Sharma, Dr. Mondal, Dr. Ravi Pratap Singh and Dr. S.P. Khatiwada. Three sessions were used to present review reports and work plans from the 10 research centers, while two other sessions discussed progress in physiology, spot blotch and strengthening linkage of wheat breeding with seed dissemination and capacity building in South Asia. A major discussion was held to devise strategies to strengthen research to handle future threats to wheat such as yellow rust, early and late heat stress, water scarcity and to enable environment for fast track release of varieties so that new seed can reach to farmers as soon as possible.

Arun Joshi also highlighted major achievements in CSISA wheat breeding through very able collaboration by national centres in South Asia. He emphasized that breeding for biotic and abiotic stress tolerance gained momentum through CSISA by developing varieties with faster grain filling and flexibility to adapt to a range of sowing dates. Not only these new varieties were developed, improved networking with public and private sector seed hubs enabled fast track inclusion of these varieties in seed dissemination chain. The increase germplasm flow from CIMMYT, Mexico enriched Indian gene bank with a large reservoir of diverse set of genotypes for current and future used. The continued inclusion of resistance to Ug99 and other rusts in wheat lines kept diseases at bay and safeguarded farmers. There is increased use of physiological tools for heat and drought tolerance and stronger links were established between breeders, seed producers and farmers. Another significant achievement was strengthened capacity building in the region.

A talk on wheat research as Borlaug Institute for South Asia (BISA) was delivered by Uttam Kumar, CIMMYT. Likewise progress on CRP project on spot blotch was presented by Shree Pandey and Ramesh Chand, India. A talk on wheat breeding at Bhutan was presented by Sangay Tshewang. He was happy to inform that through this networking and collaboration with CIMMYT, Bhutan was able to release three new wheat varieties after a gap of 20 years.

On the 2nd day, a visit to IIWBR was organized. Dr. Indu Sharma and her team of scientists led by Dr. Ravish Chatrath facilitated this visit. The participants were taken to different laboratories and current research activities were explained. The participants from Nepal, Bangladesh and Bhutan expressed desire for increased exchange visits among research institutions of countries in south Asia.

The review meeting enabled CSISA wheat researchers to measure their achievements compared to the challenges being encountered and enabled an environment to discuss future strategies to augment research activities better tuned to future targets in the region. The participants were of the view that strong linkage and coordination between the national research program, the CIMMYT team and other stakeholders especially those in seed business is needed to achieve comprehensive progress towards increasing food availability and better livelihood of masses.

Setting the stage for delivering high zinc wheat in South Asia

Delivering-High-Zinc
HarvestPlus pioneers at the off-season seed production site in Dalang Maidan, Himachal Pradesh, India. Photo: HarvestPlus

Public and private sector partners in HarvestPlus’ biofortified wheat research and dissemination network in South Asia got together at ICRISAT, Hyderabad, on 10-11 September to discuss progress on breeding research, producing seed for target populations, and strategies for accelerating seed production and fast-tracking commercialization of biofortified zinc-rich wheat varieties.

Partners from India, Nepal, Bangladesh and Pakistan, as well as delegates from the Indian Council of Agricultural Research (ICAR), various state agricultural universities, NGOs, small and medium-size private seed companies, processors, millers, and progressive farmers discussed topics such as critical gaps and opportunities in outreach strategies, priority upscaling interventions, and policy incentives for fast-track adoption of improved high Zn wheat varieties.

ICAR Deputy Director General (Crop Science) J.S. Sandhu inaugurated the workshop with a formal presentation on India’s Consortia Research Platforms (CRP) for improving nutritional quality of major staples and emphasized the extraordinary nutritional challenges that country faces, e.g., some of the highest rates of childhood stunting and malnutrition in the world. Wolfgang Pfeiffer, HarvestPlus Director (Product Development and Deployment), highlighted the success of HarvestPlus partners in disseminating nutrient-dense wheat, reaching 50,000 farm households and providing biofortified wheat to a quarter of a million household members by 2015. Parminder Virk, Product Development Manager at HarvestPlus, urged participants to set up a fast-track commercialization pipeline to enable nutrient rich wheat varieties to reach smallholder farmers fast.

CIMMYT Wheat Breeder Velu Govindan discussed advances in the development of competitive high Zn wheat germplasm at CIMMYT, Mexico, to satisfy the needs of national program partners, while Arun Joshi, Senior Wheat Breeder, CIMMYT-South Asia, emphasized the crucial role of public and private sector partners in ensuring farmers have rapid and long-term access to nutrient rich wheat seed. Ravish Chatrath, IIWBR, summarized the results of a special biofortified wheat trial conducted across locations in India.

HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.
HarvestPlus Wheat Biofortification meeting held at ICRISAT, in Patancheru. Photo credit : HarvestPlus.

