Delegates from across South and Southeast Asia will gather in Dhaka, Bangladesh next week to ensure farmers across the region have the resources they need to better respond to climate change. Above, woman in Faridpur, Bangladesh winnowing wheat grain after harvest. Photo: Saikat Mojumder.
DHAKA, Bangladesh (CIMMYT) — Leaders from across South and Southeast Asia will gather from September 17-19 to exchange ideas and strategies on how to support the growth of farmer-focused and relevant agricultural climate services in the region.
Ensuring that farmers have access to real-time climate services, such as early warning systems for drought or crop index insurance, is critical to support rural livelihoods and mitigate crop production loss in the event of a climatic shock.
The three-day workshop will evaluate how climate and agricultural extension advisories are produced and conveyed, emphasizing farming community involvement in the development of climate information and extension messaging.
By the conclusion of the workshop, participants will have a broad overview of South and Southeast regional agricultural climate services programs, become familiar with participatory approaches and methods in agricultural climate services and able to enact or improve them in their own country contexts. They’ll also develop an increased understanding of how to identify and leverage “decision points” in the agricultural calendar during which climate information and advisories can most benefit farmers. Finally, participants will understand the need for appropriate institutional arrangements to facilitate the flow of relevant climate information and advisories to farmers, and to supply feedback to meteorological, extension, development and policy oriented organizations.
Workshop participants will also develop an outline for a scientific review paper on the subject of participatory climate services for agricultural decision making in South and Southeast Asia, which will be submitted to a peer-reviewed journal.
A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh. Photo: Santosh Raj Pathak/ICIMOD.
DHAKA, Bangladesh (CIMMYT) – A new joint effort will strengthen or establish drought monitoring and early warning systems in Bangladesh, as well as provide information on local cropping systems in South Asia to boost farmer resilience to climate change.
Regionally specific winter season drought and dry spells during the monsoon are a reoccurring concern in Bangladesh. Drought leads to reduced farming productivity, and climate change predictions suggest further decreases in precipitation in coming years. Additionally, there are uncertainties about where monsoons will flood in the rainy season, limiting groundwater recharge. If farmers are unable to adapt to these changes, bottlenecks in crop productivity and increased food insecurity are likely to result.
A workshop jointly hosted by a number of organizations was recently held at the Bangladesh Agriculture Research Council (BARC) campus in Dhaka, Bangladesh to discuss the development of these agricultural monitoring services. The workshop brought together key partners to discuss anticipated methods, work plans and the user engagement process for effective development and long-term sustainability of the agricultural drought monitoring service.
Under this partnership, BARC is working to strengthen capacity of national research and agricultural extension institutes to use geographic information systems and remote sensing approaches for drought risk management.
(L-R) Birendra Bajracharya, regional program manager at the International Centre for Integrated Mountain Development, Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, Muhammad Jalal Uddin, executive chairman the Bangladesh Agriculture Research Council and Timothy J. Krupnik, CIMMYT systems agronomist. Photo: Santosh Raj Pathak/ICIMOD
Shams Uddin Ahmed, director of the Bangladesh Meteorological Department, noted that groundwater accessibility is a growing concern due to continued drought. The government has posed restrictions on deep well extraction, except for drinking water, to conserve crucial groundwater resources. He added that access to good quality drought monitoring and early warning information could help develop climate services to help farmers adapt to these challenges.
Muhammad Jalal Uddin, executive chairman of BARC, emphasized the need to adopt new technologies including remote sensing applications to improve predictability of climate hazards like floods and droughts. He added that with the adoption of improved agricultural practices, Bangladesh has become self-sufficient in rice, but that further work is needed to attain overall nutrition sufficiency.
Promoting and enabling climate services that increase farmer resilience to the impacts of climate variability can positively change behaviors and affect policy in developing countries. To do this, collaborators are working together to establish information communication technology platforms to provide user-oriented, easily accessible, timely and decision-relevant scientific information in the form of climate services.
Birendra Bajracharya, regional program manager of the Mountain Environment Regional Information System program at the International Centre for Integrated Mountain Development (ICIMOD), highlighted opportunities of using Earth observation data products for addressing societal challenges. He emphasized the user-centric “services” used by ICIMOD increase the sustainable use of Earth observation information and geospatial technologies for environmental management and improve resilience to climate change in the region.
CSRD is a a public-private partnership supported by USAID, Department for International Development (DFID), the Met Office, Asian Development Bank, the Inter-American Development Bank, ESRI, Google, the American Red Cross and the Skoll Global Threats Fund.
Inside Ayla Traders, an agricultural input dealer who now advises farmers on integrated weed management. Photo: CIMMYT
DHAKA, Bangladesh (CIMMYT) – A delegation of USAID representatives recently visited southern Bangladesh to learn about sustainable agriculture activities in the area and emerging challenges to wheat production.
Agriculture employs nearly two-thirds of Bangladesh’s population, with a majority of farmers owning land of less than half an acre, putting intense pressure on farmland while having to adapt to various environmental challenges from flooding and rising temperatures due to climate change, to increasing labor scarcity and production costs.
