Skip to main content

Location: Americas

CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.

Smallholder Mexican farmers adopt resource-conserving innovations: slowly and in bits

Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.

Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.

“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”

Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)

Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.

They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.

“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”

Advancing more sustainable farming in Mexico

Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.

CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El BatĂĄn, Mexico. (Photo credit: CIMMYT)

CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.

  • Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
  • With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds
. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
  • Farmers in the Milpa Sustentable project in the YucatĂĄn Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of YucatĂĄn. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
  • CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer MarĂ­a MartĂ­nez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
  • With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario GuzmĂĄn Manuel of San Francisco ChindĂșa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”

Anurag Kumar

Anurag Kumar is a senior research associate in CIMMYT under the Cereal System Initiative for South Asia (CSISA) project in India.

He is involved in Coordinating trials and demonstrations of the rice-wheat cropping system in Bihar. Other than coordinating trials and demonstrations, he is effectively strengthening partnerships with national and private partners. The extension of proven technologies is the core of the project so synergizing the effort of each partner for better spread.

A Mexican farm research program gains praise and interest for use abroad

Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as “MasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)

As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.

The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.

MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.

State-level partners sign on to MasAgro

Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.

MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)

CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.

An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.

Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.

Acclaim and interest abroad for MasAgro

MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:

Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
  • The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
  • The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
  • The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
  • During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
  • Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
  • MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.

Moving out and beyond

In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.

Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.

Farmer Marilu Meza Morales harvests her maize in ComitĂĄn, Mexico. (Photo: Peter Lowe/CIMMYT)

As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.

“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.

The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “
is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”

Set an example of how to thrive

In July 2023, CIMMYT launched a new seminar series on women’s leadership — Catalysts of Change: Women Leaders in Science. Pitched as a ‘TED Talk meets fireside chat’, the series shines a spotlight on successful women who are leaders in their fields, providing a platform for them to share insights from their lives and careers. Taking into consideration the fact that leadership can take make many different forms, the talks will highlight women who are leaders in all sorts of disciplines and capacities.

Altagracia emphasized that social and political changes across the world present new opportunities for women to advance in leadership roles. (Photo: CIMMYT)

“We want more women leaders in science organizations and institutions like our own,” explains CIMMYT Director General Bram Govaerts. “To achieve this goal we need proper representation, and we need role models that balance science, business insights and decision-making to provide opportunities to hear from women leaders about their life journeys, lessons and insights.”

Disruption without destruction

The second event in the series, held online on July 18, featured presentation by Altagracia Gómez Sierra, a leader in sustainable business, Chair of Mexico’s Western Business Promoter Council, and one other the most influential women in agribusiness and energy within the region. During her talk, Gómez emphasized that while many challenges persist, social and political changes across the world are presenting new opportunities for women to advance in leadership roles.

“As we enter a time of absolute change in this new decade, I think women have their best shot at stopping the reproduction of poverty and entering into leadership positions that were previously denied to them,” she said. “And in doing so, we should learn to be disruptive without being destructive. We should build on what we already have and keep pushing it forward.”

GĂłmez pointed to the advantage of being trained to develop soft skills, which companies and recruiters increasingly see as equally valuable as technical ones. “I think women are trained, even as young girls, to be very effective communicators. They are trained to be part of larger teams or communities and to advance forward without leaving people behind,” she told attendees. “I think that’s an attribute that women — and you as women in science — can bring to the table and communicate. And that is something that I believe, whether it’s in the short or long term, does eventually get recognized.”

Help girls aspire to leadership

Gómez also outlined the importance of supporting women’s leadership at all ages, and crucially even before entering the workforce. “What we sometimes fail to realize is that true innovation comes from the small businesses that constitute up to 76% of new jobs worldwide. And that 90% of companies are still family-run. So, when we think about changing companies, we need to think about changing families and how families work,” she explained. “Because if we truly want to give women a shot, we need to give girls a shot.”

Altagracia and Maria Itria spoke on the importance of representation and having role models. (Photo: CIMMYT)

“I would invite every one of you, if you have girls at home, to encourage them not only to be prepared to take on leadership roles, but also to aspire to them,” she added. “You can do this by setting an example of how to thrive.”