V.K. Mishra, Banaras Hindu University, reported that farmer-participatory varietal selection trials have enabled the identification and release of competitive high Zn wheat varieties for fast-track commercialization in the eastern Gangetic Plains (EGP) of India. The new varieties are not only nutritionally superior, but also drought tolerant and resistant to rusts and other foliar diseases. They are being commercialized in India as truthfully-labeled seed under different names by private companies and farmers’ seed production networks.

Videos sharpen Bangladeshi farmers’ interest in farm mechanization

Quality video can be an effective way of enhancing training messages and sharing complex agronomic information with a large audience. The USAID-funded Cereal Systems Initiative for South Asia-Mechanisation and Irrigation (CSISA-MI) and the EU-supported Agriculture, Nutrition and Extension Project (ANEP) in Bangladesh recently produced five new farmer-focused videos on efficient irrigation technologies, machine-aided line sowing, strip tillage, bed planting and mechanized harvesters. The videos contain comical but educational dramas with farmers as actors; they focus on practical messages on how to calibrate, use and maintain the machines, which are drawn by two-wheeled tractors, and describe how machinery service providers can make money by selling machine planting and harvesting services to farmers at a low cost.

“Our research shows that machinery training videos can be an effective way of generating farmer interest in experimenting with and purchasing appropriate machinery,” explained CIMMYT agronomist Tim Krupnik. “CIMMYT’s private sector partners also agree, buying-in and paying cable television companies to screen the videos for advertising purposes, adding value to our efforts.” Most recently, The Metal Ltd., a private sector machinery manufacturer and CSISA-MI partner, aired the “Reaper” video on television in Bangladesh to an audience of over 75,000 people during 11 days. Technical support was provided by CSISA-MI’s NGO partner iDE, which arranged to show the video during the July vacation, when farmers tend to be at home watching television with their extended families.

Beyond advertising, the videos are crucial for training farmers on how to use complex machinery. According to CIMMYT training specialist Kamrun Naher, the videos are high quality and well produced. In each technical training course, they serve both as the ice-breaker and the primary lesson. “After watching the videos, service providers and farmers understand the machines’ usefulness,” she said.

“Farmers need to visualize and learn how technologies work in order to show interest in experimenting with and adopting them. Videos can help open that door,” commented Tim Krupnik. Mohammad Rafiqul, a farmer in southern Bangladesh who recently bought a wheat harvester through CSISA-MI’s private sector partners, agrees. “I should thank the video you showed me. I was inspired by it and bought the machine, though at first my family was against the investment.” In his opinion, the video should be screened more widely to increase the use of machines on Bangladeshi farms.

“The videos were prepared primarily as training materials and to influence farmers positively towards the machines,” explained Rezaul Karim, who directed the videos. Usually farmers are not well disposed towards a new idea or machine. “Our target was to remove their fear about the machines and make them feel that these machines are going to make real changes in their lives, and we succeeded.”

For more information on the use of videos in training programs, see:

Bentley, J., Van Mele, P., Harun-ar-Rashid, Md. and T.J. Krupnik. 2015. Distributing and Showing Farmer Learning Videos in Bangladesh. Journal of Agricultural Education and Extension. DOI: 10.1080/1389224X.2015.1026365.

View more CSISA-ANEP training videos below.
Axial Flow Pumps
Bed Planter
Strip Tillage
Power Tiller Operated-Seeder
Reaper Machine

The first heat tolerant maize hybrids are licensed for deployment in Bangladesh, India and Nepal

Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur
Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal. Photo: NMRP, Rampur

The Bangladesh Agricultural Research Institute (BARI), Bangladesh’s ACI Seeds, India’s Bihar Agricultural University, Sabor, and the University of Agricultural Sciences, Raichur, Ajeet Seeds, and Nepal’s Hariyali Community Seeds and Sean Seeds are the first proud institutions/companies to receive a license for the deployment of heat tolerant maize hybrids. B.M. Prasanna, Director of CIMMYT’s Global Maize Program, formally presented the product licensing certificates to the heads/representatives of these organizations during the Heat Tolerant Maize for Asia (HTMA) project’s 3rd Annual Progress Review and Planning Meeting held from 10-12 August 2015 in Hyderabad, India. Other project partners, including national program and seed companies from Pakistan, Nepal and Bangladesh, have shared their choice of hybrids, and asked to submit them for formal licencing. The hybrids were developed under the HTMA project funded by United States Agency for International Development (USAID) under the Feed the Future (FTF) initiative, a public-private alliance that targets resource-poor people of South Asia who face weather extremes and climate-change effects.Women farmers at a HTMA hybrid demonstration at Dumarawana village, Bara District, Nepal.

At the event’s inaugural session, Nora Lapitan, Senior Science Advisor, Bureau for Food Security, USAID, gave an update on the FTF initiative and highlighted its priorities, which include reducing poverty and malnutrition in children in target countries through accelerated inclusive agricultural growth and a high-quality diet. This was followed by an overview by B.M. Prasanna of the new CGIAR research program on Maize Agri-food system, its focus and priorities and the importance of stress-resilient maize in food security and livelihoods, especially in climate-change vulnerable regions, such as the Asian tropics.

