Skip to main content

Location: Americas

CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.

Mathematical models could further CIMMYT’s reach

Mathematical models could boost CIMMYT’s impact on Mexico, a leading scientist in the United States said last month. Carlos Castillo-Chavez, a Mexican-born scientist and professor at Arizona State University, visited El Batán from 21 to 23 August to meet with the staff of the MasAgro program and the Biometrics and Statistics Unit. His trip focused on learning about and giving input on CIMMYT programs as well as seeking opportunities for collaboration with ASU.

Castillo-Chavez is part of U.S. President Barack Obama’s Committee on the National Medal of Science, whose members help select medal candidates from among top U.S. scientists. Castillo-Chavez grew up in Mexico City with interests in theater and literature but thought he would be more successful pursuing math. He moved to the United States in 1974 and worked odd jobs before starting college in Wisconsin and later earning a PhD in mathematics from the University of Wisconsin- Madison. He first visited CIMMYT about two decades ago and was the PhD adviser at Cornell University for Carlos Hernández, the head of CIMMYT’s Biometrics and Statistics Unit. Castillo-Chavez’s research focuses on the intersection between math, natural sciences, and social sciences. He studies disease evolution and social landscapes, including tuberculosis and SARS, the role of mass transit systems in the spread of influenza in Mexico, and “social diseases” such as drinking and drug use. Castillo- Chavez founded the Mathematical, Computational and Modeling Sciences Center at ASU and has received various awards at the national level for his research, teaching, and mentorship of minority students.

Bringing research to the people it could benefit is often a complicated and political process, Castillo- Chavez said. Scientists have the responsibility to communicate their research to the public, but policymakers set the course for “trendy” research topics. It’s an issue that needs to change, he said. And it could change with more interdisciplinary programs that have direct ties to and benefits for society. “Most problems of interest to Mexico don’t always apply to what’s current or hot in international academia,” Castillo- Chavez said. “There is no reason why Mexico should not have its own research agenda that may or may not intersect with the U.S.” He said during the visit that his research on contagion and how information spreads applies to the work CIMMYT is doing. Mathematical models can be used to study and increase the impact CIMMYT’s research has on Mexico by assessing the culture and identifying obstacles, he said. By communicating the research to enough people, “a culture change takes place where farmers and politicians are in constant communication to implement CIMMYT research,” Castillo- Chavez said. ASU and CIMMYT’s Biometrics and Statistics Unit could collaborate on this research by mentoring and training young people who would work closely with both institutions, he said, adding that he’s interested in exploring those possibilities.

During his visit, Castillo-Chavez learned MasAgro is an example of a project that targets a local population, he said. But the challenge with all advancements is finding the right leaders to put them into place. “It’s clear the research could generate dramatic improvements if implemented,” he said. “Nationally, we would see incredible advances in sustainable agriculture.”

“You go to the field.” U.S. Borlaug Fellows in Global Food Security

When asked how you become a successful wheat breeder, Dr. Norman E. Borlaug replied, “Well, you go to the field. You go to the field again, and then you go to the field. When the wheat plants start to talk to you, you know you have made it.” The Nobel Peace Prize, the Congressional Gold Medal, and the Presidential Medal of Freedom were awarded to Dr. Borlaug for saving the lives of over one billion through his efforts. Borlaug’s legacy continues today through the U.S. Borlaug Fellows in Global Food Security Program at the Center for Global Food Security, Purdue University, providing graduate students the opportunity to “go to the field” and become successful scientists in their own right.

Funded by USAID, the Borlaug Fellowship provides graduate students the opportunity to collaborate with agricultural scientists in developing nations. The program fosters connections between scientists internationally, while furthering research and developing community around important agricultural themes, such as production, natural resource conservation, and development. With a focus on interdisciplinary and cross-cultural experiences, students benefit from the ability to practice their science on the ground in an international setting, preparing them to become important members of the global scientific community. Doctoral candidates Ariel N. Rivers of Pennsylvania State University and Sean M. Thompson of Texas A&M University were given the opportunity to “go to the field” during the 2013 field season in partnership with CIMMYT.

Of the dual-title program, Entomology and International Agriculture and Development at Pennsylvania State University, Rivers (pictured above) is mid-way through her six-month tenure at CIMMYT’s El Batán station. By studying the three practices of conservation agriculture —crop rotation, minimal soil disturbance, and retention of crop residues on the soil surface— Rivers hopes to better understand which of these practices augment beneficial insect communities and how. In high enough numbers, beneficial insects can contribute to pest control, nutrient cycling, and soil aeration, all of which are essential to agricultural production in low-input developing country agriculture.