“I believe that the decade of the 2020s, in spite of all the challenges, is truly a wonderful opportunity for girls and women across the world — especially in science.” She ended her talk by encouraging attendees to do anything they can to enhance inclusion — particularly enhancing the accessibility of infrastructure, technology, and education for rural communities — in order to advance business objectives with social as well as economic profitability.

Gómez’ presentation was followed by a Q+A session led by Maria Itria Ibba, head of the Wheat Quality Laboratory and cereal chemist at CIMMYT. The full discussion can be viewed online here. Spanish and French-language audio is also available.

CIMMYT welcomes US Department of State visit

U.S. Department of State Special Representative for Global Partnerships Dorothy McAuliffe visited CIMMYT in Texcoco, Mexico, on July 7, 2023. The visit aimed to strengthen ties between the United States government and CIMMYT—reaffirming commitment to fostering partnerships to achieve food and nutrition security goals.

McAuliffe examined maize germplasm from the U.S. (Photo: CIMMYT)

McAuliffe toured the CIMMYT gene bank, museum and conservation agriculture trial plots. CIMMYT scientists explained their efforts to protect one of the largest maize and wheat seed collections through research and collaboration with CGIAR and seed health initiatives.

She also received a detailed briefing about the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I), a regional project in southern and eastern Africa led by CIMMYT with the backing of Office of Special Envoy for Global Food Security and the United States Agency for International Development (USAID). CIMMYT practitioners briefed McAuliffe on AID-I’s inspiration in a successful model implemented in Mexico, MasAgro, with the potential to inform policy makers and transform agrifood systems in Central America to respond to migration.

Partner seed companies and project leaders shared significant milestones already achieved in Zambia, Malawi and Tanzania to expand access for smallholder farmers to market actors, high-yielding seeds and climate-adaptable, resilient crop varieties.

(Left to right) Bram Govaerts, Daniela Vega, and Dorothy McAuliffe toured conservation agriculture trial plots. (Photo: CIMMYT)

After the tour of CIMMYT facilities, McAuliffe heard private and public partners share success stories and current initiatives jointly led with CIMMYT on regenerative agriculture, gene bank development across CGIAR and climate-smart and scale-appropriate mechanization technologies.

“Through partnership, we can work on R&D goals for better nutrition, data-driven decision making and promotion of regenerative agriculture so that farmers produce diversified crops. On behalf of CIMMYT, I’d like to thank the U.S. government and the American people, who have historically made scientific innovation possible, leaving a huge footprint to feed the world,” shared Bram Govaerts, CIMMYT director general.

Brazil moves towards wheat self-sufficiency and seeks expansion in the global market

Brazil is moving towards self-sufficiency, reducing the need for imports and increasing its participation in the international wheat market. The development of adapted wheat varieties with stable yields disease resistance, and wheat strains from the International Maize and Wheat Improvement Center (CIMMYT) enabled the consolidation and expansion of cereal crops in the country.

 

Read the full story.

Technical support for sustainable maize and associated crops production in Iguala

The primary focus of this project is on providing technical support to maize and associated crops growers, to develop, validate and implement a working methodology based on a technological menu that responds to the needs of their agri-food systems, aligned with the 2021-2024 government program of the Iguala municipality in Mexico’s Guerrero state.

The project aims to align with the Sustainable Development Goals: SDG 2 – Zero Hunger; SDG 3 – Good Health and Well-Being for People; SDG 12 – Responsible Consumption and Production; SDG 13 – Climate Action; SGD 17 – Partnerships for the Goals.

Direct project scopes:

  • Technical accompaniment to 40 producers and their impact on at least 80 ha. of maize and associated crops for the adoption of sustainable practices and their linkage to the innovation network, to increase productivity and profitability of the productive process of small, medium and large producers with a focus on sustainable agriculture.
  • Follow-up during the period of technical attention of 2 modules and 40 areas of impact, to consolidate, maintain and increase the infrastructure where innovations that respond to the needs of producers in the municipality are adapted.
  • Development of training events for the development of capacities of 30 producers and key actors linked to the innovation network in the municipality.
  • Operate a solid communication strategy through the institutional media and its outreach, to position the project’s activities and the promotion of sustainable agriculture by the municipal government.