The inaugural session was followed by technical sessions, during which Raman Babu, CIMMYT molecular maize breeder, M.T. Vinayan, CIMMYT maize stress specialist for South Asia, A.R. Sadananda, CIMMYT maize seed system specialist, and CIMMYT socioeconomist Christian Boeber presented their latest research results.

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna. Photo: CIMMYT-India

Mohammad Jalal Uddin, BARI Director of Research, receiving a licence for HTMA hybrid deployment from Prasanna.P.H. Zaidi, HTMA project leader and senior maize physiologist at CIMMYT, described the progress achieved at the end of the project’s third year. Representatives from public and private sector partners presented the results of the HTMA trials conducted at their locations, and shared a list of top-ranking, best-bet heat-tolerant maize hybrids to take forward for large-scale testing and deployment. Collaborators from Pakistan’s Maize and Millet Research Institute (MMRI) and Bhutan’s Maize Program could not participate in the meeting but their progress reports were presented by K. Seetharam and Zaidi, respectively. It is quite impressive that within the first three years of the project, each partner has identified promising and unique maize hybrids suitable for their target markets/agro-ecologies.

Participants visited a demonstration of elite HTMA hybrids and their parents, where they observed the performance of their selected hybrids under Indian conditions. They were able to see the hybrids and their parents side by side, assess their performance and request seed of parental lines.

The project is also involved in capacity building, including providing support to a total of nine M.Sc./Ph.D. students, as well as workshops and in-country training courses in Nepal, Bangladesh and India, where over 100 researchers have been trained on developing stress resilient maize. In a special session dedicated to student research projects, four HTMA students, including Mahender Tripathi from Nepal, Ashraful Alam from Bangladesh and Akula Dinesh and C.N. Ranganath from India, presented their research projects.

The project’s progress was critically reviewed by the project steering committee (PSC) headed by Prasanna, who expressed great satisfaction with its overall progress and acheivements. Speaking for USAID, Lapitan said they are highly impressed with the progress of the HTMA project and consider it a model project. Other PSC members also expressed their satisfaction and agreed that the HTMA team deserves special appreciation for remarkable achievements within a period of just three years.

The HTMA project meeting was attended by program leaders, scientists and representatives from collaborating institutions in South Asia, including BARI, Nepal’s National Maize Research Program (NMRP) and two of India’s state agriculture universities. Seed companies operating in the region, including Pioneer Hi-bred, Kaveri Seeds and Ajeet Seeds from India, and Sean Seeds and Hariyali Community Seeds from Nepal, and international institutions such as Purdue University, USAID and CIMMYT also participated in the event.

The HTMA team at CIMMYT, Hyderabad, India. Photo: CIMMYT-India

 

The gola: storing maize to improve livelihoods in Chuadanga, Bangladesh

Farmers in Chuadanga District of Bangladesh have been using a unique local method to store their maize: the gola.

Maize grains can be stored in a modified gola for several months. Photo: Abdul Momin-CIMMYT

Golas are large rectangular or cylindrical containers used to store seed and animal feed. In Bangladesh, golas are traditionally used to store paddy rice. They are made locally using bamboo for the sides and tin for the roof, can last up to 80 years and hold from 2 to 20 tons of grain.

Many Bangladeshi farmers believe that, unlike rice, maize grain cannot be stored in golas due to its high susceptibility to insects and pests. To keep its quality from deteriorating, farmers normally sell maize grain at a minimum price as quickly as possible after harvest.

Unlike most of the country’s farmers, Chuadanga farmers use golas to store maize grain until its market price goes up, which results in higher profits. According to a recent CIMMYT-Bangladesh survey, the longer they store the seed, the higher the profit. “The profit earned by the Chuadanga farmers through maize grain storage helps to increase the national per capita income, allowing Bangladesh to become a middle income country,” said Prodip Hajong, Senior Officer in Agricultural Economics at the Bangladesh Agricultural Research Institute (BARI).

Eighty percent of all maize grain produced in Chuadanga is stored anywhere from 4 to 43 weeks and sold for a higher price. According to the survey, golas were the preferred storage for maize and used by over 60% of respondent households. Each household earned a profit of approximately USD $389.68 in 2012, USD $315.64 in 2013 and USD $130.19 in 2014. During 2014, the overall market price of maize grain was low compared to previous years; that is why farmers’ profit margin was comparatively small.

Farmers in Chuadanga, Bangladesh, modified their traditional golas to be able to store maize longer and earn higher profits. Photo: Abdul Momin-CIMMYT
Farmers in Chuadanga, Bangladesh, modified their traditional golas to be able to store maize longer and earn higher profits. Photo: Abdul Momin-CIMMYT

“High temperatures inside the gola help maintain grain quality by killing insects, their larvae and eggs,” said Abdul Momin, CIMMYT Cropping Systems Agronomist. With assistance from the Cereal Systems Initiative in South Asia in Bangladesh (CSISA-BD) project, Chuadanga farmers have been modifying their golas – for example, by reinforcing the floors with tin to prevent post-harvest losses from rodents and insects – so that they can store maize for longer periods.