Thompson (pictured right), of the Department of Soil and Crop Sciences at Texas A&M University, is working with Ground Penetrating Radar (GPR) to non-destructively assess wheat root biomass. This technology could allow for rapid, non-destructive assessment of populations and selection for traits undetectable by traditional methods. The primary objective of this research is to define the capability of GPR to phenotype below ground crop biomass, in the context of higher yield and quality stability in wheat during drought stress. GPR is one of the many field-based high-throughput phenotyping technologies being tested in CIMMYT’s Wheat Physiology program.

Both Rivers and Thompson plan to collaborate internationally after they complete their doctoral studies. “We have benefitted from the opportunity to practice that skill at CIMMYT,” they both agree. “Thanks to the example set by Borlaug, we are better prepared to take our science ‘to the field’.” Further information about the research or the U.S. Borlaug Fellowship in Global Food Security can be obtained by contacting the Purdue Center for Global Food Security.

Course on remote sensing using an unmanned aerial vehicle in Peru

Course-on-remote-sensing-using-an-unmanned-aerial-vehicleTraining on the use of remote sensing from an unmanned aerial vehicle was given at INIAP-Peru’s Vista Florida experiment station on 1-5 June 2013. The course was organized by INIAP, the University of Barcelona, Spain, and CIMMYT’s regional office in Colombia. Remote sensing is used in precision agriculture and for phenotyping crops that are important for the region, such as maize, rice, and sugar cane.

Course participants included 44 representatives from the International Potato Center (CIP), the University of Talca (Chile), INIA-Peru, and Peru’s Ministry of Agriculture, among other institutions. The course is one of several activities sponsored by the “Affordable field-based HTPPs” project led by JosĂ© Luis Araus of the Department of Plant Biology of the University of Barcelona and funded by  CRP MAIZE. During the event, a phenotyping platform developed within the framework of the project was presented to INIA.

The director of the Vista Florida station, Miguel Monsalve Aita, opened the course, which was given by distinguished academics and scientists such as JosĂ© Luis Araus; Pablo Zarco and Alberto Hornero from the Sustainable Agriculture Institute, CĂłrdoba, Spain; AntĂłn HernĂĄndez, president of AirElectronics, Madrid, Spain; Carlos Poblete, Claudio BalbotĂ­n, and Gustavo Lobos from the University of Talca, Chile; Hildo MacLean and Susan Palacios from CIP, and Luis Narro from CIMMYT’s Global Maize Program.

The lectures focused on topics such as applying remote sensing in phenotyping; spectral and thermal remote sensing of stress from unmanned aircraft; image and data processing; use of software to process the gathered information; and thermal image analysis for diagnosing drought stress and controlling irrigation. In addition, Hildo MacLean showed how the Oktokopter–XL works. Luis Narro demostrated how to use the new version of the GreenSeeker for making recommendations on N application in maize and, Antón Hernández showed how the unmanned aircraft Sky Walker, which comes equipped with a flight programmer, an infrared camera, and a multispectral camera for collecting data, works. The aircraft used in the demonstration was donated to the Vista Florida station as part of the project’s contributions.

Another essential part of the course was the intensive training on subjects such as platform management, flight programming, and downloading and processing information that was provided to a group of technicians from INIA and private seed companies. Also, Given that INIA technicians who are in charge of the platform need to become thoroughly familiar with it, three technicians from Vista Florida will go to Spain in September to take a course on processing and interpreting images.

The course organizers wish to express their appreciation to the Vista Florida Maize Program.

Course-on-remote-sensing-using-an-unmanned-aerial-vehicle3

Two new maize hybrids released in Bolivia

maize-hybrids1Bolivia’s National Institute for Agricultural, Livestock and Forestry Innovation (INIAF), in collaboration with CIMMYT, released two new maize hybrids, INIAF H1 and INIAF HQ2, targeting drought-prone areas with high production potential. The release was announced at an event held on 13-14 June 2013 in Villa Montes and Yacuiba.

The new releases are single-cross hybrids derived from CIMMYT lines. INIAF H1 is a yellow flint hybrid with good lodging resistance and excellent husk cover; INIAF HQ2 is a yellow semi-dent hybrid with high protein content (quality protein maize, QPM) and moderate drought tolerance. Both were tested at Villa Montes, where they competed favorably with two widely sown commercial checks, yielding 7 t/ha despite the low (352 mm) rainfall during the growing season.