 

 

 

Forging scaling partnerships in Latin America: Scaling specialists meet to strengthen future collaborations and learn from past experiences

On May 26, 2023, representatives from the International Maize and Wheat Improvement Center (CIMMYT) and the Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) hosted a scaling networking event at CIMMYT headquarters in Texcoco, Mexico. This event marked the culmination of a Scaling Readiness Training organized by the One CGIAR Portfolio Performance Unit (PPU), which included 30 participants from various CGIAR centers working on various One CGIAR Initiatives.

Consequently, the Scaling Networking Event was happy to bring together scaling experts from the CGIAR training together with other experts from GIZ, CIMMYT, and other academic and non-governmental organizations. The participants exchanged learnings, ideas, and methodologies for scaling agricultural innovations. Fortunately, this did not remain just an abstract exercise as the attendees were also eager to explore future joint scaling projects. Because collaboration is one of the most important factors in scaling innovations, the purpose of the event was to establish new collaborative initiatives and partnerships.

GIZ and CIMMYT have a long history of collaboration in Mexico and elsewhere. In Africa, for example, a group of mechanization specialists from CIMMYT recently provided training in this area to strengthen the work of the GIZ Green Innovation Centers for the agricultural and food sectors. In this event, both organizations explained what they meant by scaling and how they have worked on it using tools such as the Scaling Scan. The Scaling Scan is another example of the collaboration between GIZ and CIMMYT (and the Netherlands Development Organization SNV) and is a tool that analyzes bottlenecks and opportunities in scaling and innovation.

Both organizations noted a need to explore a wider space to connect sectors and actors interested in scaling innovations developed by agricultural research. Looking at different scaling approaches, the Scaling Readiness framework was presented as the official scaling practice in One CGIAR. Also, the University of Chapingo and the Universidad Iberoamericana in Mexico showed the tools they are using from analyzing social networks and Geographical Information Systems. They showed the connections with people that scaling requires and the importance of basing scaling assessments on quantitative data.

Plenary discussion to identify the best ways to carry out collaborations (Photo: Ronay Flores/CIMMYT)

The Mexican Center for Philanthropy (CEMEFI) and GIZ Mexico also discussed the difficulties that come with deciding what to scale and how to do so responsibly. Given current environmental concerns, GIZ Mexico emphasized the need to scale technologies at the intersection between biodiversity and agriculture.  CEMEFI started a dialogue among scaling specialists about how to scale while also taking social factors into account. The major topics that came out of this discussion were the need to engage communities more, spend time with them planning interventions, and examine power relations.

As part of this event, scaling practitioners from three One CGIAR Research Initiatives, of which CIMMYT is a member, presented their scaling reflections. They shared their work and some research questions that are now being investigated in the Digital Initiative, the Latin American “AgriLAC” Initiative, and the Mitigation Plus Initiative. Some of the questions addressed in the event included what criteria should be chosen to select innovations, how to bring different scaling processes together, and finally, how to develop scaling strategies that could be supported by the digital and technological enabling conditions and tools.

Before the event concluded, the participants still had sufficient energy to debate and support the idea of creating a Latin American scaling community of practice to continue exchanging scaling experiences in the region, not only with partners but between scaling researchers and practitioners. The expected result would be to strengthen scaling work so that the most relevant practices to make agri-food systems resilient and sustainable could be adopted, adapted, or transformed to suit each community and its needs in each context.

What then were the final learnings for this event? The importance of scaling with partners; the need to address social inclusion in scaling by understanding power relations; and the sharing of varied scaling experiences and processes. All of this was highlighted at the end of the meeting, which gave closure to the day but an initial drive towards future potential collaborations that were created out of it.

Hot, dry, windy events on the rise in Kansas wheat fields

Kansas is experiencing a record-breaking year for hot, dry, windy (HDW) — the nation’s largest winter wheat producer — hit worse than any other state. CIMMYT researchers act to avert food insecurity as temperatures climb, atmospheric pressure increases — generating faster and longer gusts of wind and unpredictable weather conditions.

Click here to read the full story.

 

Regenerative Agriculture Boosts Second Green Revolution

CIMMYT leds different regenerative agriculture projects with companies like Nestlé and Bimbo that positively impact food security and rural communities in Mexico. These initiatives aim to boost productivity through regenerative agriculture practices to positively impact food security, the environment and social inclusion in the Mexican countryside.