The CIMMYT-Bangladesh survey was conducted by CIMMYT researchers Frederick Rossi, Agricultural Economist; Elahi Baksh, Applied Agricultural Economist; Abdul Momin, Cropping System Agronomist; Thakur P. Tiwari, Country Representative in Bangladesh and Prodip Hajong, Senior Officer in Agricultural Economics at BARI. They recommended making an action plan in collaboration with the Department of Agricultural Extension, BARI and local NGOs, to demonstrate and disseminate this low cost technology throughout the country.

CIMMYT-Bangladesh showcase technology at national fair

Bangladesh’s Minister of Agriculture Motia Chowdhury (3rd from left) visited the CGIAR Pavilion while inaugurating the National Agricultural Technology Fair held in Dhaka on 5-7 April 2015. In the photo, Zia Uddin Ahmed, CIMMYT GIS and Remote Sensing Scientist, briefs her on the use of the Octocopter in agricultural research and development and other CIMMYT activities in Bangladesh. In her inaugural speech, the Minister mentioned CIMMYT’s role in maize production expansion and mechanization. “Since our land is fragmented, we need to focus on small but power-operated machines,” she said. She also asked organizations working in Bangladesh, such as CIMMYT, to think about how to use solar energy to operate agri-machines.

The Fair was organized by the Agricultural Information Service (AIS) of the Ministry of Agriculture. Five CG centers (CIMMYT, CIP, IFPRI, IRRI and WorldFish) and HarvestPlus participated in the CGIAR pavilion and received the award for the best pavilion at the Fair.

Bangladeshi scientists learn to develop stress-resilient maize

The Bangladesh Agricultural Research Institute (BARI) and CIMMYT organized a training course on developing stress tolerant maize at BARI facilities in Gazipur, Joydebpur, Bangladesh, on 21 April 2015. The course, part of CIMMYT’s Heat Tolerant Maize for Asia (HTMA) project supported by the United States Agency for International Development under its Feed the Future initiative, gave maize scientists the opportunity to learn the principles, tools and techniques involved in developing high yielding maize hybrids with enhanced tolerance to major abiotic stresses such as drought and heat, as well as how to effectively deploy them.

Ensuring that high yielding, improved varieties continue to be developed in Bangladesh is vital for smallholder farmers to have reliable seed that can thrive despite these abiotic stresses. “Stress tolerant maize hybrids are important to ensure sustainable food security in Bangladesh, especially in view of climate change effects, as our country is identified as one of the most vulnerable zones,” said Mohammad Amiruzzaman, BARI Chief Scientific Officer and Plant Breeder.

Attending the course were nearly 30 participants (11 female scientists among them), including maize breeders, agronomists and physiologists from BARI and three other research stations working on maize in Bangladesh. During the course, P.H. Zaidi, CIMMYT Senior Maize Physiologist and HTMA Project Leader, gave lectures on developing stress tolerant maize hybrids, on maize phenology and physiology, and on how maize responds to heat stress; he also provided the technical details of precision phenotyping and the selection criteria used for heat stress breeding. A.R. Sadananda, CIMMYT Maize Seed System Specialist, gave a talk on testing and deploying selected hybrids.

Participants in the course on developing stress-resilient maize. Photo: Bangladesh Agricultural Research Institute
Participants in the course on developing stress-resilient maize. Photo: Bangladesh Agricultural Research Institute

“Maize is one of the important crops for the food security of Bangladesh,” said Md. Jalal Uddin, BARI Director of Research in his concluding remarks. He added that the course was a great opportunity for maize researchers to learn many useful aspects of maize improvement and thanked CIMMYT and USAID for the support provided to the Bangladesh Maize Program.

Agro-machinery professionals’ jamboree held in Bangladesh

Hands of the participants in the Machinery Jamboree at Chuadanga, Bangladesh. Photos: Abdul Mabud, CIMMYT
Hands of the participants in the Machinery Jamboree at Chuadanga, Bangladesh. Photos: Abdul Mabud, CIMMYT

Twenty-two scientists, engineers, technicians and local manufacturers of agricultural machinery working in and with CIMMYT participated in an Agro-machinery Professionals’ Jamboree held in Jhenaidah District, Bangladesh, 27-30 April 2015. The objective of the Jamboree was to acquaint participants with agro-machinery such as seeders and reapers and develop their troubleshooting and operating skills. Participants shared their experiences and the challenges they face in the field, and brainstormed solutions together.

During the Jamboree, mock challenges similar to complications commonly found in the field were presented so participants could try to solve them. They learned the necessary theory and facts through demonstrations, question-and-answer sessions and multimedia presentations. Participants also described difficulties they commonly face in the field and found the best possible solutions through interactive discussions.