While Bolivia is self-sufficient in maize production with about 300,000 ha sown to maize and an average yield of 3.3 t/ha, climate change is starting to impact the agricultural sector just like in other Latin American countries. Weather conditions during the current crop season have been unfavorable for production due to persistent drought, and last week the government declared the region of Chaco, where 80% of the country’s maize is produced, a natural disaster area.

Félix San Vicente receiving an award from the Minister of Energy.
Félix San Vicente receiving an award from the Minister of Energy.

In the light of the challenges, RubĂ©n Vaca, Sector Executive of Villa Montes, who led the event during the first day, congratulated INIAF on its achievements and noted their potential for increasing the profitability of maize production. Similar sentiment was expressed by Nemesia Achacollo, Minister of Land and Rural Development, and JosĂ© Sosa, Minister of Energy and Hydrocarbons, who attended the event in Yacuiba on day two. Achacollo applauded the release of the hybrids and announced that “the Ministry is allotting 2 million US$ to INIAF to support their maize program.” As the Ministry of Energy and Hydrocarbons is also involved in agriculture, Sosa stated that the urea factory being built in Cochabamba will support the development of Chaco Tarijeño and the country as a whole. Marcial Rengifo, Sector Development Executive of Chaco Tarijeño in Yacuiba, then stressed the importance of the hybrids for Chaco farmers, and Jemy Gonzales, manager of the National Seed Company, committed to multiplying all the hybrids released by INIAF in the future to ensure that high quality seed is accessible to farmers in a timely fashion and at a reasonable price.

After Achacollo presented a hybrids release certificate to INIAF director general Gabriel RenĂ© Hoyos Bonillas, the coordinator of INIAF’s Maize Program, Tito Claure, thanked everyone present and asked that INIAF’s collaboration with CIMMYT be maintained, adding that he “would join forces with all the national institutions involved in maize production.”

“We must promote QPM, which – due to its superior nutritional qualities – benefits both the people who consume it directly as well as pig farmers,” said Luis Narro, CIMMYT maize breeder and focal point for South America. Narro then encouraged INIAF to adopt doubled haploid technology to reduce the time required to develop new hybrids and indicated that the GreenSeeker handheld sensor could be used to optimize nitrogen fertilization in maize crops.

Luis Narro explains the advantages of hybrid INIAF H1.
Luis Narro explains the advantages of hybrid INIAF H1.

“The CIMMYT-INIAF collaboration that led to the hybrids release is part of CIMMYT’s regional efforts conducted jointly with an improved germplasm evaluation network in the lowland tropics of Latin America,” said FĂ©lix San Vicente, CIMMYT maize breeder for Latin America. “We are ready to strengthen these links in the future in order to be able to handle the negative impacts of climate change on the Chaco region in Bolivia,” he added.

At the end of the event, Narro and San Vicente received awards from the Bolivian authorities in recognition of their inter-institutional collaboration and joint successes.

Nebraska Declaration on Conservation Agriculture signed

8623227856_28319de0bf_zAfter months of discussions and debates on the scientific evidence regarding conservation agriculture for small-scale, resource-poor farmers in Sub-Saharan Africa and South Asia, a group of 40 scientists reached a consensus on the goals of conservation agriculture and the research necessary to reach these goals. The discussions leading to the signing of the Nebraska Declaration on Conservation Agriculture on 5 June 2013 began during a scientific workshop on “Conservation agriculture: What role in meeting CGIAR system-level outcomes?” organized by the CGIAR Independent Science and Partnership Council (ISPC) at the University of Nebraska, Lincoln, USA, during 15-18 October 2012. Several CIMMYT scientists contributed to the Lincoln workshop and the subsequent draft of the convention. “Not every participant agreed to sign. It went too far for some conservation agriculture purists and not far enough for others. This is usually the case when a consensus between 50 scientists and experts is sought,” said Bruno Gerard, director of CIMMYT’s Global Conservation Agriculture Program (GCAP), pointing to an interesting read in that respect, ‘Conservation agriculture and smallholder farming in Africa: The heretics’ view’ by Giller et al. (2009).

According to the Declaration, most efforts to date in developing countries have promoted conservation agriculture as a package of three practices: minimum disturbance of soil, retention of sufficient crop residue, and diversified cropping patterns. However, the situation on the ground shows limits of this strict definition, as there is little evidence of conservation agriculture wide adoption in Sub-Saharan Africa and South Asia, but there is some evidence of adoption of one or two of the components. To play a significant role in low-productivity, resource-poor agricultural systems, broader efforts going beyond a focus on the package of the three main practices are necessary. Emphasis needs to be placed on diagnostic agronomy and participatory on-farm research to identify the constraints faced by farmers and to guide farmers in finding solutions to them. As there is a range of sound agronomic, economic, and/or social reasons for choosing not to adopt the three-component conservation agriculture package, it is necessary to systematically assess the suitability and viability of management options and practices while considering farmers’ objectives and constraints, the Declaration stresses.

Rigorous and coordinated research is needed to assess and better understand the process of adoption of conservation agriculture. Unless the farmers’ reasons for choosing to adopt or not to adopt a certain practice are known, a wider adoption of conservation agriculture practices is unlikely.

“I think the declaration is useful as conservation agriculture principles should be seen as a way to sustainable intensification and not an end by itself,” commented Gerard. “The declaration fits well with the present efforts of GCAP and the Socioeconomics Program to put conservation agriculture in a broader context, and to better understand adoptability and constraints to adoption, which are agroecology-, site-, and farm-specific. Furthermore, it stretches the importance of systems research to integrate field level agronomy work within a multi-scale and multi-disciplinary framework.”

Generating drought tolerant maize varieties in Latin America

S03TLWN-ears-ColombiaOn 26-27 April 2013, the FONTAGRO “Generation and validation
of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” project held its end-of-project meeting in La Ceiba, Honduras, along with the Central American Cooperative Program for the Improvement of Crops and Animals (PCCMCA) meeting (21-26 April). The event highlighted the advances to date, the project’s products, and recommendations for follow-up to ensure that the products reach farmers.

Since 2009, the project generated 5,000 doubled haploid (DH) lines which are currently being evaluated by CIMMYT. The populations were developed from inbred lines identified for drought tolerance, ear rot resistance, and reduced mycotoxin accumulation. The project also identified a set of inbred lines with high levels of ear rot and mycotoxin resistance. The information has been shared with project partners and other breeders for wide use, and CIMMYT will distribute these lines to interested parties. CIMMYT maize breeder Luis Narro commented on the research on diseases, ear rots in particular. “Ear rot is increasing in incidence and severity in South America. Evaluation of 18 commercial hybrids in Peru revealed ear rot incidences as high as 42% on susceptible hybrids in some locations,” he said. “Ear rot tolerant hybrids identified in this project will play an important role in mitigating the detrimental effects posed by ear rots and mycotoxin contamination. These need to be promoted to reach farmers rapidly.” As far as mycotoxins are concerned, the team also identified promising hybrids from validation trials documenting the natural incidence of mycotoxins in Peru, Colombia, and Mexico. This study showed that fumonisins are the most prevalent mycotoxin in South America (compared to aflatoxin and deoxynivalenol).

“The project has generated many products and validated some that are now being released in several countries,” said the project leader George Mahuku. Among those are four varieties released in Honduras (three white and one yellow); one white variety in Colombia; two varieties (one yellow, one white) and a yellow hybrid in Nicaragua, and three varieties (two yellow and one white) in Panama. Three hybrids outperforming the local commercial checks are under validation in Peru. Furthermore, two varieties showing the stability and rustic nature of CIMMYT-generated varieties were released in Colombia, Honduras, and Nicaragua. All the released cultivars are moderately tolerant to the tar spot complex disease which is becoming more common in Latin America.
CIMMYT maize breeder Felix San Vicente presented on the advances that have been made in breeding for drought tolerance and ear rot resistance. “We need to establish and maintain a regional network to test our products in marginal areas,” he noted. “We hope that we will be able to leverage funding from the CRP [MAIZE] to continue the validation and dissemination of these important and promising products in the region.” During the meeting, scientists presented 29 papers, 5 of which contained results from the FONTAGRO project. The papers of CIMMYT colleagues Román Gordon and Oscar Cruz were awarded for their contributions to the maize section of the project: Gordon received the first prize for his paper “Selection of maize varieties for tolerance to water stress in Panama 2010-2012,” and Cruz received the second prize for his paper on “Participatory validation of white and yellow maize varieties in two regions of Honduras.”

Fontagro-Laceiba-Honduras-019The project has generally been considered very successful. “We now know which mycotoxins are important in the region and we have the products to potentially minimize the risk,” commented Mahuku. “What we need is to widely test and disseminate the products so that they reach as many farmers as possible. With a little infusion of resources, the dedication demonstrated by this group, and support from policy makers, I have no doubt that we will get there.”

During 23-25 July, FONTAGRO will hold its annual meeting (VIII Taller de Seguimiento TĂ©cnico de Proyectos FONTAGRO) in Uruguay. The “Generation and validation of drought tolerant maize varieties to stabilize and reduce mycotoxin damage resulting from climate change” is one of five projects finishing this year; its representatives were invited to present their results and compete for a financial award given to the best project. If the project wins, the financial resources could help with continued and wider validation of products generated by this project.