Despite these challenges, Bangladesh has successfully adopted sustainable technologies that conserve natural resources, improve productivity and increase profits, particularly with the two-wheeled tractor that is used by around 80 percent of farmers due to its versatility and ability to be fitted with a variety of additional equipment for planting, threshing and irrigation.
Challenges to widespread adoption of these innovations, however, remain a challenge.
USAID delegation learns about the symptoms and effect of wheat blast disease. Photo: CIMMYT
“Much of this innovation has not reached farmers at scale because commercialization has been impeded by the lack of standardization,” according to Andrew McDonald, cropping systems agronomist at the International Maize and Wheat Improvement Center (CIMMYT) and project leader of the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA). “Most workshops create a unique machine every time a new piece is fabricated, which drives up costs to both manufacture and repair the machinery. Quality control is also an issue.”
From March 16-19, the USAID delegation visited farmers and agricultural machinery service providers in the Barisal, Jessore and Jhenaidah districts of Bangladesh, seeing firsthand how CIMMYT is working with NGOs, public and private sector partners to ensure that machinery is scaled, available and affordable to the most marginalized farmers.
The delegation, comprising USAID Senior Program Analyst Charisse Adamson, Water and Irrigation Advisor Biniam Iyob and Food Security Advisor Christopher Chibwana, also learned about various sustainable technologies from axial flow pumps that irrigate crops at reduced cost, to two-wheeled tractors developed by Janata Engineering; a small-scale but rapidly growing agricultural machinery manufacturer, importer and dealer that has been working closely with CSISA over the past seven years.
CIMMYT through CSISA partners with local manufacturing companies to ensure more farmers have access to sustainable machinery. Photo: CIMMYT
The visitors also observed how farmers are growing healthy rice seedlings for higher yields in community based seedbeds. Farmer-friendly learning videos are jointly produced by the project with the Bangladesh Rice Research Institute and shown by the Agricultural Advisory Society, with over 35,000 farmers learning about healthy rice seedlings between November 2016 and January this year.
The USAID team then visited the Bangladesh Agricultural Research Institute in Jessore to learn about wheat blast mitigation efforts in the region, which emerged in early 2016. The spread of wheat blast could be devastating to South Asia, which is home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.
“I have learned so much…I think you are doing a great job in making research outputs sustainable through strategic value chain pathways,” said Iyob at the end of the visit.
CIMMYT launched the CSISA in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. CIMMYT operates rural “innovation hubs” in Bangladesh, India and Nepal to increase the adoption of various resource-conserving and climate-resilient technologies, and to improve farmer access to market information and enterprise development. Learn more about CSISA’s impact here.
EL BATAN, Mexico (CIMMYT) – Most current food security projections show that staple crop production must double by 2050 to keep up with global need, which will continue to expand due to population growth and changing dietary demands.
In South Asia, where population pressures pose a significant food security challenge, yields of major cereal crops have not changed dramatically since the Green Revolution of the 1970s and 1980s. This has prompted regional governments and development practitioners to focus instead on efforts to expand double cropping – the practice of growing at least two crops per year on the same piece of land – in order to boost productivity on an annual basis.
This approach is in line with sustainable intensification techniques, which aim to boost production, rather than encroach on natural ecosystems and harm the environment by expanding farmland into limited natural areas.
Scientists with the International Maize and Wheat Improvement Center (CIMMYT) are researching how best to increase double cropping in Bangladesh, which, as South Asia’s most densely populated country, poses unique food security challenges.
In the northwest of the country, farmers already rotate at least two crops in the same field each year using groundwater irrigation to overcome drought risks during the dry winter season.
“Most development initiatives favor the use of groundwater resources for irrigation, although in Bangladesh, ground water extraction can result in high energy costs and in some areas can present a health risk due to natural arsenic contamination of groundwater,” said Timothy Krupnik, systems agronomist at CIMMYT.
“In support of government programs recommending the conjunctive use of surface water as an irrigation alternative, we investigated the available land in Bangladesh that could be reliably cropped to wheat, maize, or rice in double cropping patterns,” Krupnik said, adding that the effort resulted in a new onlinegeospatial tool that can be used by water resource planners and policymakers to target the use of surface water in support of sustainable intensification. It helps identify surface water irrigation resources and land area most suited for double cropping and sustainable intensification.
“Using satellite data for irrigation technology targeting in Bangladesh enabled us to identify areas that are under low input and output crop production in a region with abundant surface water,” said Urs Schulthess, CIMMYT’s remote sensing scientist involved in developing the geospatial tool. “This is an example of sustainable intensification that does not deplete water resources.”
Instead of extracting water from underground aquifers, surface water irrigation involves deploying water through low-lift irrigation pumps and canal distribution networks managed by water sellers who direct water to farmers’ fields. Although Bangladesh is likely to remain largely reliant on groundwater irrigation, use of available surface water presents a low-energy and low-carbon emissions alternative in select areas of the country, Krupnik said.
The research conducted by scientists funded by the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) project, provides initial evidence to support a government of Bangladesh policy aimed at stimulating a $500 million investment in development aid from donors to help farmers transition from rice-fallow or rainfed systems to surface water irrigation and double cropping. The funds form part of an overall request for investment of over $7 billion to support agricultural development in southern Bangladesh.