Participants working on a machine part.
Participants working on a machine part.

“It was a wonderful workshop where we shared our real-life experiences to help farmers achieve common goals,” said Jamboree participant Mohammad Hasanuzzaman.

Facilitators Arshadul Haque, Senior Scientific Officer, and Rezaul Karim, Scientific Officer, both from the Engineering Division of Bangladesh Agricultural Research Institute, called upon the participants to become change leaders in Bangladesh’s agricultural machinery revolution. Team leader Abdul Momin, CSISA-CIMMYT Cropping System Agronomist, emphasized the need to hold this type of event at least once before every cropping season to continue to build staff capacity.

HTMA offers stress-resilient maize hybrids to meet Bangladesh’s growing demand

CIMMYT’s Heat Stress Tolerant Maize for Asia (HTMA) project held a hybrid maize field day during 21-22 April  at the Bangladesh Agricultural Research Institute’s (BARI) Regional Agricultural Research Stations (RARS) in Khoirtola, Jessore and Gazipur. The event was attended by over 60 participants, including local maize farmers, Bangladeshi seed company representatives, agricultural input dealers, Bangladesh government seed system officers and BARI maize researchers.

Rafiqul Islam Mondal, BARI Director General, addressing the participants in HTMA’s hybrid field day held in Jessore, Bangladesh. Photo: BARI.
Rafiqul Islam Mondal, BARI Director General, addressing the participants
in HTMA’s hybrid field day held in Jessore, Bangladesh. Photo: BARI.

Maize is the third most important food crop in Bangladesh after rice and wheat, covering from 3,000 hectares (ha) in 1990 to over 300,000 ha at present. This growth is largely demand driven, as maize is used both as feed (poultry, fish and cattle) and food. Annual maize demand in the country is approximately two million tons, with domestic production meeting only about 14% of that. Almost all maize grown is hybrid maize, and about 6,500 metric tons of hybrid seed are required annually. However, only about 15% of annual seed demand is met by domestic seed production; the rest is imported, mainly from India. Bangladesh must enhance domestic sources of hybrid seed to meet demand more reliably and at a lower cost.

To accelerate hybrid maize production and address climate-change effects, BARI joined HTMA in developing and deploying high-yielding, climate-resilient hybrids for stress-prone ecologies across the region. Under the project, which is funded by the United States Agency for International Development (USAID), every two years a new wave of products is available for on-farm testing and deployment. The most recent hybrids were planted at four locations in Bangladesh, including BARI research stations.

HTMA project details and progress were shared with participants during a pre-field visit session by Sirajul Islam, Chief Scientific Officer and Head of BARI-RARS, Jessore. CIMMYT maize breeder P.H. Zaidi discussed HTMA’s potential impact and importance in addressing climate change effects, especially in Bangladesh. Salahuddin Ahmad, BARI’s Principal Scientific Officer, gave an overview of the 24 HTMA hybrids, plus four popular commercial hybrids and two BARI hybrids that were planted in the field. Participants then visited the field sites and evaluated the HTMA hybrids, scoring each one by preference. Of the 30 hybrids, the top 8 were from HTMA. Many participants, including Nurul Hoque, Additional General Manager of the Bangladesh Agricultural Development Corporation (BADC), Nasir Uddin Khan, DAE Additional Director, Jessore Region, and Jalal Uddin, BARI Director of Research, expressed the need to increase domestic maize production to minimize imports and maintain food security and self-sufficiency.

Sadananda explained the importance of public and private sector partnerships for successful development and deployment of the HTMA hybrids. T.P. Tiwari also stressed the need for maize diversification to achieve sustainable production and the need to develop salt tolerant varieties. B.R. Banik, BARI Training and Coordination Director, said the newly developed HTMA hybrids will help Bangladesh deal with climate change effects currently and in the future.

Rafiqul Islam Mondal, BARI Director General, highlighted HTMA’s progress and the need to explore the potential for cultivating maize in unutilized areas to boost production.

“It is truly exciting to see the enthusiasm of stakeholders,” said Mohammad Amiruzzaman, Chief Scientific Officer of BARI’s Plant Breeding Division, in his concluding remarks. “We will work on finalizing the best-bet products, officially register and then deploy them in collaboration with our seed company partners.”

Other participants included representatives from Lal Teer Seed Ltd., Supreme Seed Company Ltd., ACI Ltd., Krishi-bid Group, Monsanto Bangladesh Ltd., Syngenta, Petrochem Ltd., the Bangladesh Rural Advancement Committee (BRAC), Christian Commission for Development in Bangladesh (CCDB), Katalyst, BADC and the Department of Agricultural Extension (DAE). CIMMYT representatives included T. P. Tiwari, CIMMYT-Bangladesh Country Liaison Officer, P.H. Zaidi, Senior Maize Physiologist and HTMA Project Leader, and A.R. Sadananda, Seed System Specialist.

Well-positioned for next phase, CSISA India plans for monsoon cropping season

As Phase II of the Cereal Systems Initiative for South Asia (CSISA) draws to a close in India, it is well positioned for a Phase III, according to Andrew McDonald, CIMMYT Cropping Systems Agronomist and CSISA Project Leader speaking at the Objective 1 planning and evaluation meeting for the 2015 monsoon cropping season held in Kathmandu, Nepal, on 22-24 April. The meeting was attended by CSISA’s Objective 1 teams from the Bihar, eastern Uttar Pradesh, Odisha and Tamil Nadu hubs, comprising diverse disciplinary experts from CIMMYT, the International Food Policy Research Institute (IFPRI), the International Livestock Research Institute (ILRI) and the International Rice Research Institute (IRRI).

Phase II began in October 2012 and will be completed in October of this year. The external evaluation report, commissioned by the United States Agency for International Development (USAID), commended the uniqueness of CSISA’s work with service providers and farmers, its staff’s dedication and the strong collaboration among CSISA partners. CSISA was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems, and operates rural “innovation hubs” throughout Bangladesh, India and Nepal.

The teams took a critical view of activities from the previous monsoon cropping season and highlighted priority areas for this year. “Sustainable intensification of cropping systems should be the centerpiece of our growth strategy. Rice followed by mustard followed by spring maize or green gram is a great system that can help us achieve 300% cropping intensity,” said R.K. Malik, CIMMYT Senior Agronomist and CSISA Objective 1 Leader. “We need to focus not only on how to create new service providers but also on how existing ones can be used as master trainers. This will help fill the gap of field technicians and further strengthen delivery,” Malik explained, regarding CSISA’s network of more than 1,800 service providers.

Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee
Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee

Leading discussions on the Odisha hub, Sudhir Yadav, IRRI Irrigated Systems Agronomist, emphasized the importance of identifying the non-negotiable steps for successful technology implementation. “The performance of zero tillage, for example, depends on soil type, date of seeding and whether the crop is rainfed or receives supplementary irrigation,” said Yadav. CSISA successfully introduced zero tillage in Odisha’s Mayurbhanj District, where it has enabled crop intensification thanks to the retention of residual soil moisture.

The meeting served as a platform for representatives from Catholic Relief Services’ (CRS) Improved Rice-based Rainfed Agricultural Systems project to showcase lessons in managing rainfed rice systems in northern Bihar.

CSISA is currently in discussions with USAID and the Bill & Melinda Gates Foundation (BMGF) to design the technical program, and determine the scope, geography, duration and budget of Phase III.

New report highlights need for groundwater management solutions in Bangladesh

The recent report “Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities,” published by the Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, reveals that water resource policy in Bangladesh has focused largely on development and not enough on management, draining aquifers in intensively irrigated areas and sustaining expensive subsidies for dry-season irrigation pumping.
Groundwater1

Unless water-use-efficient practices and policies are adapted and adopted, these challenges will become a serious threat to sustained agricultural growth in Bangladesh, according to Timothy Krupnik, CIMMYT agronomist and co-author in the study.

“Dry season rice production using irrigation helped Bangladesh to increase its total rice production from 18 million tons in 1991 to 33.8 million tons in 2013,” said Krupnik. “But this dramatic increase in rice production comes with costs – namely the high energy requirements to pump groundwater.”

Diesel pumps consume about 4.6 billion liters of diesel every year to lift groundwater for dry season rice production in Bangladesh, costing US $4 billion, in addition to U.S. $1.4 billion yearly of government energy subsidies for groundwater irrigation. These expenditures are unsustainable in the long-term, the report concludes, and counter to government policies to reduce energy subsidies and shift to cheaper, more energy-wise surface water irrigation.

The report highlights supply- and demand-side options for sustainable groundwater management. “Improving water-use efficiency through resource- conserving crop management practices such as direct-seeded rice and bed planting could help reduce groundwater demand from agriculture,” Krupnik said. “In surface water irrigated areas, farmers can use fuel-efficient axial flow pumps.” The CSISA-MI project is working with the private sector to help promote use of these pumps.
Groundwater2

Water demand can also be reduced by rationalizing cropping patterns; for example, shifting from rice to more profitable crops like maize, according to Krupnik. Involvement of consumers, investment in improved water and agricultural technologies and support for farmers are needed.

Since the concept of “more water-more yield” is still prevalent among farmers, the report also emphasizes the need for policy and educational programs aimed at wise water use and volumetric water pricing. In addition to technical solutions, strong linkages and improved communications among organizations involved in groundwater management will be required.