Read the full story.

 

CIMMYT at the AIM for Climate Summit

Sieg Snapp, Tek Sapkota, and partners photographed during AIM for Climate (Photo: CIMMYT)

As climate change threats accelerate, new technologies, products, and approaches are required for smallholder farmers to mitigate and adapt to current and future threats. Targeting smallholder farmers will benefit not only the farmers but the entire agri-food system through enhanced locally relevant knowledge that harnesses handheld sensors and advisories on management options, soil status, weather, and market information.

The Agriculture Innovation Mission for Climate (AIM for Climate / AIM4C) seeks to address climate change and global hunger by uniting participants to significantly increase investment in, and other support for, climate-smart agriculture and food systems innovation over five years (2021–2025).

The International Maize and Wheat Improvement Center (CIMMYT), as a partner of AIM for Climate, organized a breakout session titled “Smart Smallholder Fertilizer Management to Address Food Security, Climate Change, and Planetary Boundaries” during the AIM for Climate Summit in Washington DC, May 8-10, 2023.

Fertilizers are essential for increasing crop yields and ensuring food security, yet fertilizer use for food and fodder is severely skewed at the global level, leading to over-fertilization in some regions and under-fertilization in others.

Farmers in low-income countries are highly vulnerable to fertilizer supply shortages and price spikes, which have direct consequences for food prices and hunger. Improving fertilizer efficiency and integrated organic and inorganic sources is important globally as nutrient loss to the environment from inappropriate input use drives greenhouse gas emissions and pollution.

Innovation Sprint

Because smallholder farmers are the primary managers of land and water, the CIMMYT-led AIM4C Innovation Sprint, Climate-Resilient soil fertility management by smallholders in Africa, Asia, and Latin America is designed to implement and scale-up a range of climate robust nutrient management strategies in 12 countries, and to reach tens of millions of smallholder farmers in close collaboration with nearly 100 public-private partners organizations.

Sieg Snapp called for more investments in data synthesis (Photo: CIMMYT)

Strategies include innovations in extension where digital tools enable farmer-centered private and public advisories to increase the uptake of locally adapted nutrient management practices. Connecting farmers to investors and markets provides financial support for improved nutrient management.

By tailoring validated fertility management practices to their specific conditions, and integrated use of legumes and manure, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions. Research from other organizations has determined that improved fertilizer management can increase global crop yield by 30% while reducing greenhouse gas emissions.

Right place, right time

“We need locally adapted fertilizer management approaches that work for smallholder farmers. By tailoring validated fertility management practices to their specific conditions, smallholders will optimize productivity, enhance climate resilience, and mitigate greenhouse gas emissions,” said Sieg Snapp, CIMMYT’s Sustainable Agricultural Systems Program Director. She continued, “What is needed now is major investment in data synthesis. Through this SPRINT we are exploring options to enable taking sensors to scale, to reach tens of millions of farmers with hyper-local soils information.”

Inequality is the core of the problem in fertilizer management: some regions apply more than the required amount, where in other regions fertilizer application is insufficient for plant needs, leading to low yields and soil degradation.

Tek Sapkota spoke on fertilizer management (Photo: CIMMYT)

“Fertilizer efficiency can be improved through application of the right amount of fertilizer using the right source employing the right methods of application at the right time of plant demand,” said Tek Sapkota, CIMMYT Senior Scientist, Agricultural System/Climate Change.

The session included presentations by the Foundation for Food & Agriculture Research (FFAR), UN Foundation, Pakistan Agricultural Research Council (PARC), Stockholm International Water Institute (SIWI), USDA, and Alliance of CIAT-Bioversity. Highlights sustainable and climate-smart practices in Pakistan, novel plant genetics for improved nitrogen cycling, and soil water and nutrient management in the Zambezi to tackle food security and climate change challenges.

Twenty Years of Enriching Diets with Biofortification

It is an important year for biofortification: 2023 will mark the 20th anniversary of this nutrition-agricultural innovation, for which its pioneers were awarded the World Food Prize.

More than three billion people around the world, mostly in Africa, Asia, and Latin America, cannot afford a nourishing, diverse diet that provides enough vitamins and minerals (micronutrients). While efforts to pursue dietary diversity—the accepted gold standard for optimal health—must continue, a healthy diet remains out of reach for a vast majority of the world’s population.