After mapping rivers and freshwater canals in southern Bangladesh with the new tool, the scientists conservatively estimate that at least 20,800 of fallow and 103,000 hectares of rainfed cropland could be intensified through surface water irrigation to substantially increase cereal crop production through double cropping. These figures account for land set into non-crop reserves to limit risks of nitrate or phosphorous contamination of rivers and canals.
Groundwater irrigation techniques have been difficult to implement in the south of the country due to high energy pumping costs for groundwater, and additional challenges posed by saline shallow water tables. Currently, about 1.7 million farming households in Bangladesh simply leave cropland fallow and unproductive after the monsoon season, according to the World Bank.
By integrating the use of groundwater with lower-cost surface water irrigation, farmers could benefit from increased cropping intensity.
To evaluate potential land productivity resulting from conversion from fallow or rainfed crops to surface water irrigated maize, wheat, and rice, CIMMYT scientists measured yields produced by farmers on their own farms and in farmer-managed demonstrations implemented by the CSISA project.
The three crops are among the most important cereals grown in Bangladesh for food security and income.
Based on analysis, CIMMYT’s scientists estimate that if 25 to 75 percent of fallow or low-intensity land is converted to irrigated maize, production could increase from 10 to 14 percent or from 29 to 42 percent, respectively. Conversion to wheat could increase production from 9 percent to 10 percent or from 26 percent to 31 percent. On the other hand, rice is projected to increase only about 3 percent under such conditions.
Overall, increasing maize and wheat production through double cropping could generate revenues from $36 to $108 million each year for farmers, Krupnik said.
Bleached spikes infected with wheat blast hold shriveled grain, if any. Photo: E. Duveiller/CIMMYT
DINAJPUR, Bangladesh (CIMMYT) — Responding to a 2016 outbreak of the deadly and little-understood crop disease “wheat blast” in Bangladesh, 40 wheat pathologists, breeders and agronomists from Bangladesh, India and Nepal have gathered to hone their skills through surveillance exercises in farmers’ fields and molecular analysis of the causal fungus in laboratories of the Bangladesh Agricultural Research Institute (BARI) at Gazipur.
Entitled “Taking action to mitigate the threat of wheat blast in South Asia: Disease surveillance and monitoring skills training,” the 13-day program was launched on 4 February at BARI’s Wheat Research Center (WRC), Bangladesh Agriculture Research Institute (BARI), Dinajpur, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the CGIAR research program on wheat, the Delivering Genetic Gain in Wheat (DGGW) project led by Cornell University, and Kansas State University (KSU).
The 2016 Bangladesh outbreak was the first time wheat blast has appeared in South Asia. The disease struck 15,000 hectares in 7 southwestern and southern districts of Bangladesh, with crop losses averaging 25-30 percent and reaching 100 percent in some cases.
In response the Bangladesh Ministry of Agriculture formed a task force through the Bangladesh Agricultural Research Council (BARC) to help develop and distribute resistant cultivars and pursue integrated agronomic control measures. A factsheet distributed to wheat farmers is raising awareness about the disease and particularly its identification and management.
Caused by the fungus Magnaporthe oryzae pathotype Triticum (MoT) and first discovered in Paraná State, Brazil, in the mid-1980s, wheat blast constitutes a major constraint to wheat production in South America. The sudden appearance of a highly virulent MoT strain in Bangladesh presents a serious threat for food and income security in South Asia, home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.
Experts from CIMMYT, Cornell University and Kansas State University, along with scientists from BARI and Bangladesh Agricultural University (BAU), are serving as instructors and facilitators.
“This training will increase the capacity of Bangladesh and neighboring country scientists, thereby strengthening research on wheat blast and monitoring disease through intensive surveillance,” said the Additional Secretary (Research), Ministry of Agriculture Md. Fazle Wahid Khondaker, chief guest in the inaugural session. Arun K. Joshi, CIMMYT-India country representative, T.P. Tiwari, CIMMYT-Bangladesh country representative, Prof. Dr. Bahadur Meah from BAU, Mymensingh, and Additional Director, Department of Agricultural Extension, and Md. Julfikar Haider were present as special guests. Dr. N.C.D. Barma, WRC, BARI chaired the session, and BARI Director General Dr. Abul Kalam Azad took part.
The training program is funded by BARI, CIMMYT, DGGW, the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation through the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) and CSISA- Mechanization projects, as well as the Australian Center for International Agricultural Research (ACIAR). The DGGW project is funded by the Bill & Melinda Gates Foundation and the United Kingdom’s Department for International Development (DFID) through UK Aid.
Participants with guests during training inauguration. Photo: S. Khan/CIMMYT
Timothy Krupnik (right) explains the use and benefits of the Power Tiller Operated Seeder to USAID Deputy Administrator Gary Lindon (far left). Photo: Md. Aktarul Islam/CIMMYT-Bangladesh
JESSORE, Bangladesh (CIMMYT) — USAID’s Deputy Administrator Gary Lindon visited Bangladesh in November 2016 to learn how the International Maize and Wheat Improvement Center (CIMMYT) engages with partners to help smallholder farmers uptake sustainable agriculture practices, as well as to observe the private sector’s role in producing farm machinery that is faster, more environmentally friendly and affordable for smallholder farmers.