Research highlights solutions for groundwater management in Bangladesh

Groundwater-report

A recent research report ‘Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities’, published by the USAID Feed the Future Funded Cereal Systems Initiative for South Asia – Mechanization and Irrigation (CSISA-MI) project, highlights that the policy focus in Bangladesh so far has been largely on ‘resource development’ and not sufficiently on ‘resource management.’ This has resulted in drawdown of aquifers in intensively irrigated areas and high expenditure on subsidies to support the energy costs of pumping water for dry season irrigation. Unless water use efficiency practices and policies are adapted and adopted, these challenges in groundwater irrigation can become a serious threat to sustain agricultural growth in Bangladesh.

“Dry season rice production using irrigation helped Bangladesh to increase its total rice production from 18 million tons in 1991 to 33.8 million tons in 2013. However, this dramatic increase in rice production comes with costs – namely the high energy requirements needed to extract groundwater by pumps, which is a concern giving mounting fuel and electricity prices in South Asia” said Timothy Krupnik, CIMMYT Agronomist and co-author in this study.

Diesel pumps consume about 4.6 billion litres of diesel every year to pump groundwater for dry season rice production, costing USD 4.0 billion. This cost is in addition to USD 1.4 billion of yearly energy subsidies supplied by the Government of Bangladesh (GoB) to maintain groundwater irrigation. Such considerable investments add to the energy cost burden, and may not be financially sustainable in the long-term, the report says. This conclusion is underscored by the GoB’s interest to reduce energy subsidies and shift from ground to surface water irrigation, which is energy-wise less expensive.

The report highlights several supply- and demand-side solutions for sustainable groundwater management. Improving water use efficiencies through the adoption of resource conserving crop management practices such as direct-seeded rice and bed planting could help in reducing groundwater demand for agriculture. In surface water irrigated areas, use of more fuel efficient axial flow pumps that the CSISA-MI project is working with the private sector to scale out, is also crucial.

Water demand for irrigation can also be reduced by rationalizing cropping patterns – specifically by shifting from rice to more profitable crops like maize, and to other food security cereals like rice, in areas where groundwater is a concern. Involvement of water users, investments in improved water and agricultural technologies, and providing extra support for farmers making transition to less water demanding crops is needed.

Since the concept of ‘more water-more yield’ is still prevalent among farmers, the report also highlights the need for policy to focus more on awareness raising through educational programs aimed at wise water use and volumetric water pricing. In addition to technical solutions, strong linkages and improved communications between different organizations involved in the management of groundwater resources will also be required to shift to a more water productive, and less costly, agricultural production system in Bangladesh.

 

Climate-smart agriculture to combat global warming

Agriculture has the potential to be “part of the solution to reduce the impact of climate change,” according to Dr. R.S. Paroda, Chairman of the Trust for Advancement of Agricultural Sciences, who was one of nearly 100 participants at a launching and planning workshop for Flagship Projects on climate-smart agriculture of the CGIAR Research Program on Climate Change, Agriculture, and Food Security (CCAFS). Held on 24-25 February in New Delhi, the event was jointly organized by CIMMYT and the International Food Policy Research Institute (IFPRI), with participants from Bangladesh, India, Nepal and other partnering countries.

Dr. Ayyappan, Secy DARE & DG, ICAR, felicitating the launch. Photos: CIMMYT-India.
Dr. Ayyappan, Secy DARE & DG, ICAR, felicitating the launch. Photos: CIMMYT-India.

In the fight against climate change, agriculture is both a perpetrator and a victim. Modern agriculture, food production and distribution are major contributors of greenhouse gases, generating about one-quarter of global emissions. Climate-smart agriculture addresses the interlinked challenges of food security and climate change by sustainably increasing agricultural productivity, building resilience in food-production systems and reducing greenhouse gas emissions in agriculture.

The workshop began with a presentation of CCAFS Flagship Project Portfolios, followed by group discussions on associated farming practices, policy, frameworks and recommendations on partnering with governments and other organizations. Clare Stirling, Senior Scientist with the Global Conservation Agriculture Program at CIMMYT, cited the Center’s success in developing climate-smart villages in India and identified improved access to weather information, crop insurance and technology uptake by farmers as key focus areas.

Innovative business models and open innovation platforms for scaling project outputs across diverse agro-ecosystems were also defined. Md. Jalal Uddin of the Bangladesh Agricultural Research Institute proposed integrating mitigation and adaption measures like the promotion of renewable energy, environment management systems, climate change trusts and resilience funds with CCAFS initiatives.

Key stakeholders for CCAFS flagship projects pose for a photo.
Key stakeholders for CCAFS flagship projects pose for a photo.

A final session on synergies and convergence opportunities covered topics such as contingency crop plans, weather-based index insurance and resilient technologies, all of which can be implemented in climate-smart villages. CIMMYT scientists P.H. Zaidi, Senior Maize Physiologist and Mahesh Gathala, Scientist and Cropping Systems Agronomist, outlined CIMMYT initiatives that support climate-smart agriculture, such as long-standing research on stress-resilient maize and sustainable cropping systems. Kaushik Majumdar, Director of the South Asia Program at the International Plant Nutrition Institute, and M.L. Jat, Senior Scientist with CIMMYT’s Global Conservation Agriculture Program, discussed initiatives to develop and disseminate climate-smart nutrient management tools and techniques for smallholder farming.