Memorial tribute for Goyo MartĂ­nez, master builder of lasting relationships in Mexico

Goyo4Nearly 140 members of the CIMMYT community and valued Mexican partners gathered on 16 April 2013 with the family of Gregorio “Goyo” MartĂ­nez ValdĂ©s, retired CIMMYT institutional relations officer who succumbed to cancer at 77 on 07 April, in a solemn ceremony in the pine grove at El BatĂĄn to commemorate his life and work.

An extension communications specialist by training, MartĂ­nez first studied at the Antonio Narro Agrarian Autonomous University in Mexico (UAAAN) and went on to complete MSc (1962) and PhD (1966) degrees at the University of Wisconsin, USA. His education and early employment coincided and brought him in close contact with the emergence of modern agricultural research in Mexico, the joint Rockefeller Foundation-Mexico Office of Special Studies (OSS) that was the cradle of the Green Revolution, and leading national and international figures of that historic time, including Norman E. Borlaug and Edwin Wellhausen.

Martínez was crucial to maintaining CIMMYT linkages with Mexican researchers and organizations, as well as the center’s humanitarian heart, according to director general Thomas A. Lumpkin, who spoke at the memorial event. “When I arrived at CIMMYT in 2008, Goyo pleaded with me to rebuild the relationship with Mexico,” said Lumpkin. “Relationships are [built] person-to-person, not institution-to-institution. Goyo was a master at those relationships.”

According to UAAAN rector, Eladio H. Cornejo Oviedo, Goyo represented the best of the values of his Alma Mater. “We should not forget his legacy,” said Cornejo. “Goyo is a clear example of what [the university] seeks, that alumni should be great scientists but also great persons—builders of bridges, of friendships, of relationships
that foster progress in society,” he said.

JesĂșs Moncada de la Fuente, director general of the Colegio de Postgraduados, a key partner in initiatives such as MasAgro, recalled a close friendship with Goyo that began in 1957 when they worked together in the OSS, as well as Goyo’s contributions as an editor and teacher in the Colegio de Postgraduados. “He shared his knowledge and experience as a founding professor for our graduate program in rural sociology and extension,” he said. “For his contributions, career, and example, Dr. Gregorio MartĂ­nez may be rightly considered among the most outstanding protagonists in agricultural science.”

In an emotional tribute, CIMMYT maize researcher Martha Willcox said Goyo worked behind the scenes with no ego or personal interest, and that no one would ever know the full extent of his contributions. “In 1995 I was asked to work with the Mexican Biosafety Committee to help create regulations for transgenic testing,” she said. “Goyo was my mentor through this process. I think I was in his office three times every day to ask for his advice. He was my sounding board, he helped me arrange high level meetings, gave me advice on personalities
. I owe him a huge debt for his support during that time, as does CIMMYT, because the work that we did together positioned CIMMYT as an honest broker and scientific resource for transgenic work that follows through to the present
. I miss him every day. I wish I could still go downstairs for his advice.”

Goyo6B“He had a big heart, divided into clear portions, and CIMMYT occupied a big chunk,” said Martínez’s son Francisco, who noted his father’s supreme love for work and colleagues. He also brought a portion of his father’s ashes and bequeathed them to CIMMYT.

After the stories and tributes, Lumpkin, MartĂ­nez’s widow Cristina Cajiga, children VerĂłnica and Francisco, and other family members and close friends presided over the planting of a memorial oak tree. CIMMYT wheat scientist Roberto Javier Peña noted MartĂ­nez’s special role as a mentor and supporter for young students and researchers. “Goyo planted many new ‘trees’ that will go on contributing to the welfare of Mexico and other nations,” he said.

Dr. Norman E. Borlaug

 
CIMMYT fights hunger and poverty in the developing world through smarter agriculture. We are the world’s number one caretaker and developer of maize and wheat, two of humanity’s most vital crops. Maize and wheat are grown on 200 million hectares in developing countries. 84 million of those hectares are planted with varieties of CIMMYT seed. We also maintain the world’s largest maize and wheat seed bank at our headquarters in Mexico.

We are probably best known for prompting the Green Revolution, which saved millions of lives across Asia and led to CIMMYT’s Norman Borlaug receiving the Nobel Peace Prize. Because of population growth, natural resource degradation, and climate change the current challenge is to feed more people, with less resources, and in a more environmentally responsible way than ever before. It can be done.

New postharvest storage technologies for Latin America

7178682264_898e3326d3The 2nd Latin American Convention on Airtight Storage sponsored by the global company GrainPro, Inc was held during 1-2 March 2013 in Antigua, Guatemala. More than 50 participants from Brazil, Ecuador, Colombia, Costa Rica, Honduras, El Salvador, Guatemala, Mexico, and the USA, and other countries attended the event.

Presented at the event were the latest airtight storage technologies used to ship, preserve, and maintain the quality of raw materials and food grains produced in the region. For example, CaribecafĂ© SKN/ NKG (Colombia) explained how they apply new technology to high quality coffee, and Zamorano University (Honduras) described its uses in bean, maize, and sorghum. Luis Gerardo RamĂ­rez (CIMMYT-MĂ©xico) described the MasAgro program which is currently evaluating GrainPro technology in the Mexican state of Chiapas. “We are ready to extend the technology to small farmers in other regions of Mexico through the MasAgro hubs,” added RamĂ­rez.

Other technologies presented were plastic bags known as SuperGrainbagsTM-IVR, which were evaluated by CIMMYT and the Technological Institute of Monterrey under the supervision of Silverio García. Results indicated that the bags are appropriate for storing and protecting maize and other basic grains from postharvest pests. Furthermore, since they do not require insecticide use, they are environmentally friendly, as well as 100% recyclable. “If we can’t avoid postharvest losses, we can’t achieve food security,” said García. “By applying these technologies, we are opening a new chapter in the weakest link of the maize production chain in Latin America.”

In his speech, Jordan Dey, vice-president of Food Security, pointed out that according to UN estimates, global postharvest losses account for 25% of all grain production, an amount that would be enough to feed the world’s most vulnerable people.

Convention participants thanked CIMMYT’s Institutional Relations for Latin America, headed by Isabel Peña, for providing teaching materials and for its support during this new stage aimed at disseminating new postharvest technologies throughout the region.

“Sky Walker” advances phenotyping in Southern Africa

Thermal-imageTo free phenotyping of the varietal development bottleneck label, many new tools have been developed to enable an easier plant growth and development characterization and field variability. Until recently, these tools’ potential has been limited by the scale on which they can be used, but this is changing: a new affordable field-based phenotyping platform combining cutting edge aeronautics technology and image analysis was developed through collaboration between researchers from the University of Barcelona, Spain; Crop Breeding Institute, Zimbabwe; Instituto Nacional de Innovación Agraria, Peru; AirElectronics; and Sustainable Agricultural Institute of the High Research Council, Spain. The project was funded by MAIZE CRP as part of Strategic Initiative 9 activities focusing on new tools and methods for national agricultural research systems and small and medium enterprises to increase genetic gains in maize breeding.

DSC_2733The new platform uses ‘Sky Walker,’ an unmanned aerial vehicle which can fly at over 600-meter with an average speed of 45 km/h. The vehicle has thermal and spectral cameras mounted under each wing, and its flight path and image capturing are controlled via a laptop using Google Earth images. Jill Cairns and Mainassara Zaman-Allah tested the platform at CIMMYT-Harare along with JosĂ© Luis Araus (University of Barcelona), AntĂłn FernĂĄndez (AirElectronics president), and Alberto Hornero (Sustainable Agricultural Institute of the High Research Council) to establish the optimal flight path (distance between plane passes and height) for plot level measurements. Field experiments were phenotyped for spectral reflectance and canopy temperature within minutes; these will be compared to results from the GreenSeeker.

The measurement speed of the new platform helps to overcome problems associated with changes in cloud cover and the sun position. It will be used by the Crop Breeding Institute to assist in developing new maize hybrids with heat stress and drought stress tolerance under elevated temperatures.

DSC_2607

Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

29A recently-emerged disease in Eastern Africa, maize lethal necrosis (MLN), remains a serious concern. A regional workshop on the disease and its management strategies was held during 12-14 February 2013 in Nairobi, Kenya. Organized by CIMMYT and the Kenya Agricultural Research Institute (KARI), the workshop brought together nearly 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, and Tanzania, as well as experts from the U.S.A.

The key objective of the meeting was to “establish a strong interface between research and regulatory institutions in Eastern Africa to effectively tackle the MLN challenge, including the ongoing efforts and further steps to identify and deploy disease-resistant germplasm, and to create a system that can ensure a constant flow of varieties,” explained B.M. Prasanna, CIMMYT Global Maize Program director. Prasanna highlighted the difficulties faced by the maize farming community from the disease, and emphasized the need to accelerate deployment of MLN resistant maize varieties and to generate necessary awareness among the relevant stakeholders on management strategies. “It is necessary to break the MLN disease cycle and tackle the problem from multiple perspectives,” added KARI director Ephraim Mukisira. He mentioned that besides partnering with CIMMYT on breeding for MLN resistant varieties, KARI will also be distributing seed of alternative crops to farmers in affected areas. “As a dairy farmer, I will be planting napier grass instead of maize this season,” noted Mukisira.

The first signs of a new disease appeared in 2011 and 2012 in the Rift Valley Province, Kenya. A team of CIMMYT and KARI scientists identified it as MLN, a disease caused by a double infection of the maize chlorotic mottle virus (MCMV) and the sugarcane mosaic virus (SCMV) and transmitted by insects. According to Godfrey Asea, plant breeder and head of the Cereals Program at the National Crops Resources Research Institute (NaCRRI), Kampala, MLN was also identified in Uganda. Furthermore, symptoms of MLN have been cited in Tanzania, said Kheri Kitenge, maize breeder at the Selian Agricultural Research Institute (SARI), Arusha.

Scientists, particularly breeders, have made significant progress in tackling the disease. Studies are already underway at two field sites (Naivasha and Narok) where responses of a wide array of inbred lines and pre-commercial hybrids are being evaluated under high natural disease pressure and artificial inoculation. Participants visited the Sunripe Farm in Naivasha, where they observed KARI-CIMMYT MLN trials under natural disease pressure. A trial under artificial inoculation in Naivasha featuring nearly 175 commercial maize varieties is showing high levels of susceptibility to MLN. Researchers remain hopeful as some of the elite inbred lines and pre-commercial hybrids developed under projects such as the Drought Tolerant Maize for Africa (DTMA) or Water Efficient Maize for Africa (WEMA) are showing resistance to the disease.

During the farm visit, KARI pathologist Anne Wangai and her team showed how to generate artificial inoculum for MCMV and SCMV, as well as the enzyme-linked immunosorbant assay (ELISA) based technique for pathogen diagnosis at the national agricultural research laboratories at the KARI campus. The participants observed an artificial inoculation of maize seedlings in the field, followed by a discussion on some of the major changes in maize seed demand resulting from MLN incidence. “The maize seed industry is under stress in Kenya due to the need to replace some popular but MLN-vulnerable varieties as soon as possible,” explained Evans Sikinyi, Seed Trade Association of Kenya (STAK) executive officer. All stakeholders agreed that the foremost priority is to identify and speed deployment of MLN resistant maize varieties. “We also have to enhance the diagnostic capacity in the labs and ensure there is a rapid response and surveillance on MLN,” added Esther Kimani, general manager of phytosanitary services at the Kenya Plant Health Inspectorate Service (KEPHIS).

In the concluding session of the workshop, stakeholders identified key research areas and discussed partnership opportunities.

Climate Change and Agriculture: Building Resilience

This article is cross-posted from the Feed the Future blog. Feed the Future is the United States Government’s global hunger and food security initiative. It supports country-driven approaches to address the root causes of hunger and poverty and forge long-term solutions to chronic food insecurity and undernutrition. Drawing upon resources and expertise of agencies across the U.S. Government, this Presidential Initiative is helping countries transform their own agriculture sectors to sustainably grow enough food to feed their people.

Feed the Future strategies for food security are designed not only to accelerate agriculture-led growth and reduce undernutrition, but also to encourage sustainable and equitable management of land, water, fisheries, and other resources. Feed the Future Intern Christopher Chapman asked CIMMYT’s conservation agriculture expert Bruno Gerard (pictured left) how climate change relates to agricultural development.

Continue reading

Latin American maize breeders learn about doubled haploids

Doble-Haploid2The use of doubled haploids in maize breeding was first proposed more than half a century ago and dramatically reduces the time required to produce homozygous inbred lines. Though widespread in modern maize breeding programs, the technique is little used by public programs and small- and medium-scale seed companies, especially in developing countries, partly due to its complexity.

To gain greater knowledge and mastery of the theory and actual practice, during 26-30 November 2012, 28 maize breeders from private and public entities of 5 Latin American countries attended a course given in Spanish by CIMMYT maize experts at El Batán. Complementing a similar course given in English last August, the event covered haploid induction, chromosomal doubling, breeding using doubled haploid lines, and how to access CIMMYT’s doubled haploid line production services, including hands-on practice in identifying haploid kernels, the chromosomal doubling treatment, and assessing haploid induction rate.

Doble-Haploid1“This is a cutting-edge technology,” says Tito ClaurĂ©, Maize Program Coordinator at Bolivia’s Instituto Nacional AutĂłnomo de Investigaciones Agropecuaria (INIAP). “We’re very happy with what we learned about double haploids, but we also attended excellent presentations on statistics, physiology, and database creation.” ClaurĂ© mentions that INIAP’s Maize Program is part of the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and has received much useful germplasm from CIMMYT.

“The course was a very good experience for me,” says Victor Moran Rosas, a breeder at the seed company Semillas Berentsen in Mexico. “I’d read about (doubled haploids), but was able to practice all the steps.” Participants widely agreed that a great part of the course was being able to connect with other Latin American maize breeders.

Ravi Singh receives Crop Science Research Award

Ravi P. Singh, distinguished scientist and head of Bread Wheat Improvement, was awarded the 2012 Crop Science Research Award by the Crop Science Society of America (CSSA). Singh is the first CIMMYT scientist to receive this award.

The award was presented at the CSSA annual meeting in Cincinnati, Ohio, on 24 October 2012, and recognized Singh’s achievements in fighting wheat diseases, rusts in particular. “Wheat rusts are among the world’s most important diseases,” said Singh. “A century of research and breeding has helped to reduce the losses caused by rusts, but new biotypes continue to emerge.”

A fellow of numerous scientific associations, Singh has contributed to the development of over 200 wheat cultivars; 20 of which are resistant to Ug99 and have been released and taken up by farmers in developing countries. His approaches for generating high-yielding and disease-resistant wheat lines have changed wheat breeding at CIMMYT and at breeding programs worldwide. Though an eminent scientist himself, Singh recognizes that science alone cannot solve the critical problems facing agriculture: “Policies to ensure efficient use of water, nutrients, and prices will be important to enhance productivity and profitability.”

CIMMYT scientist wins award from Crop Science Society of America

MEXICO CITY, MEXICO (26 October 2012) — CIMMYT (The International Maize and Wheat Improvement Center) announced today that the Crop Science Society of America (CSSA) has given CIMMYT’s Dr. Ravi P. Singh its 2012 Crop Science Research Award.The award was presented at the CSSA annual meeting in Cincinnati, OH and recognizes Dr. Singh’s work fighting wheat diseases. The award is given to one person annually. Dr. Singh is the first CIMMYT scientist to receive the honor.

Dr. Singh is recognized as one of the foremost authority on rust diseases of wheat. He has identified 20 genes for different traits in wheat and molecular markers for several major and minor rust resistance genes. Singh’s contributions to wheat genetics, pathology and breeding have resulted in the release of over 200 wheat cultivars, including 20 that are resistant to Ug99 stem rust, in numerous developing countries. His methodology for developing high yielding cultivars with durable rust resistance and the breeding lines derived from this work have changed not only wheat breeding at CIMMYT but also in numerous breeding programs both in developing and developed countries. His competence and the respect of fellow scientists are widely recognized, and Singh has helped train over 500 developing country scientists and served as advisor for 18 MS and PhD students.

Dr. Singh is a Distinguished Scientist and the Head of Bread Wheat Improvement at CIMMYT. He received B.S. and M.S. degrees from Banaras Hindu University, India, and a Ph.D. degree from the University of Sydney. Singh has authored or co-authored 150 refereed journal articles, 24 book and book chapters and reviews, 77 symposia proceedings, and 182 abstracts. He is a fellow of numerous scientific organizations, including ASA, CSSA, APS and National Academy of Agricultural Science of India, and has received awards such as International Service in Crop Science Award from CSSA, Outstanding CGIAR Scientist, E.C. Stakman Award from the the University of Minnesota, and Jinding and Caiyun Medals from the Sichuan and Yunnan Province Governments of China.

The Crop Science Society of America (CSSA), founded in 1955, is an international scientific society comprised of 6,000+ members with its headquarters in Madison, WI. Members advance the discipline of crop science by acquiring and disseminating information about crop breeding and genetics; crop physiology; crop ecology, management, and quality; seed physiology, production, and technology; turfgrass science; forage and grazinglands; genomics, molecular genetics, and biotechnology; and biomedical and enhanced plants.

About CIMMYT
Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat in the developing world. CIMMYT maintains the world’s largest maize and wheat seed bank and is best known for initiating the Green Revolution, which saved millions of lives across Asia and for which CIMMYT’s Dr. Norman Borlaug was awarded the Nobel Peace Prize. CIMMYT is a member of the CGIAR Consortium and receives support from national governments, foundations, development banks, and other public and private agencies.

For more information, please contact:
Chris Cutter, CIMMYT, c.cutter@cgiar.org, +52 (1) 595 104 9846