One example of sustainable, smallholder-friendly machinery being promoted by CIMMYT with national partners is the two-wheeled mechanical reaper, a tool that’s proven to save farmers time and money, and helps them cope with increasing labor scarcity in Bangladesh — a trend that has continued to rise as Bangladesh develops economically and more people leave rural areas for off-farm employment, according to Timothy Krupnik, systems agronomist at CIMMYT.
“Mechanical harvesting also allows farmers to more quickly clear the field and sow the next crop, which has yield advantages for planting crops like wheat,” said Krupnik.
Lindon also met with service providers — entrepreneurial farmers turned businessmen — who have purchased the two-wheeled mechanical reapers and are now offering their harvesting services to smallholder farmers at an affordable fee.
“The local service provision business model is key to unlocking agricultural and entrepreneurial capacity in rural Bangladesh,” said Kevin Robbins, director of programs at International Development Enterprises, one of CIMMYT’s partners in Bangladesh. “We’ve seen just over 1,000 local service providers provide agricultural machinery services to over 40,000 farmers — catalyzing a level of impact that would not have been possible if we had promoted a traditional model where every farmer buys his or her own machine.”
The deputy administrator of USAID and his attaché observe a rice and wheat crop harvester piloted by an entrepreneurial farmer turned businessman. Photo: Md. Aktarul Islam/CIMMYT-Bangladesh
Shafiqul Islam, CIMMYT’s Jessore hub coordinator, also explained that through mechanical harvesting, farmers save $48 per hectare, while service providers earn approximately $31 per hectare.
“In Bangladesh, private sector companies are working hard to promote agricultural machinery that develops the sector,” said Mohammad Jamil, managing director at Metal Pvt. Ltd., a leading private company in Bangladesh that sells reapers. “We want to do more business — the kind of business that changes the lives of farmers through increasing the sales of appropriate agricultural machinery. There’s a strong incentive for us to endorse the adoption of new technologies, which in turn increases food production, boosts farmer income and supports our economy. It’s a win-win business model and a sustainable way to develop our country.”
The team later visited lentil and maize fields that had been seeded directly with seeders, affordable machines that can attach directly to two-wheeled tractors, which are increasingly being used by farmers in Bangladesh. Farmers attending the USAID field visit commented that through the use of two-wheel tractor attachable seeders they can save $60 per hectare by avoiding recurring tillage and manual seeding costs.
“This machine also helps farmers to sow seeds on time, as recommended by agronomists, because direct sowing saves farmers’ 7-10 days compared to full tillage and manual sowing systems,” explained Islam.
CIMMYT launched the Cereal Systems Initiative for South Asia (CSISA) program in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. Through this program, CIMMYT is operating rural “innovation hubs” in Bangladesh, India and Nepal to increase the adoption of various resource-conserving and climate-resilient technologies, and to improve farmer access to market information and enterprise development. Learn more about CSISA’s impact here.
CIMMYT’s interventions on cropping intensification in Southern Bangladesh look beyond surface water irrigation to ensure long-term environmental sustainability. Photo: T. Krupnik/CIMMYT
DHAKA, Bangladesh (CIMMYT) – For the first time, researchers have mapped rivers and freshwater canals in southern Bangladesh using geospatial tools as part of a new initiative to help farmers in monsoon and rainfed systems transition to sustainable farming methods. Essential to this transition is the use of surface water for irrigation, which is less costly and more environmentally friendly than extracting groundwater.
A new study by the International Maize and Wheat Improvement Center (CIMMYT) indicates that by switching to surface water irrigation, farmers can greatly increase crop production, even in the face of soil and water salinity constraints. It identified over 121,000 hectares (ha) of currently fallow and rainfed cropland that could be placed under irrigation. Dry season wheat and maize production would also increase significantly, thereby greatly benefiting national cereal productivity.
Access to irrigation is needed to ensure crops will grow during southern Bangladesh’s dry season, a challenge for farmers who have traditionally relied on rainfed cultivation. Extracting groundwater for irrigation is energy-intensive, but southern Bangladesh has a dense network of rivers and natural canals that can be used for surface water irrigation.
In order to maximize productivity without expanding to new land, farmers in southern Bangladesh will need to rotate at least two crops per year. By using crop rotation, an SI practice that can boost yields, increase profits, protect the environment, and improve soil function and quality, farmers can grow different crops on the same plot, minimizing crop expansion into forests.
Surface water irrigation can increase cereal productivity and intensify cropping systems, even in the face of soil and water salinity constraints. Photo: T. Krupnik/CIMMYT
As South Asia’s population continues to rise and more people move out of poverty, changing dietary preferences are increasing the demand for wheat and maize, while maintaining the demand for rice. However, the average increase in the yield potential of staple crops since the 1960s has been negligible, while farm area per capita has shrunk more than 60 percent to just a tenth of a hectare per person, according to 2014 World Bank Indicators.
The Government of Bangladesh recently adopted land- and water-use policies to support agricultural development in southern Bangladesh by calling for donors to invest over $7 billion. Of these funds, $500 million will be allocated for surface water irrigation to help farmers transition from monsoon rice-fallow or rainfed systems to intensified double-cropping systems.