The consequences are dire. A staggering two billion people get so little essential micronutrients from their diets that they suffer from “hidden hunger”, the often-invisible scourge of micronutrient malnutrition.

To combat hidden hunger requires a range of context-specific combinations of evidence-based interventions that complement each other, including dietary diversification, supplementation, commercial food fortification, biofortification, and public health measures (like safe water, sanitation, and breastfeeding).

There is no single solution to ensure everyone, everywhere has access to an affordable, diverse, and healthy diet. Biofortification is one of the many important solutions being implemented by global research partners working together across CGIAR to ensure a food-secure future for all.

It is imperative to implement interventions that are practical and accessible in regions and among people most affected by hidden hunger, such as women and children in rural farming families in low- and middle-income countries (LMICs), who primarily eat what they grow. This is particularly important during periods of rapid growth and development like in the first 1,000 days of life, after which the negative impacts of an insufficient diet become largely irreversible.

In this 20th anniversary year of HarvestPlus and biofortification, we review biofortification’s role, advantages, and scale as an essential part of CGIAR-wide effort to improve global nutrition.

Biofortification: A Complementary Approach to Reduce Malnutrition

“Biofortified crops are going to be game-changers in dealing with
 malnutrition in our world today.”
Dr. Adesina, President of the African Development Bank, World Food Prize Laureate

Staple food crops contain fewer vitamins and minerals than animal-based foods and some vegetables and fruits. Yet wheat, maize, rice, cassava, sweet potato, beans, pearl millet, and other staple foods make up the foundation of most diets around the world, and should therefore be as nutritious as possible.

Staple foods also offer nutritional protection against food systems shocks, especially for vulnerable populations who are unable to access a healthy and diverse diet, and whose reliance on staple food crops increases during times of crises. Through biofortification, staple crops can contribute a high proportion of the micronutrients needed for good health and nutrition.

Biofortification efforts to date have focused mainly on using conventional plant breeding and agronomic techniques to add more of the micronutrients most lacking in diets around the world—zinc, iron, and vitamin A— into staple crops. This approach acknowledges that many poor people cannot afford or access the variety of non-staple foods they need for optimal health, and are often underserved by other large-scale public health nutrition interventions.

“[Biofortified] crops provide a sustainable source of much needed nutrients to rural communities.”
Prof. Watts, Chief Scientific Advisor and Director for Research and Evidence, UK Foreign, Commonwealth and Development Office

Eating poor-quality, and often unsafe, food perpetuates a cycle of poverty, infection, and malnutrition. Enriching nutrients into staple crops that farmers are already eating provides a safety net against severe levels of deficiency and helps mitigate challenges of nutrition insecurity due to climate change.

CGIAR transdisciplinary, participatory, and action-oriented research and innovations to improve nutritional outcomes, including biofortification, are making a vital contribution towards realizing Sustainable Development Goal 2 to end hunger and all forms of malnutrition.

Meeting Nutritional Needs

Biofortified crops are targeted mostly at rural food systems in LMICs, where deficiencies in vitamin A, iron, and zinc are highly prevalent. Young children, adolescent girls, and women are the priority groups for biofortification because their relatively high micronutrient needs predispose them to hidden hunger.

The scientific body of evidence supporting biofortification spans over two decades. Each biofortified crop is the subject of extensive research to evaluate its intrinsic nutritional value and its potential impacts on human nutrition and health.

Vitamin A orange sweet potato (OSP) was the first biofortified staple to be delivered at scale and evaluated in sub-Saharan Africa, a joint effort by HarvestPlus, the International Potato Center, and the International Food Policy Research Institute. It has very high levels of vitamin A (traditional white varieties contain none) and long-term studies indicate it can help reduce diarrhea in children and is a cost-effective way to improve population vitamin A intake, thereby improving child and maternal health and reducing the likelihood of vitamin A deficiency. Breeding efforts are now simultaneously increasing the iron content of OSP, to deliver more of multiple stacked micronutrients.