“The CCAFS workshop set the stage for all CGIAR institutions to collaborate and make climate-smart agriculture a reality,” said Jat.

USAID’s Feed the Future initiative highlights CIMMYT heat tolerant maize breeding

 Photo: Allison Gillies/CIMMYT
Photo: Allison Gillies/CIMMYT

The Feed the Future initiative of the U.S. Agency for International Development (USAID) featured CIMMYT’s Heat Tolerant Maize for Asia (HTMA) project in a recent newsletter, highlighting it as an exemplary public-private partnership. Launched in 2013, the project is developing heat-resilient hybrid maize for resource-poor smallholder farmers in South Asia whose livelihoods are threatened by climate change.

The damaging effects of climate change on agriculture have already been felt throughout much of South Asia, and climate model studies predict that this trend will not end anytime soon. According to a 2009 report from the Asian Development Bank, maize production capacity in South Asia could decrease by 17 percent by the year 2050 if current climate trends continue. Due to the temperature sensitivity of key crops such as maize, farmers in the region urgently need access to seed of varieties that can withstand temperature stress. As climate change-related weather extremes threaten agriculture in South Asia, research and development partners are seeking solutions.

The HTMA “…balances up-stream and down-stream research-for-development by leveraging CIMMYT germplasm with the research capacity and expertise of partners such as Purdue University, Pioneer-Asia and national programs in Bangladesh, Pakistan, Nepal and Bhutan,” said P.H. Zaidi, the project leader. HTMA private partners such as DuPont Pioneer and the regional seed companies Kaveri Seeds and Ajeet Seeds have direct ties to local markets and farming communities that will foster the widespread availability and use of the new hybrids, according to Zaidi.

Outputs of this partnership include new breeding lines with enhanced levels of heat tolerance. The first generation of heat-tolerant hybrids from those lines became available after the second year of the project, and a new set of elite, stress-resilient hybrid varieties will be released by the project every two years. Apart from this, early-generation lines are being shared for use in partners’ breeding programs, strengthening their germplasm base and ensuring the continued development and delivery of heat-stress-resilient maize after the project ends, Zaidi said. According to the Feed the Future report: “The new varieties…show great promise to be taken to scale and deployed in tropical climates beyond South Asia.”

Two-wheel tractors to increase smallholder farm power in Ethiopia

For Ethiopian smallholder farmers who have for millennia used the traditional animal-drawn maresha plow, two-wheel tractors could increase their productivity while reducing labor. They appear better suited to the Highlands of Ethiopia, characterized by small, fragmented farms and hilly terrain, than four-wheel tractors, which are only well-suited for large- and medium-scale farmers who comprise about 10% of the country’s estimated 14.7 million farmers. Two-wheel tractors are also very versatile and can be used for seeding, pumping water, threshing wheat and transporting heavy loads.

Service providers from three Africa RISING program sites being trained in the operation, maintenance, business, financial management and marketing of two-wheel tractors. Photo: Frédéric Baudron/CIMMYT
Service providers from three Africa RISING program sites being trained in the operation, maintenance, business, financial management and marketing of two-wheel tractors. Photo: Frédéric Baudron/CIMMYT

Although two-wheel tractors and their attachments are relatively cheap (about US $1,400) and easy to maintain, it is evident that most Ethiopian farmers won’t be able to purchase them individually. Still, they could hire the services of dedicated providers trained to use two-wheel tractors. To make mechanization accessible to smallholder farmers, on 1-5 June 2015 CIMMYT and its partners organized a training course for service providers from Debre Birhan, Sinana and Lemo woredas (districts). They were trained in the operation, maintenance, business, financial management and marketing of two-wheel tractors.

The service model being tested by CIMMYT and its partners has been adopted in Bangladesh, where a single two-wheel tractor can service up to 30 farmers. The initiative to disseminate two-wheel tractors in the Highlands of Ethiopia is supported by the United States Agency for International Development’s (USAID) Africa Research in Sustainable Intensification for the Next Generation (Africa RISING) program. After the course, trainees returned to their respective areas equipped with two-wheel tractors and various attachments, to start providing seeding, transport and water pumping services to local farmers.

Since the Growth and Transformation Plan was established by the Government of Ethiopia in 2011, tremendous progress has been made in the agricultural sector. Farmers now have access to better seeds and adequate quantities of fertilizer. Yields have increased dramatically, and improved connections between farmers and markets mean higher incomes for farmers and more food available for consumers in both rural and urban areas.

Sustaining such an increase in agricultural output, however, will require a proportionate increase in farm power. In response, the Ministry of Agriculture and the Ethiopian Agricultural Transformation Agency developed a draft national mechanization strategy in 2014, with the goal of increasing the farm power available to Ethiopian farmers 10-fold by 2025.