Future interventions on cropping intensification in southern Bangladesh must look beyond surface water irrigation to assess where conjunctive use of groundwater might be needed and to ensure long-term environmental sustainability. While research results support the targeted use of surface water irrigation alongside improved water governance measures, more viable crop diversification options must be explored and the environmental impact of large-scale irrigation development needs to be assessed.
Building on this study, the CIMMYT-led Cereal Systems Initiative for South Asia will work with national agricultural research systems, government and private sector partners to develop policy and market interventions that continue to build sustainable intensification strategies for both irrigated and rainfed systems across southern Bangladesh.
Signing ceremony (L-R) with Pierre Defourny, Urs Schulthess, Kai Sonder, Bruno Gérard and Francelino Rodrigues giving CIMMYT access to the pilot version of the Sen2-Agri processing system and receive training on its use. Photo: Liliana Díaz Ramírez
EL BATAN, Mexico (CIMMYT) – The International Maize and Wheat Improvement Center (CIMMYT) has been selected by the European Space Agency (ESA) to have access to the pilot version of the Sen2-Agri processing system and receive training on its use.
As an ESA “champion user,” CIMMYT will test the ESA prototype system in Bangladesh and Mexico. These two sites cover a wide range of farming systems, from the large wheat fields of the Yaqui Valley to a more diverse system in Bangladesh, where parcel sizes can be as small as 0.05 hectares and farmers grow two to three crops per year on a single field.
“The great unmanned aerial vehicle (UAV) expertise acquired by CIMMYT is very complementary to the full exploitation of the new satellite generation capabilities,” says Pierre Defourny, professor at the Université catholique de Louvain in Belgium who is leading the Sen2-Agri project. “CIMMYT’s two cases will generate products that will support our joint efforts for wheat blast monitoring in Bangladesh and improve data availability for GreenSat in Mexico.”
In the early days of remote sensing, limited availability of data was a major constraint for putting the data to good use. Basic processing of the coarse data was also time consuming and tedious.
Fortunately, this has greatly changed in recent years. Open and free satellite data, such as Landsat 8 and Sentinel 1 & 2, allow for almost weekly coverages at resolutions as fine as 10 meters. Thanks to this new speed and precision, users can now focus on applying the data, deriving information products even for small holder farmers in remote areas.
The Sentinel 2 satellites have a swath width of 290 km. Sentinel-2A is already operational, while Sentinel-2B will be launched in the spring of 2018. Together, they will be able to cover the Earth every 5 days.
For example, the CIMMYT-led STARS project in Bangladesh developed an irrigation scheduling app called PANI, which uses remotely sensed data to estimate crop water use. From this data the farmer receives a simple text message on their cell phone that gives recommendations as to whether a particular field needs to be irrigated or not.
Sen2-Agri is unique compared to other systems in that it simplifies and automates satellite data processing. The system allows for semi-automated generation of products, such as cropland detection, crop classification, normalized difference vegetation index (NDVI) and leaf area index (LAI) based on images taken periodically by satellites Sentinel-2 and Landsat 8.
A signing ceremony was held on 15 August, 2016 to seal the cooperation between ESA and CIMMYT. Bruno Gérard, Director of CIMMYT’s Sustainable Intensification Program, sees this agreement as a fundamental game changer for CIMMYT’s geo-spatial work.
“Sen2-Agri will give CIMMYT access to high spatial and temporal resolution quality imagery and related ‘know-how,’ which in turn will enable us to further develop partnership with top-notch institutions in the earth observation field,” says Gérard.
Interface of the Sen2-Agri system, which allows for a semi-automated generation of cropland, crop type, LAI and NDVI maps.
The benefits of the Sen2-Agri are likely to far extend beyond the Yaqui Valley and Bangladesh. After the pilot phase of this project, the high-resolution imagery gathered could be applied to other areas CIMMYT projects are implemented.
In combination with bio-physical and socio-economic data, this will allow CIMMYT and other organizations to improve monitoring and evaluation, better assess and understand changes and shocks in crop-based farming systems and improve technology targeting across farmer communities.
The Sen2-Agri test program is being coordinated by Urs Schulthess. Please feel free to contact him at u.schulthess@cgiar.org if you have questions about or suggestions for future applications of the system.
A farmer in her wheat field in Bhutan. Photo: Sangay Tshewang/RNRRD
BHUTAN — Yellow and brown rusts are among the most common and damaging challenges to wheat production in Bhutan. Yellow or stripe rust (Puccinia striformis f. sp. tritici), a disease favored by cool weather conditions, is a major threat owing to the prevalence of cool winter conditions during the cropping season in most wheat growing regions. In Bhutan, yellow rust is the first disease to appear in the cropping season and, if left uncontrolled, has the potential to destroy the whole wheat crop. It has occurred every year in most wheat growing areas over the last two decades.