Evidence from additional randomized controlled trials have demonstrated that nutrient-enhanced staple crops generate positive direct and indirect health effects on multiple age groups, for example:

Supplementation studies have clearly shown that improvements in micronutrient status, particularly zinc, vitamin A, and iron status, generate improvements in immunity, growth, and multiple other dimensions of good health. The improvements are not specific to how the micronutrients are delivered (e.g., by food or pills), but rather due to positive changes in nutritional status.

Breeding for Improved Grain Yield and Nutritional Quality

“The reason for growing these varieties, is better yield, more profitability and better zinc nutrition for our families.”
— Mr Tariq, Pakistani farmer

Adoption of biofortification is demand driven. All released biofortified varieties are agronomically competitive in the agricultural zone(s) for which they were developed, relative to the varieties farmers already grow.

Crop breeding efforts are responsive to the expressed priorities and preferences of farming families and their countries. High yields are among the traits considered non-negotiable by breeders and farmers alike, and are a driver for national authorities to approve the release of new varieties in their countries to farmers to grow them.

Innovative breeders at CGIAR centers and National Agricultural Research Extension Systems have successfully been able to achieve exceptional yield and nutrition gains simultaneously in biofortified varieties, a benefit that is realized by farmers.

“[Nyota, an iron bean] can easily give me over 3 tons per hectare, as compared to other varieties that yield about 2 tons.”
— Mr Burde, Kenyan seed producer

 

Breeding pipelines are dynamic and always adapting to new stresses. Nutrient-enriched varieties of crops are continuously improved by breeders who breed varieties for progressively higher levels of micronutrients, which are also agronomically competitive (e.g., disease and pest resistant), well adapted to a wide range of climatic conditions (e.g., drought and heat tolerant), and exhibit food quality traits desired by farmers, food processors, and consumers (e.g., fast cooking time and good taste).

In Pakistan, one of the highest wheat-consuming countries in the world, the zinc wheat variety Akbar-2019 is now a ‘mega-variety’. It provides 30 percent more zinc and 8-10 percent higher yield than previous popular varieties. Developed by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with HarvestPlus, and released by the Wheat Research Institute of the Ayub Agricultural Research Institute, Faisalabad, Akbar-2019 is also resistant to rusts and well adapted to a range of sowing dates. Farmers attest to the good quality of the chapatti (flat bread) made from its flour. Akbar-2019 is already being grown on more than three million hectares of land—and soon an estimated 100 million people will eat chapatti made from its flour and reap the benefits of added zinc in their diets.

“My father-in-law
 has expressed a desire to continue growing only biofortified zinc wheat from now on. In addition to the grain quality, the plants also grow well in tough geographical conditions.”
— Ms Devi, Indian farmer

In Nigeria, HarvestPlus and partners including the International Institute of Tropical Agriculture have developed varieties of vitamin A cassava with multiple traits attractive for farmers. Survey data indicates vitamin A cassava varieties have an average fresh root yield of 20.5 metric tons per hectare (MT/Ha), well above the average yield of 10.2 MT/Ha of other improved but non-biofortified varieties. Nearly 2.1 million farmers are growing vitamin A cassava in Nigeria, providing added dietary vitamin A to over 10 million people in a country where vitamin A deficiency is a severe, yet preventable, public health problem.

Farmers carefully consider yield, profitability, stress tolerance, taste, and more when selecting the varieties they grow—over 17 million farming households chose to grow biofortified varieties in 2022, enriching the diets of over 86 million people.

Contributing To Agricultural Diversity

To establish new crops with higher levels of micronutrients, breeders tap into the spectrum of genetic diversity stored within global plant gene banks to find nutrient-dense qualities from underutilized plant species (including wild species or those naturally evolved in certain geographic areas).

Through breeding for improved nutrition, biofortification also transfers otherwise untapped variation for traits other than micronutrients into newly developed crops, increasing the genetic agrobiodiversity not only in biofortified varieties, but also non-biofortified varieties derived from crossing micronutrient-dense plant ‘parents’ to produce high micronutrient ‘offspring’.

Micronutrient genes are not subject to erosion in the breeding process (as genes are for disease or pest resistance), like the dwarfing genes in wheat and rice that catalyzed the green revolution.

CGIAR has committed to mainstreaming improved nutrient traits in most of their breeding lines through crop breeding, given its proven cost-effective and sustainable approach to enriching staple food crops.