Brown or leaf rust (Pucciniatriticina Eriks.), the second most important wheat disease in Bhutan, is also favored by climatic conditions, with severe infection on different advanced wheat lines being recorded over the last ten years. This is an indication that leaf rust could be just as threatening as yellow rust if susceptible cultivars are grown under favorable environmental conditions. Finally, if these rusts are not controlled, it is possible that Bhutan could become a primary source of inoculum, which would then be carried to its neighbors by the wind.
Yellow rust of wheat. Photo: Arun Joshi/CIMMYT
Bangladesh, Bhutan’s southern neighbor, does not have much of a history of rust diseases, but climate change could alter that. And while yellow rust doesn’t occur at all in Bangladesh and leaf rust appears only occasionally (albeit with high intensity), both have the potential to spread in the country.
The absence of high rust pressure in Bangladesh is a serious challenge when it comes to evaluating the rust resistance of wheat lines needed to prepare for uncertain future climates. In contrast, Bhutan is in a strategic position to conduct yellow and leaf rust epidemiological studies and is active in regional and global efforts aimed at studying and managing rust. Therefore, for the first time, Bhutan and Bangladesh are collaborating on evaluating Bangladeshi wheat lines for resistance to yellow and leaf rusts with support from CIMMYT.
Advanced wheat lines from Bangladesh are evaluated for rust resistance in Bhutan. Photo: Sangay Tshewang/RNRRD
During the 2015–2016 cropping season, Bangladesh sent 50 advanced wheat lines identified as having potential rust resistance to Bhutan for screening. The evaluation was done under natural conditions at the Renewable Natural Resources Research and Development Center (RNRRD) in Bajo, about 70 kilometers east of Thimphu, Bhutan’s capital. The results are promising, with 30 lines showing resistance to the rusts. The data were shared with Bangladeshi partners, who will use them to inform their breeding decisions.
Bhutan has been collaborating with CIMMYT’s Global Wheat Program since 2011 and has released three rust resistant varieties from CIMMYT in the past two years. Although there has been regional collaboration on wheat research in South Asia mainly through CIMMYT, testing wheat lines from Bangladesh for rust resistance in Bhutan is a first.
File picture shows impact of wheat blast. CIMMYT/Etienne Duveiller
El BATAN, Mexico (CIMMYT) – International scientists are on high alert as they develop tactics to fight a deadly wheat disease that has emerged in Bangladesh, affecting a large portion of the country’s wheat growing area.
Wheat blast, first identified in Brazil in 1985 and widespread throughout South America, deforms grain, causing it to bleach, shrivel and shrink. At its worst, the fast-moving disease can decimate a crop, leading to the urgent need for a multi-pronged approach to fight it.
The recent appearance of the disease, which is caused by the plant fungus pathogen Magnaporthe oryzae, in six districts in southern Bangladesh is estimated to have affected 15 percent of the country’s total wheat growing area of 436,000 hectares (1.08 million acres).
“We need to fight this disease on various fronts – both in the short and long term,” said Etienne Duveiller, principal scientist and wheat pathologist with the International Maize and Wheat Improvement Center (CIMMYT), adding that strategies include preventing the distribution of infected seed, sowing seed at designated optimal times, introducing foliar spray of triazole fungicides and developing disease-resilient seed.
“It’s paramount that infected seeds are identified and that seeds are sown at the best time to avoid rains at the sensitive stage when wheat plants develop the spike where grains form, but we’ve also been working to identify resistant genetic materials – germplasm – for use in developing new varieties, a vital part of the longer term fight against the disease,” he said.
CIMMYT scientists are working with national agriculture programs on this work, setting up germplasm exchanges and testing genotypes in hot spot areas where the disease occurs, Duveiller said, adding that a smallholder farmer in one of the worst-hit areas said he expected to harvest 80 percent less wheat as a result of the disease. The problem compounds over time because farmers keep seed and replant it in subsequent years.
Scientists believe wheat blast spreads by various means, including airborne distribution, from crops planted in rotation with wheat and sexual hybridization.
“We’re not sure what the potential scale of wheat blast spread might be because we’re still trying to understand how it survives from wheat crop to wheat crop, we urgently need investments to understand it,” said Hans Braun, director of CIMMYT’s Global Wheat Program.
“It takes only a few days from the first symptoms occurring until major damage is caused by the fungus,” he added. “This short window makes chemical interventions difficult and prophylactic application of fungicides is too expensive for smallholder farmers. Breeding resistant varieties is the best and possibly the only option to control the disease in the long term.”
P.K. Malaker, BARI senior wheat pathologist (2nd from left) and other BARI scientists showing blast affected wheat to Martin Kropff in Jessore district. Malaker first identified the emergence of wheat blast in Bangladesh. Photo credit: CIMMYT/Bangladesh
DHAKA, Bangladesh (CIMMYT) — On a recent visit to Bangladesh, Martin Kropff , director general of the International Maize and Wheat Improvement Center (CIMMYT) held discussions with partners and government officials on combating wheat blast disease and other aspects of maintaining food security in the country.
Meetings were held with Bangladesh’s agriculture minister and member of Parliament Begum Matia Chowdhury and Secretary of Agriculture Mohammad Moinuddin Abdullah, where CIMMYT’s activities in Bangladesh were also discussed. Wheat blast is one of the most feared and intractable wheat diseases.
A new, severe outbreak of the disease in Bangladesh validated the prediction of the spread of the disease beyond its origins in Latin America to Africa and South Asia. The spread of wheat blast could be devastating to South Asia, which is home to 300 million undernourished people and whose inhabitants consume over 100 million tons of wheat each year.
Martin Kropff and Nynke Kropff-Nammensma with CIMMYT-Bangladesh staff. CIMMYT/Utam Barman
During a two day field visit, Kropff saw the impacts of wheat blast in the Bangladesh Agricultural Research Institute’s (BARI) research station in Jessore and farmers’ fields. He also spent the visit meeting Bangladeshi farmers, observing mechanization scaling efforts and visiting a range of CIMMYT varietal and agronomic research trials and demonstrations funded by the U.S. Agency for International Development and the Australian Centre for International Agricultural Research in Jessore and Dinajpur districts. In addition he held discussions with scientists from BARI and visited the organization’s headquarters in Gazipur and
Martin Kropff (L) meets with Bangladesh’s agriculture minister and Member of Parliament Begum Matia Chowdhury (2nd from left) to address the spread of wheat blast in the country, along with (from L-R) Nynke Kropff – Nammensma, CIMMYT-Bangladesh Country Representative TP Tiwari and Secretary of Agriculture Mohammad Moinuddin Abdullah. CIMMYT/Zia Ahmed
the Wheat Research Centre in Dinajpur district. Kropff also learned how irrigation management advisory with satellite technology is being developed with BARI, the Bangladesh Agricultural Research Council (BARC) and other core partners to release mobile applications for farming.
Kropff also held discussions with partners, including BARI Director General Rafiqul Islam Mondal and Abul Kalam Azad, executive director of BARC. Mondal lauded CIMMYT for its continuous support of BARI’s promotion of maize and wheat for food security in Bangladesh.
To introduce modern agricultural machines to farmers of Jhenaidah, Bangladesh, a farmers’ field day (FFD) was held on 17 November 2015 at the M.K. High School, Kulfadanga, Maharajpur, Jhenaidah. The FFD was jointly organized by CIMMYT and IRRI under the USAID funded projects Cereal System Initiative for South AsiaMechanization and Irrigation (CSISA-MI) and Rice Value Chain (RVC).
Sk. Nazim Uddin, Mechanization Project Director at Bangladesh’s Department of Agricultural Extension (DAE), said that farmers need modern agricultural machinery and proper training, which is being provided by CIMMYT.
While addressing farmers, chief guest Hamidur Rahman, DAE Director General, pointed out that USAID funded agricultural projects are playing a vital role in introducing agricultural mechanization in Bangladesh and said, “Our population is increasing, whereas the cultivable land is decreasing day by day; we need to adopt complete mechanized systems in agriculture to meet the challenge of producing more food from less land. In this context, CIMMYT and IRRI are doing a great job that everybody should know about.” He also expressed his satisfaction with the public-private partnership initiated by CIMMYT’s CSISA-MI project. William J. Collis, CSISA-MI Senior Project Leader, expressed his hope that mechanization will push forward the agriculture of Bangladesh within the next 10 years and thanked the private sector for its continuous support of the country’s agricultural machinery sector.
At the field day, participating farmers learned about modern agro-machinery and mechanized cropping systems that help reduce tillage to conserve soil health, while saving time, labor, and expenses, and maximizing profit. Detailed discussions were held on how to make tillage options accessible at a lower price, and increase the use of machines through local service providers (LSP). A significant number of farmers expressed their willingness to become LSPs and earn extra income. They also requested subsidies for purchasing the agro-machines and starting their own business.
Farmers and guests later visited field plots where they witnessed demonstrations of several machines, such as a rice transplanter and reaper, a new planter called the hand crank spreader, and the power tiller operated seeder. These demonstrations were presented by private sector companies RFL, Metal, ACI, and Janata Engineering as part of their agro-machinery promoting activities. Afterward, a feedback session was conducted where farmers and LSPs expressed their opinions of the machines, their use and profitability.
Other special guests at the field day were Muhammad Nuruzzaman, Project Management-Coordinator, Economic Growth, USAID Bangladesh; Md. Sirajul Islam, Chief Scientific Officer, RARS, Bangladesh Agricultural Research Institute, Jessore; Subrata Kumar Chakrabarty, Project Manager, CSISA-MI, CIMMYT; and Kevin Robbins, Deputy Project Manager, CSISA-MI, iDE-Bangladesh. The program was chaired by Khairul Abrar, Additional Director, DAE, Jessore. Also present were Deputy Directors of DAE from Jessore, Magura, Jhenaidah, Chuadanga, Meherpur and Kushtia districts; the Chairman and members of Kulfadanga Union Parishad, local elites, school teachers, and large numbers of farmers.
In eastern India, CSISA increased adoption of early sowing of wheat and zero tillage by demonstrating the benefits in farmers’ fields. Photo: Vinaynath Reddy.
Growth rates of staple crop yields in South Asia are insufficient to meet the region’s projected demands. Forty percent of the world’s poor live in South Asia, and the area comprising eastern India, Bangladesh, and Nepal has the world’s largest concentration of impoverished and food insecure people. At the same time, resource degradation, declining labor availability, and climate change (frequent droughts and rising temperatures) pose considerable threats to farming system productivity and rural livelihoods. By 2050, 30% of South Asia’s wheat crop is likely to be lost due to higher temperatures, experts say.
The rates of growth of staple crop yields in South Asia are insufficient to meet the projected demands in the region. With 40 percent of the world’s poor living in South Asia, the area composed of eastern India, Bangladesh and Nepal has the largest concentration of impoverished and food insecure people worldwide. At the same time, issues of resource degradation, declining labor availability and climate change (frequent droughts and rising temperatures) pose considerable threats to increasing the productivity of farming systems and rural livelihoods. Thirty percent of South Asia’s wheat crop is likely to be lost due to higher temperatures by 2050, experts say.
“These ecologies are regionally important for several reasons,” said Andrew McDonald, Project Leader, Cereal Systems Initiative for South Asia, CIMMYT. “First, they have a higher density of rural poverty and food insecurity than any other region. Second, yield gaps for cereal staples are higher here than elsewhere in South Asia – highlighting the significant growth potential in agriculture.”
According to McDonald, there has been some successes due to increased investment and focus on intensification in these areas over the past 10 years. A CIMMYT-led initiative, the Cereal Systems Initiative for South Asia (CSISA) has contributed to major outcomes such as rapid uptake of early-planted wheat, the use of zero-tillage seed drills and long-duration, high-yielding wheat varieties in eastern India.
CSISA, in close collaboration with national partners, has been working in this region since 2009 to sustainably enhance the productivity of cereal-based cropping systems, as well as to improve the livelihoods of millions of smallholder farmers.
“Climate-resilient practices are gaining confidence in the areas we are working. More than 500,000 farmers adopted components of the early rice-wheat cropping system in Bihar and eastern Uttar Pradesh last year,” said R.K. Malik, Senior Agronomist, CIMMYT. “Early sowing can protect the crop from late-season heat damage and increase yields. It’s a non-cash input that even smallholders can benefit from and is one of the most important adaptations to climate change in this region.”
To increase the spread of these innovations and increase farmers’ access to modern farming technologies, CSISA is working to strengthen the network of service providers.
“This region has a large number of smallholder farmers and ownership of machines by smallholders is often not economically viable,” highlighted Malik. “In Indian states of Bihar, Odisha and eastern Uttar Pradesh, CSISA has facilitated more than 2,100 progressive farmers to become local entrepreneurs through relevant skills, information and training during the last three years.”
The U.S. Agency for International Development and the Bill & Melinda Gates Foundation have recently approved Phase III of CSISA, running from December 2015 to November 2020. Building on the momentum and achievements of Phase I and II, Phase III will work to scale up innovations, strengthen local capacity and expand markets to support the widespread adoption of climate-resilient agricultural technologies in partnership with the national and developmental partners and key private sector actors.
“CSISA has made its mark as a ‘big tent’ initiative that closes gaps between research and delivery, and takes a systems approach that will continue to be leveraged in Phase III through strategic partnerships with national agricultural systems, extension systems and agricultural departments and with civil society and the private sector,” said McDonald.
Implemented jointly with International Rice Research Institute and International Food Policy Research Institute, the main four outcomes of Phase III focus on technology scaling, mainstreaming innovation into national systems, development of research-based products and reforming policies for faster technology adoption.
Based on information from the Sustainable Intensification Program Science Dissemination Team
Photo: World Food Prize winner Sir Fazle Hasan Abed. Photo courtesy of worldfoodprize.
“It is difficult to express in words how honored and deeply touched I am by this recognition,” said Sir Fazle Hasan Abed upon receiving the 2015 World Food Prize award on 16 October in Des Moines, Iowa. “The real heroes in our story are the poor themselves and, in particular, women struggling with poverty who overcome enormous challenges each day of their lives. Through our work across the world we have learnt that countries and cultures vary, but the realities, struggles, aspirations and dreams of poor and marginalized people are remarkably similar.”
Originally from Bangladesh, Abad is founder and chairperson of BRAC, and the prize was awarded to him because of his outstanding contributions to improving global food production and distribution for the benefit of the poorest of the poor. During the ceremony, which was held in the state capitol, Abad thanked everyone and expressed how honored he felt by the prize, but noted that he should not be recognized by the prize, but everyone who worked for the BRAC organization over the past 43 years, because it was through their efforts that new pathways were found for keeping millions of people in Bangladesh and other countries in Africa and Asia out of poverty.
Another award winner was Eric B. Pohlman, who was selected to receive the Norman Borlaug Award for Field Research and Application 2015, which was won by Dr. Bram Govaerts in 2014. Pohlman, who is the Director of the One Acre Fund, was recognized for the work he has done through the Fund, by applying its extension model in Rwanda, where it has helped train more than 1,000 extension workers who have supported more than 130,000 farm families.
This event also included other activities such as discussion panels that sought to find solutions to the problems of climate change and food security. Conservation agriculture, precision agriculture, and climate-smart technologies were some of the alternatives they discussed.
Dr. Sanjaya Rajaram was the recipient of the World Food Prize 2014.