Committed to Scaling

 

Governments and other “Our aim should be to make every family farm a biofortified farm.”
— Dr MS Swaminathan, World Food Prize Laureate, Father of Indian Green Revolution

HarvestPlus partners, collaborators, and advocates support country-level initiatives that promote the integration of biofortified seeds, crops, and foods into local, national, and regional policies and programs. These collective efforts and alliances are the catalyst behind the scale up to over 86 million people in farming households eating nutrient-enriched foods in 2022, 22% more than in 2021.

In 2022, a declaration adopted by the African Union to scale up food fortification and biofortification in Africa—to make nutrient-rich foods sustainably available, accessible, and affordable—was centered on ensuring healthy diets reach those who need them most.

The Government of DR Congo has committed to scaling biofortified crop adoption and production, and its integration into the wider food system. Biofortified crops are included as one component of a wide-reaching, multi-sectoral nutrition program, funded with a loan from the World Bank.

In India, the Indian Council of Agricultural Research established minimum levels of iron and zinc to be bred into national varieties of pearl millet. The All-India Coordinated Research Project on Pearl Millet encouraged National Agricultural Research Systems to begin breeding programs for micronutrients along with higher yields in 2014. Joint efforts by the International Crops Research Institute for the Semi-Arid Tropics and HarvestPlus to enhanced the levels of iron in pearl millet have brought notable endorsement of biofortification by the Honorable Prime Minister Modi as a solution to address malnutrition.

The Copenhagen Consensus, a global research think-tank and policy advisory group, assessed biofortification and concluded for every USD 1 spent on biofortification, as much as USD 17 in benefits could be generated, and deemed biofortification, supplementation, and fortification as some of the smartest ways to spend money and advance global welfare.

Systematic reviews and ex-ante (before intervention) analyses of several micronutrient-crop and country scenarios have shown that biofortification is highly cost-effective when measured by the World Bank’s criteria of cost per Disability-Adjusted Life Year (DALY) saved. These analyses show biofortified crops to be in the range of USD 15-20 per DALY saved—far below the World Bank’s cost-effectiveness threshold of USD 270 per DALY.

“Patience, perseverance, and vision are required to achieve the cost-effectiveness of linking agriculture and nutrition in general, and biofortification in particular. The donors to the CGIAR system realized this by continuing investments well after the 20th anniversaries of CIMMYT and the International Rice Research Institute.” — Howarth (Howdy) Bouis, HarvestPlus Founding Director, World Food Prize Laureate

Global Benefit

The number of vulnerable rural families and communities growing and benefiting from nutrient-enriched crops has significantly increased year over year. Today, over 86 million people in farming households are eating biofortified foods—progressing rapidly towards 100 million in later 2023.

Eliminating malnutrition requires multiple solutions, and biofortification is an extremely important part of CGIAR’s efforts in pursuit of this goal.

Research has proven biofortification to be an efficacious, cost-effective, and scalable innovation that can play a pivotal role in transforming food systems to deliver affordable and accessible nutritious food for all.

This story was originally posted by HarvestPlus: Twenty Years of Enriching Diets with Biofortification.

Cover photo: Experimental harvest of provitamin A-enriched orange maize, Zambia. (Photo: CIMMYT)

CGIAR Initiative: Breeding Resources

Crop breeding has the potential to significantly contribute to addressing the global challenges of poverty, malnutrition, hunger, gender inequality, environmental degradation and climate change. Rapid population growth, climate change and market crises in low-income and middle-income countries mean that crop breeding must be far more agile and professional than ever before. Data-driven, modernized breeding with tools and technologies such as genomic selection, quantitative genetics, high-throughput phenotyping and bioinformatics, are needed to accelerate and advance improvement in varieties.  

Across the CGIAR-NARES (National Agricultural Research and Extension Systems) crop breeding networks, there is huge opportunity to reach the full potential to improve the lives of farmers and consumers: to share innovations to their full potential; reduce costs associated with services such as bioinformatics; de-fragment disparate data and incompatible technologies; apply consistent standards; and improve access to tools, technologies and shared services.

This Initiative aims to improve the genetic, economic, social and environmental performance of breeding programs across the CGIAR-NARES breeding network.

This objective will be achieved through: