Skip to main content

Location: Americas

CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.

Helping farming families thrive while fighting climate change in Mexico

Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

MEXICO CITY (CIMMYT) — The Yucatan Peninsula in Mexico has been hard hit by drought and extreme weather events related to climate change in recent years, exacerbating local poverty and food insecurity. In addition, slash-and-burn agriculture techniques have led to environmental degradation and contribute to climate change. The International Maize and Wheat Improvement Center (CIMMYT) is working to help indigenous Mayan farming families in the Yucatan peninsula adapt to and mitigate climate change, increasing maize yields and food security while minimizing negative environmental impact. This comes as world leaders mull a crucial decision on agriculture at the UN Climate talks in Bonn, a decision that could support farmers everywhere to take similar actions.

Maize is the backbone of diets in the Yucatan Peninsula, and has sustained indigenous Mayan families for millennia. It is grown as part of the “milpa,” a pre-hispanic intercropping system that revolves around the symbiotic relationship of maize, beans and squash.

Traditionally, the milpa system has involved clearing new land for farming using the slash and burn method. However, after two to three years, the soils begin to deteriorate and new land must be cleared. These practices have contributed to deforestation, increased CO2 emissions, and loss of invaluable local biodiversity.

In the Yucatan Peninsula, climate change has begun to threaten milpa agriculture. The rains have been later and shorter every year, reducing maize yields. As it has become more difficult to make a living from agriculture, young people have been forced to migrate to find work. Farmers have also lost seeds of their traditional maize varieties when they have been unable to harvest after severe drought.

A new CIMMYT project, Milpa Sustentable Yucatan Peninsula, is helping farming families increase their maize yields through sustainable, inclusive solutions. The Project, which means “sustainable milpa” in Spanish, is working to help farming families identify the best soils in their communal land and incorporate sustainable intensification and conservation agriculture (CA) practices to improve soils in order to prevent deforestation and mitigate climate change.

The project has a strong social inclusion component and works to make sure that women and youth are included and prioritized in capacity development opportunities and decision-making processes. “As milpa is a family system, women and youth must be included in order to attain impact,” said Carolina Camacho, principal researcher on social inclusion at CIMMYT. “Complex challenges such as climate change require social change and inclusion of traditionally marginalized groups such women and youth in order for mitigation to be successful.”

Farming families are taught CA techniques such as zero tillage that help prevent erosion and water runoff. This increases soil health and uses water more efficiently, which helps maize better survive drought and allows farmers to farm the same land for many years without resorting to deforestation or burning.

Native maize diversity in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Native maize diversity in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

“Farmers used to harvest 500 kilograms of maize per hectare. Now, with techniques they have learned from CIMMYT, they are harvesting up to 2 tons per hectare,” said Vladimir May, technical leader of the Milpa Sustentable Yucatan Peninsula project. The project has also helped farmers increase yields by identifying natural inputs that can be integrated into an integrated pest and fertility management strategy This allows farming families to sustainably increase their maize yields despite limited inputs and resources.

The native maize grown by farmers in the Yucatan Peninsula adapted to its local environment over centuries of selection by farmers to perform well despite poor soils and other challenges. However, climate change has threatened the survival of this maize genetic diversity. Some farmers lost all of the seed of their traditional maize varieties when they were unable to harvest anything after extreme drought. Others have found that their traditional varieties do not perform as well as they had due to environmental stress related to climate change.

CIMMYT is working to help farmers replace stores of traditional maize seed they have lost due to drought and climate change. The CIMMYT maize seed bank safeguards over 28,000 maize varieties for the benefit of humanity, including seeds that are native to the Yucatan Peninsula. Milpa Sustentable Yucatan Peninsula has worked with the seed bank to find farmers original varieties, restoring a priceless component of many families’ food security, culture and biodiversity.

The project has also helped farmers increase their yields through participatory variety selection. By crossing farmers’ native varieties with other native maize varieties that are more resistant to drought or climate change, farmers can sustainably increase maize yields without losing the qualities they love about their traditional varieties. Women have played a key role in this participatory variety selection, because as they process and prepare all of the food grown by the family, they have intimate knowledge of the characteristics the maize must have to perform well and feed the family.

Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa
Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa/ CIMMYT

Poverty and food insecurity in the region have meant that migration has been a necessity for many. With new technologies and support from CIMMYT, women and youth are beginning to see that they may have a future in farming, despite the challenge of climate change. “Now that they see how much maize and other cash crops can be produced with sustainable technologies, young people are deciding to stay,” said Maria Boa, a consultant working with the project. “As youth are sometimes more accepting of new technologies, young farmers in the Yucatan play a crucial role in climate change mitigation and adaptation. Inclusion of women and youth is necessary to make a positive change in these communities.”

These and other farmers around the world will play an important role in fighting climate change, by reducing emissions from farming. While a majority of countries, including Mexico, have committed to reducing the climate footprint of agriculture, world leaders must now decide how to best support and finance these actions.

The Milpa Sustentable Yucatan Peninsula project is operated and supported by the International Maize and Wheat Improvement Center (CIMMYT), the government of Mexico through the SAGARPA program Sustainable Modernization of Traditional Agriculture (MasAgro) CitiBanamex, Fundación Haciendas del Mundo Maya and the  CGIAR Research Program on Maize (MAIZE). The project is operated with the support of local partners, non-governmental organizations and the different levels of the Mexican government. 

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

Climate insurance for farmers: a shield that boosts innovation

Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT
Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT

What stands between a smallholder farmer and a bag of climate-adapted seeds? In many cases, it’s the hesitation to take a risk. Farmers may want to use improved varieties, invest in new tools, or diversify what they grow, but they need reassurance that their investments and hard work will not be squandered.

Climate change already threatens crops and livestock; one unfortunately-timed dry spell or flash flood can mean losing everything. Today, innovative insurance products are tipping the balance in farmers’ favor. That’s why insurance is featured as one of 10 innovations for climate action in agriculture, in a new report released ahead of next week’s UN Climate Talks. These innovations are drawn from decades of agricultural research for development by CGIAR and its partners and showcase an array of integrated solutions that can transform the food system.

Index insurance is making a difference to farmers at the frontlines of climate change. It is an essential building block for adapting our global food system and helping farmers thrive in a changing climate. Taken together with other innovations like stress-tolerant crop varieties, climate-informed advisories for farmers, and creative business and financial models, index insurance shows tremendous promise.

The concept is simple. To start with, farmers who are covered can recoup their losses if (for example) rainfall or average yield falls above or below a pre-specified threshold or ‘index’. This is a leap forward compared to the costly and slow process of manually verifying the damage and loss in each farmer’s field. In India, scientists from the International Water Management Institute (IWMI) and the Indian Council of Agricultural Research (ICAR), have worked out the water level thresholds that could spell disaster for rice farmers if exceeded. Combining 35 years of observed rainfall and other data, with high-resolution satellite images of actual flooding, scientists and insurers can accurately gauge the extent of flooding and crop loss to quickly determine who gets payouts.

The core feature of index insurance is to offer a lifeline to farmers, so they can shield themselves from the very worst effects of climate change. But that’s not all. Together with my team, we’re investigating how insurance can help farmers adopt new and improved varieties. Scientists are very good at developing technologies but farmers are not always willing to make the leap. This is one of the most important challenges that we grapple with. What we’ve found has amazed us: buying insurance can help farmers overcome uncertainty and give them the confidence to invest in new innovations and approaches. This is critical for climate change adaptation. We’re also finding that creditors are more willing to lend to insured farmers and that insurance can stimulate entrepreneurship and innovation. Ultimately, insurance can help break poverty traps, by encouraging a transformation in farming.

Insurers at the cutting edge are making it easy for farmers to get coverage. In Kenya, insurance is being bundled into bags of maize seeds, in a scheme led by ACRE Africa. Farmers pay a small premium when buying the seeds and each bag contains a scratch card with a code, which farmers text to ACRE at the time of planting. This initiates coverage against drought for the next 21 days; participating farms are monitored using satellite imagery. If there are enough days without rain, a farmer gets paid instantly via their mobile phone.

ACRE makes it easy for Kenyan farmers to get insurance. Source
ACRE makes it easy for Kenyan farmers to get insurance. Source

Farmers everywhere are businesspeople who seek to increase yields and profits while minimizing risk and losses. As such, insurance has widespread appeal. We’ve seen successful initiatives grow rapidly in India, China, Zambia, Kenya and Mexico, which points to significant potential in other countries and contexts. The farmers most likely to benefit from index insurance are emergent and commercial farmers, as they are more likely than subsistence smallholder farmers to purchase insurance on a continual basis.

It’s time for more investment in index insurance and other innovations that can help farmers adapt to climate change. Countries have overwhelmingly prioritized climate actions in the agriculture sector, and sustained support is now needed to help them meet the goals set out in the Paris Climate Agreement.

Jon Hellin leads the project on weather index-based agricultural insurance as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). This work is done in collaboration with the International Research Institute for Climate and Society (IRI) at Columbia University, and the CGIAR Research Programs on MAIZE and WHEAT.

Find out more 

Report: 10 innovations for climate action in agriculture

Video: Jon Hellin on crop-index insurance for smallholder farmers

Info note: Prospects for scaling up the contribution of index insurance to smallholder adaptation to climate risk

Report: Scaling up index insurance for smallholder farmers: Recent evidence and insights.

Website: Weather-related agricultural insurance products and programs – CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

Borlaug Dialogue delegates widen net to curb threat from fall armyworm

2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize
The 2002 World Food Prize laureate, Pedro Sanchez, a professor at the University of Florida and Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank speak about the fall armyworm at a press conference on the sidelines of the 2017 Borlaug Dialogue conference in Des Moines, Iowa. Credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – World Food Prize laureates have joined forces with an international alliance battling the fall armyworm (Spodoptera frugiperda), an aggressive pest indigenous to the Americas with a voracious appetite, now widespread throughout Africa.

The 2002 World Food Prize laureate, Pedro Sanchez, currently a research professor at the University of Florida, addressed delegates at the Borlaug Dialogue conference in Des Moines, Iowa, which is timed each year to coincide with annual World Food Prize celebrations.

Sanchez described the severity of the challenge posed by the pest, which has a host range of more than 80 plant species, including maize, a staple food on which millions of people throughout sub-Saharan Africa depend for their food and income security.

Fall armyworm activities not only put food security, livelihoods and national economies at risk, but also threaten to undo recent hard-earned crop production gains on the continent, Sanchez said.

“Hopefully, it will be controlled; it will never be eradicated,” Sanchez said. “I think the fate of African food security really hinges now on this clear and present danger. It threatens to reverse the gains achieved in the last 10 years. It’s the epitome of an invasive species.”

The pest, which has no known natural predators, can cause total crop losses, and at advanced larval development stages can be difficult to control even with synthetic pesticides. The female fall armyworm can lay up to a thousand eggs at a time and can produce multiple generations very quickly without pause in tropical environments. The moth can fly 100 km (62 miles) a night, and some moth populations have even been reported to fly distances of up to 1,600 kilometers in 30 hours, according to experts.

Sanchez said that Akinwumi Adesina, 2017 World Food Prize laureate and president of the African Development Bank, and Rob Fraley, 2013 World Food Prize laureate and chief technology officer at Monsanto, had united with him to urgently “raise the alarm” about the threat from the pest.

By joining forces as laureates, we aim to really bring attention to this issue to avoid a food crisis, Adesina said. Mobile phones should be effectively used in the fight against the pest, he said.

“There’s just no better way in which farmers can detect, recognize and send information very fast to extension agents or universities that can allow them to identify it and get the information they need to deal with it,” he said, adding that the new African Development Bank initiative Technologies for African Agricultural Transformation (TAAT), will play a key role in fighting the fall armyworm.

Projections by the Centre for Agriculture and Biosciences International, (CABI), indicate that if left unchecked, the fall armyworm could lead to maize yield losses of around $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed.

Joint force

In April, the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization of the United Nations (FAO) and the Alliance for a Green Revolution in Africa (AGRA) hosted an international joint stakeholders meeting in Nairobi, committing to an integrated pest management strategy to tackle the pest.

CIMMYT, the U.S. Agency for International Development (USAID), and experts from several national and international research organizations, are currently developing a detailed field manual on Fall Armyworm management in Africa, said B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, who spoke at a Borlaug Dialogue side event with a panel of scientific experts.

Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins
Scientist B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize, speaks at a Borlaug Dialogue side event about the fall armyworm with a panel of scientific experts. CIMMYT/Julie Mollins

“The manual will offer protocols and best management practices related to fall armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; pheromones and sustainable agro-ecological management of fall armyworm, especially in the African context,” Prasanna said, adding that the pest has so far devastated at least 1.5 million hectares of maize in just six countries.

A Southern Africa Regional Training-of-Trainers and Awareness Raising Workshop on Fall Armyworm management was conducted in Harare, Zimbabwe, from Oct. 30 to Nov. 1, while a similar workshop for Eastern Africa is scheduled for Nov. 13 to 15 in Addis Ababa, Ethiopia, and for West Africa in early 2018.

The workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and apply specific practices to control the pest in maize and other crops, Prasanna said.

Fall armyworm toolbox

Prasanna announced that the CIMMYT team in Africa is intensively evaluating maize germplasm for resistance to fall armyworm. Initial experiments have indicated some promising breeding materials, which need to be validated further and utilized in product development and deployment pipelines, he said.

“The crisis is quickly escalating due to the loss of quality maize seed in production fields, and the extensive and indiscriminate use of low cost highly toxic pesticides,” Prasanna said.

“We need to quickly bring awareness among the farming communities in Africa about environmentally safer approaches of Fall Armyworm management,”  he said, adding that the international community can learn from the experiences of Brazil and the United States, where the pest has been endemic for  several decades.

“Sustainable agro-ecological management at the field and landscape levels is key,” Prasanna said. “We must make our solutions affordable to smallholder farmers.”

Panelist Mark Edge, director of collaborations for developing countries at agrochemical and biotechnology company Monsanto, said that integrated pest management, collaboration and public-private sector partnerships would be key to fighting the pest.

“First and foremost, it really is about an integrated pest management system – we’re not trying to propose that biotechnology is a silver bullet for this,” he said. “We need to continue to use many different technologies and biotechnology is one very powerful tool that we have in the toolbox.”

Over the past 10 years, the Water Efficient Maize for Africa (WEMA) a Monsanto-CIMMYT partnership project funded by the Bill & Melinda Gates Foundation and USAID has led to the development of almost 100 hybrid varieties effective against drought and a Bt – or biological pesticide – trait effective against the maize stem borers (Chilo partellus and Busseola fusca). The varieties will be available royalty-free to smallholder farmers.

“Insect resistance together with drought is our target; we’ve made tremendous progress over the past 10 years,” Edge said. “In the Americas, we still have challenges with fall armyworm, but we’re certainly able to control it to where farmers are actually able to get very good yields and manage the pests very effectively.”

Smallholder farmers need access to these varieties as soon as possible, so the focus should be on getting regulatory approvals in place by encouraging governments to support the technology, Edge said. The Bt trait varieties will need to be managed carefully so they do not develop resistance to the pest, he added.

“Scientists alone are not going to carry the day on this,” Edge said. “We need to bring together the science on this, but we also need the political will to help make that happen.”

Panelist Segenet Kelemu, director general of the International Institute of Insect Physiology and Ecology (ICIPE), said that techniques used to fight the stem borer have proven effective against the fall armyworm, although experiments are ongoing to craft an integrated pest management strategy to control various stages of the pest from egg to moth. The continent will face deepening challenges from insects due to climate change, she said.

“If there were capacity on the ground, fall armyworm would have been identified sooner,” Kelemu said. “We need a more comprehensive way and a global partnership to tackle this.”

Panelist Gregg Nuessly, a pest management researcher and the director of the Everglades Research and Education Center at the University of Florida, said that the fall armyworm could be effectively controlled through an integrated pest management approach.

“Success in control is not only possible, it’s quite common in the Western Hemisphere,” Nuessly said.

Related stories:

Borlaug Dialogue delegates to discuss strategy for tackling fall armyworm in Africa

Multi-pronged approach key for effectively defeating fall armyworm in Africa

Zimbabwe enacts new strategy in fall armyworm fight

Global experts meet to develop fall armyworm emergency plan for Africa

Fall armyworm in Africa: quick and coordinated regional response required

Scientists tackle deadly fall armyworm infestation devastating Africa

CIMMYTNEWSlayer1

 

Smallholder farmers to gain from targeted CRISPR-Cas9 crop breeding

Speakers on panel "How Can CRISPR-Cas Technology Assist Small Holder Farmers Around the World?" at the 2017 Borlaug Dialogue in Des Moines Iowa. L-R: Kevin Pixley, leader of the Seeds of Discovery project and the Genetic Resources Program at CIMMYT; Feng Zhang, core member of Broad Institute; Neal Gutterson, a member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, part of the agriculture division at DowDuPont; Nigel Taylor, interim director of the Institute for International Crop Improvement at Donald Danforth Plant Science Center. Picture credit: World Food Prize
Speakers on panel “How Can CRISPR-Cas Technology Assist Small Holder Farmers Around the World?” at 2017 Borlaug Dialogue in Des Moines Iowa. L-R: Kevin Pixley, leader of Seeds of Discovery and the Genetic Resources Program at CIMMYT; Feng Zhang, core member of Broad Institute; Neal Gutterson, member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, in DowDuPont agriculture division; Nigel Taylor, interim director, Institute for International Crop Improvement, Donald Danforth Plant Science Center. Picture credit: World Food Prize

DES MOINES, Iowa (CIMMYT) – Gene editing technology could revolutionize the way scientists breed high-yielding drought, disease and pest resistant, quality plant seeds, greatly reducing the time it currently takes to develop new varieties, said a panel of expert scientists at the Borlaug Dialogue conference in Des Moines, Iowa.

Using CRISPR-Cas9 to select or suppress desired traits in a genome is almost as simple as editing a Microsoft Word document on a computer, said Feng Zhang, the originator of the technology who is a core member of the Broad Institute of MIT and Harvard.

To edit genes, a protein called Cas9 is programmed to create an RNA search string, which can search and edit paired DNA to alter a genome to achieve desired effects in plants, Zheng said.

“There’s a lot of exciting opportunity to apply this technology in both human health and in agriculture,” he said.

Although the gene editing process itself is extremely fast, it will likely be several years before the benefits of the process for smallholder farmers begin to be realized, said Kevin Pixley, who leads the Seeds of Discovery project and the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

CIMMYT scientists aim to use the breakthrough technology to help smallholder farmers in the developing world address food security, nutrition shortcomings and economic threats to their livelihoods caused by climate change, pests and disease. Additionally, they see the potential to reduce the use of pesticides, and to boost nutrition through bio-fortification of crops.

“We want sustainable agriculture that provides food and nutrition security for all, while enabling biodiversity conservation,” Pixley said. “CRISPR-Cas9 is an affordable technology that can help us close the technology gap between the resource rich and resource poor farmers of the world.”

CRISPR-Cas9 improved varieties could also reduce the risk of investing in fertilizers, grain storage or other technologies, thereby contributing to “double benefits” for smallholder farmers, Pixley said.

Poverty alleviation and improved livelihoods for farmers are part of the shared vision for CIMMYT and our research partners, and we see CRISPR-Cas9 as a technology that can make a significant contribution to achieving this aim, he added.

DELIVERING BENEFITS

“We think about this as being about bringing abundant potential to agriculture through this technology,” said Neal Gutterson, a member of CIMMYT’s board of trustees and vice president of research and development at DuPont Pioneer, part of the agriculture division at DowDuPont.

“For us, it’s part of the evolution of breeding systems, it’s targeted breeding that’s enabled by CRISPR-Cas9 technology,” he said, describing joint research projects with CIMMYT and the Donald Danforth Plant Science Center.

Currently, CIMMYT and DuPont Pioneer are researching the benefits of using CRISPR-Cas9 to combat maize lethal necrosis (MLN) disease in East Africa. MLN is caused by a combination of two viruses, which can only be treated by developing genetic resistance in the plant.

“We can ultimately accelerate the delivery of improved products that are really highly performing, high yielding, and also resistant to that viral disease,” Gutterson said, explaining how the technology would benefit smallholders. “Should the disease spread outside of Africa we’ll be poised to deliver solutions even faster.”

DuPont Pioneer and the Broad Institute have signed an agreement to allow universities and non-profit organizations to use the technology for agricultural research and product development.

The joint licensing relationship opens up democratic access to CRISPR-Cas9 for agriculture, Gutterson said, adding that research collaborations with CIMMYT and Donald Danforth Plant Science Center will facilitate access to the technology in the developing world, enriching the livelihoods of farmers.

The technology will also benefit non-commodity crops, known as “orphan crops,” said Nigel Taylor, interim director of the Institute for International Crop Improvement at Donald Danforth Plant Science Center.

“The exciting thing about them is that they have huge potential because they have not undergone the improvement maize or rice have gone through,” Taylor said.

Donald Danforth and DuPont Pioneer are conducting joint research using CRISPR Cas9 into cassava brown streak virus disease, which is projected to spread from East Africa to Nigeria, the largest producer of cassava in the world.

“We edited two of the genes, which means the virus cannot replicate properly in the plant,” Taylor said. “We’re seeing the viral load is completely reduced.”

Taylor also said he would like to develop improved varieties of teff, which is widely grown in Ethiopia and Eritrea, where the seeds are used to make the food staple “injera,” a sourdough flatbread.

REGULATORY FRAMEWORK

To ensure access to the technology, consumers, farmers and scientists in Africa must be involved, and questions about how new crops are regulated must be addressed, the scientists agreed.

“We must engage in regulatory work with stakeholders,” Taylor said. “African research centers and others around the world must be part of this conversation right now – communication and education about new technologies are essential.”

If scientists use CRISPR-Cas9 to rapidly convert popular varieties from, for example, MLN-susceptible to MLN-resistant, they will make a lasting contribution to farmer livelihoods in Africa, Pixley said.

“However, we can’t yet assume that the benefits of these technologies will reach smallholder farmers,” he said.

“Public opinion is largely unformed because few people know about CRISPR-Cas9, and since the regulatory framework is largely undefined, we have a great opportunity to help form it in a way to make the benefits of these technologies available to smallholder farmers.”

We need to begin by recognizing and respecting the sovereignty of every country to decide if, when and how they are going to use this technology, he added.

I think we have a great responsibility to provide accurate, complete and trustworthy information to the public as we bring this technology into the public domain and to the regulatory process, he said.

“We know that it’s not going to be a magic bullet because no technology is, but we also think that it’s unethical to dismiss any technology without responsibly considering its possible contributions,” Pixley said.

The Borlaug Dialogue conference is held each year in Des Moines to coincide with World Food Prize celebrations. This year delegates feted the 2017 laureate Akinwumi Adesina, president of the African Development Bank, thematically focused on “The Road out of Poverty.”

Related:

How a seed bank in Mexico produces data to alleviate poverty

Seeds of Discovery website: http://seedsofdiscovery.org/

Al Jazeera: Crop Biodiversity the Key to Ending Hunger

New book highlights sustainable agriculture success story in Mexico

Photo: Columbia University Press
Photo: Columbia University Press

MEXICO CITY (CIMMYT) – A new book from Columbia University Press offers social sector organizations a how-to guide on applying new and creative methods to solve complex problems.

Design Thinking for the Greater Good tells 10 stories of the struggles and successes of organizations from across the world working in industries from healthcare to agriculture that have applied design thinking, a human-centered approach to problem solving, in order to truly understand the problems they wanted to solve, generate testable ideas and develop solutions for vulnerable groups who actually adopted them.

“Our path into the world of design thinking came originally through the for-profit world,” says Jeanne Liedtka, a professor at the University of Virginia Darden School of Business and co-author of the book, during her online course offered through Coursera. “For almost a decade now, we’ve been studying design thinking as a methodology for improving business innovation and growth and examining its successful use in global corporations like IBM, Toyota and 3M.”

According to Liedtka, design methods are even more powerful in the social sector, since these organizations have to frequently navigate complex bureaucracies, work with limited resources and juggle a large range of stakeholder expectations, among other challenges.

DesignThinking_24OctOne of the 10 stories in the book shows how the Sustainable Modernization of Traditional Agriculture program (MasAgro), a joint project from the International Maize and Wheat Improvement Center (CIMMYT) and Mexico’s Agriculture Department (SAGARPA), was able to launch a solution into practice through prototyping and testing that helped smallholder farmers in Mexico adopt new sustainable agriculture methods.

MasAgro is also cited as a textbook example of how to develop new practices and technologies by building on traditional knowledge through innovation networks, or “hubs,” which are able to “cut through communication barriers, allowing MasAgro and the farmers to combine the old and the new into best practices that serve local farmers and communities,” according to the authors.

The authors conclude that MasAgro made innovation safe by relying on respected community leaders and innovation networks that develop, test and adapt agricultural methods and innovations that visibly outperform alternative agricultural practices.

“MasAgro has been acknowledged as an innovation in the social sector by design thinking experts because risk averse smallholder farmers in Mexico, whose annual income depends on one agricultural cycle determined by nature, have embraced new sustainable farming practices to improve their livelihoods,” said Bram Govaerts, CIMMYT’s regional representative for the Americas.

Purchase Design Thinking for the Greater Good at Columbia University Press here and check out Jeanne Liedtka’s online course here.

MasAgro is a research for rural development project that promotes the sustainable intensification of maize and wheat production in Mexico, supported by SAGARPA and CIMMYT. Learn more about the project here.

How a seed bank in Mexico produces data to help alleviate poverty

Maize seed samples in CIMMYT's seed bank. CIMMYT/file
Maize (also known as corn) seed samples in CIMMYT’s seed bank. CIMMYT/file

DES MOINES, Iowa (CIMMYT) – Scientist Kevin Pixley holds a large, clear plastic bottle up to the light to illuminate the yellow corn kernels inside. He is leading a project to catalogue 178,000 corn and wheat seeds at the International Maize and Wheat Improvement Center’s (CIMMYT) seed bank near Mexico City.

“The difficulty farmers and researchers face is that no matter how hard they look they can’t see inside a seed to predict its hardiness – they never know whether it will withstand the growing conditions it will experience,” said Pixley, who will speak at the 2017 Borlaug Dialogue symposium in Des Moines, Iowa, on October 18.

CIMMYT’s mission is to apply maize and wheat science for improved livelihoods around the world.

“Our seed bank provides a sub-zero temperature refuge for the largest collection of maize and wheat seeds in the world,” explained Pixley, who leads CIMMYT’s Seeds of Discovery (SeeD) project. “Recent technological advances are accelerating our understanding of the inner workings of these seeds, making them ever more useful to researchers and farmers.

“Through conservation, characterization and use of natural biodiversity, we’re not just helping to improve livelihoods for smallholder farmers in the present, but we’re building our capacity to thwart future threats to food security,” Pixley said. “Every year we ship some 300,000 maize and wheat seed samples to farmers and researchers.”

Through the SeeD partnership between CIMMYT, Mexico’s ministry of agriculture (SAGARPA) and the MasAgro (Sustainable Modernization of Traditional Agriculture) project, scientists are developing the capacity for farmers to prepare for specific or as yet unanticipated needs.

“Seeds of Discovery offers the next generation of Mexican scientists the training and technologies they need to support food security,” said Jorge Armando Narvaez Narvaez, Mexico’s sub-secretary of agriculture.

“In some ways our work has only just begun, but we’re leaps and bounds ahead of where we would be thanks to applying new technologies to secure the food and nutrition needs of our growing population,” Pixley said.

For further information:

Seeds of Discovery video: http://staging.cimmyt.org/seed/

Seeds of Discovery website: http://seedsofdiscovery.org/

Farming First TV: https://www.youtube.com/watch?v=uDwBtWRiHxs

Al Jazeera: Crop Biodiversity the Key to Ending Hunger

For interviews: Julie Mollins, CIMMYT communications j.mollins [at] cgiar [dot] org

Asian scientists join cross-continental training to restrain wheat blast disease

With backing from leading international donors and scientists, nine South Asia wheat researchers recently visited the Americas for training on measures to control a deadly and mysterious South American wheat disease that appeared suddenly on their doorstep in 2016.

Trainees at the CAICO farm in Okinawa, Bolivia. Photo: CIMMYT archives
Trainees at the CAICO farm in Okinawa, Bolivia. Photo: CIMMYT archives

Known as “wheat blast,” the disease results from a fungus that infects the wheat spikes in the field, turning the grain to inedible chaff. First sighted in Brazil in the mid-1980s, blast has affected up to 3 million hectares in South America and held back the region’s wheat crop expansion for decades.

In 2016, a surprise outbreak in seven districts of Bangladesh blighted wheat harvests on some 15,000 hectares and announced blast’s likely spread throughout South Asia, a region where rice-wheat cropping rotations cover 13 million hectares and nearly a billion inhabitants eat wheat.

“Most commercially grown wheat in South Asia is susceptible to blast,” said Pawan Singh, head of wheat pathology at the International Maize and Wheat Improvement Center (CIMMYT), an organization whose breeding lines are used by public research programs and seed companies in over 100 countries. “The disease poses a grave threat to food and income security in the region and yet is new and unknown to most breeders, pathologists and agronomists there.”

As part of an urgent global response to blast and to acquaint South Asian scientists with techniques to identify and describe the pathogen and help develop resistant varieties, Singh organized a two-week workshop in July. The event drew wheat scientists from Bangladesh, India, Nepal and Mexico, taking them from U.S. greenhouses and labs to fields in Bolivia, where experimental wheat lines are grown under actual blast infections to test for resistance.

The training began at the U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) Foreign Disease-Weed Science Research facility at Fort Detrick, Maryland, where participants learned about molecular marker diagnosis of the causal fungus Magnaporthe oryzae pathotype triticum (MoT). Sessions also covered greenhouse screening for blast resistance and blast research conducted at Kansas State University. Inside Level-3 Biosafety Containment greenhouses from which no spore can escape, participants observed specialized plant inoculation and disease evaluation practices.

The group then traveled to Bolivia, where researchers have been fighting wheat blast for decades and had valuable experience to share with the colleagues from South Asia.

“In Bolivia, workshop participants performed hands-on disease evaluation and selection in the field—an experience quite distinct from the precise lab and greenhouse practicums,” said Singh, describing the group’s time at the Cooperativa Agropecuaria Integral Colonias Okinawa (CAICO), Bolivia, experiment station.

Other stops in Bolivia included the stations of the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF), Asociación de Productores de Oleaginosas y Trigo (ANAPO), Centro de Investigación Agrícola Tropical (CIAT), and a blast-screening nursery in Quirusillas operated by INIAF-CIMMYT.

“Scientists in South Asia have little or no experience with blast disease, which mainly attacks the wheat spike and is completely different from the leaf diseases we normally encounter,” said Prem Lal Kashyap, a scientist at the Indian Institute of Wheat and Barley Research (IIWBR) of the Indian Council of Agricultural Research (ICAR), who took part in the training. “To score a disease like blast in the field, you need to evaluate each spike and check individual spikelets, which is painstaking and labor-intensive, but only thus can you assess the intensity of disease pressure and identify any plants that potentially carry genes for resistance.”

After the U.S.A. and Bolivia, the South Asia scientists took part in a two-week pathology module of an ongoing advanced wheat improvement course at CIMMYT’s headquarters and research stations in Mexico, covering topics such as the epidemiology and characterization of fungal pathogens and screening for resistance to common wheat diseases.

Gary Peterson, explaining wheat blast screening to trainees inside the USDA-ARS Level-3 Biosafety Containment facility. Photo: CIMMYT archives
Gary Peterson (center), explaining wheat blast screening to trainees inside the USDA-ARS Level-3 Biosafety Containment facility. Photo: CIMMYT archives

The knowledge gained will allow participants to refine screening methods in South Asia and maintain communication with the blast experts they met in the Americas, according to Carolina St. Pierre who co-ordinates the precision field-based phenotyping platforms of the CGIAR Research Program on Wheat.

“They can now also raise awareness back home concerning the threat of blast and alert farmers, who may then take preventative and remedial actions,” Singh added. “The Bangladesh Ministry of Agriculture has already formed a task force through the Bangladesh Agricultural Research Council (BARC) to help develop and distribute blast resistant cultivars and pursue integrated agronomic control measures.”

The latest course follows on from a hands-on training course in February 2017 at the Wheat Research Center (WRC) of the Bangladesh Agricultural Research Institute (BARI), Dinajpur, in collaboration with CIMMYT, Cornell University, and Kansas State University.

Participants in the July course received training from a truly international array of instructors, including Kerry Pedley and Gary Peterson, of USDA-ARS, and Christian Cruz, of Kansas State University; Felix Marza, of Bolivia’s Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF); Pawan Singh and Carolina St. Pierre, of CIMMYT; Diego Baldelomar, of ANAPO; and Edgar Guzmán, of CIAT-Bolivia.

Funding for the July event came from the Bangladesh Agricultural Research Institute (BARI), the Indian Council of Agricultural Research (ICAR), CIMMYT, the United States Agency for International Development (USAID) and the Bill & Melinda Gates Foundation (through the Cereal Systems Initiative for South Asia), the Australian Centre for International Agricultural Research (ACIAR), and the CGIAR Research Program on Wheat.

 

 

Message from International Maize and Wheat Improvement Center after 7.1 Mexico earthquake

EL BATAN, Mexico (CIMMYT) — A powerful 7.1 magnitude earthquake rattled Mexico on Tuesday, killing more than 200 people less than two weeks after a 8.1 magnitude earthquake hit Oaxaca and Chiapas.

Although the full impact of the earthquakes is unknown at this time, the International Maize and Wheat Improvement Center (CIMMYT) would like to express condolences to all those affected throughout the country.

“All staff at our global headquarters are safe,” said Marianne Bänziger, deputy director general of CIMMYT, which is 150 km from the earthquake epicenter in central Mexico and 45 km northeast of Mexico City. “We hope the same to be true for their families, friends, research partners, and express our solidarity with Mexico and its people.”

Our buildings and infrastructure remained intact and our genebank, which houses 150,000 wheat seed samples and 28,000 maize samples, is safe, she said.

For those who want to help, we recommend contacting the Mexican Red Cross or any other local organization that supports affected people.

Leading nutritionist cites whole grains as critical for better nutrition and health

Leading nutritionist Julie Miller Jones promotes the benefits of whole grains. (Photo: CIMMYT)
Leading nutritionist Julie Miller Jones promotes the benefits of whole grains. (Photo: CIMMYT)

People who eat the most whole grain foods have a lower risk of almost all chronic diseases and are less likely to gain weight as they age, according to Julie Miller Jones, Distinguished Scholar and Professor Emerita at St. Catherine University, U.S.A.

“All kinds of epidemiological research shows that whole grain intake reduces obesity and the risk of diabetes, coronary heart and cardiovascular diseases, stroke, cancers, and death from all causes,” said Miller Jones, speaking to representatives of food processing companies and associations and scientists at the first “Maize and Wheat Quality and Nutrition Day” held near Mexico City on September 14.

Miller Jones emphasized that relatively modest amounts of grain in diets can deliver important health impacts. “We’re talking about eating around three slices of bread, or a bowl of oatmeal with a sandwich, or oatmeal in the morning, with pasta at lunch and rice at night,” she explained.

Hosted by the International Maize and Wheat Improvement Center (CIMMYT), a publicly-funded organization that works with hundreds of partners throughout the developing world to increase the productivity and quality of maize and wheat cropping systems, the event highlighted the critical connections between farmers, crop breeding and the quality of maize (corn) and wheat food products.

“It’s great that CIMMYT hosted this meeting,” said one participant, noting the complementary roles of the food industry and CIMMYT. “Companies like ours are only beginning to realize that improving our bottom line and sustainability doesn’t start with the flour we receive, but rather ten steps before that, with breeding, quality analyses, agronomy and even extension work in the field.”

In addition to packaged commercial breads, small individual loaves prepared daily in neighborhood bakeries are standard fare in Mexico. Photo: Mike Listman/ CIMMYT
In addition to packaged commercial breads, small individual loaves prepared daily in neighborhood bakeries are standard fare in Mexico. Photo: Mike Listman/ CIMMYT

The participants were impressed with Miller Jones’ presentation and the potential for partnering with CIMMYT, which conducts grain quality and nutritional analyses, development, selection and characterization of wheat and maize varieties for industrial and nutritional quality, as well as fostering the responsible sourcing of grain and linking farmers with markets.

“This is the first time we’ve brought together numerous essential actors in Mexico’s maize and wheat quality and nutrition value chains, and we expect that it will give dividends in better quality, more nutritious cereal grains and food for better diets,” said Natalia Palacios, CIMMYT maize nutrition and quality specialist.

In addition to using more than 35 million tons of maize each year as human food and animal feed, Mexico’s food processors annually handle more than 8 million tons of wheat grain.

“CIMMYT can serve as a shared platform for joint research with the food industry, outside of the competitive arena, and for messaging on healthy nutrition and diets,” suggested Carlos Guzmán, head of CIMMYT’s wheat chemistry and quality lab.

Together with the International Association for Cereal Science and Technology (ICC), Guzmán is organizing the 4th ICC Latin American Cereals Conference and the 13th International Gluten Workshop, both to be held in Mexico City from 11 to 17 March 2018.

Humans and food grain crops: Shared history and future

Miller Jones said that DNA of cooked grain has been found in the dental remains of Paleolithic humans, showing that people have been eating grain for more than 100,000 years. She also emphasized the need for balanced diets that feature all food groups in healthy amounts.

“We need to change our diets to healthy patterns that we can maintain for our entire lifetime, not something that you go on to go off,” she said, speaking recently in an online interview hosted by CIMMYT. “Just as nutrition experts have always recommended, unless you’re allergic to a particular food, a healthy diet should include products from all food groups, in the right amounts.”

Breaking Ground: Francelino Rodrigues on high-tech farming

EL BATAN, Mexico (CIMMYT) — When Francelino Rodrigues started at the International Maize and Wheat Improvement Center (CIMMYT) in 2013, the majority of the maize and wheat trials were still being carried out by walking through the field and taking measurements manually.

Through a collaborative work initiative with colleagues from maize and wheat breeding programs, and with support from senior scientists, Rodrigues brought a whole new world of digital mapping and proximal high-resolution soil sensing to the center’s trials thanks to his background in precision agriculture.

Precision agriculture makes use of technologies and farmers’ knowledge to determine the quantity, location and time resources need to be applied to grow crops. The information gained allows farmers to farm more sustainably; using less while maintaining and improving yields.

“I first discovered precision agriculture during an agricultural engineering undergraduate in Brazil,” explained Rodrigues. “I was fascinated by the idea of joining technology and agriculture, so I ended up going on to complete a master’s and a doctorate in precision agriculture applying it to coffee, sugarcane, and cereals crops.”

After completing his doctorate with an internship at the Commonwealth Scientific and Industrial Research Organization (CSIRO), an Australian government agency for scientific research, Rodrigues realized the importance of agricultural research for development and took on his post-doctoral position at CIMMYT within the biometrics team in remote sensing and precision agriculture.

“Remote sensing can provide information at different scales and for a range of applications, from crop management to high-throughput phenotyping and landscape assessment,” said Rodrigues, whose research focuses on the analysis and interpretation of spatial and temporal agricultural data sets built up by the use of proximal and remote sensing technologies, then seeing how it can be applied across CIMMYT’s work.

Preparing for radiometric calibration for Multispectral flight over maize Tar Spot Complex disease screening; CIMMYT’s station, Agua Fria, Mexico. April 2016 Photo: CIMMYT archives.
Preparing for radiometric calibration for a multispectral flight over maize Tar Spot Complex disease screening; CIMMYT’s station, Agua Fria, Mexico. Photo: CIMMYT archives.

Remote sensing devices make it possible to observe the dynamics from single plants up to entire landscapes and continents as they change over time by capturing radiation from across the electromagnetic spectrum.

“Precision agriculture and remote sensing technologies are used by CIMMYT to develop tools and practices to help farmers manage their crops more efficiently, to speed up the breeding process by rapidly assessing plant traits and to better characterize agricultural landscapes as a  whole,” he said.

According to Rodrigues, one of the greatest challenges is making precision agriculture accessible to smallholder farmers who don’t have the means to access new and expensive technology.  He is currently working on a public-private project using remote sensing data assimilation and crop modeling to build an online platform that farmers can use freely in their fields to make crop management decisions.

“Since I arrived at CIMMYT I have been exposed to a global network of world-class scientists,” said Rodrigues. “It encourages me to pursue my passions and allowed me to do what I love; good science that improves lives.”

Rodrigues is excited about the long-term impact of CIMMYT’s research and positive about the future. “I love to work with a team of scientists from different disciplines and see that knowledge and results we generate contribute to a wider agenda,” he said.

CIMMYT sends largest ever seed shipment to revitalize agriculture in Haiti

Hugo Plus seed bags ready to be sealed and shipped. Photo: L. Eugene/CIMMYT
Hugo Plus seeds grown in Haiti in 2016. Photo: L. Eugene/CIMMYT

MEXICO CITY (CIMMYT) – The International Maize and Wheat Improvement Center (CIMMYT) has grown 150 tons of renewed, improved maize seed that will be sent to Haitian farmers to help jump-start the country’s seed sector, improve local food security and decrease malnutrition. This will be the largest seed shipment to any country in CIMMYT’s history.

In 1998, CIMMYT, together with the Organization for the Rehabilitation of the Environment, introduced a new quality protein maize variety in Haiti. Named “Hugo” for CIMMYT maize breeder Hugo Córdova, the variety grew well under the island’s agro-ecological conditions and can decrease malnutrition and stunting among children that consume it. The product of decades of maize research in Haiti and Latin America, Hugo quickly became a favorite among farmers, but over time lost its genetic purity due to a lack of certified seed production and yields began to drop.

Now, CIMMYT is working to help Haiti build their seed sector from the ground up, from developing improved seed to replace old varieties to providing capacity development at every level of the maize seed value chain, with incredible results.

Haiti is the poorest country in Latin America and the Caribbean, with the lowest maize yields in the continent, and roughly 50 percent of the population is undernourished. These conditions have been exacerbated by a crippling earthquake in 2010, what is emerging as a longstanding drought, and devastating Hurricane Matthew in 2016 that affected 2 million people. According to the United States Agency for International Development (USAID), Haiti cannot achieve economic growth and national stability if food security is not addressed.

However, improving food security in Haiti is complicated by the fact that there are no formal seed companies, said Alberto Chassaigne, maize seed system specialist at CIMMYT.

“Farmers often sell their entire crop at harvest, leaving nothing for the next season, forcing them to plant simple maize grain that they buy from local markets rather than certified seed, drastically reducing yield over time,” said Chassaigne.

In 2015, CIMMYT launched the Mayi Plus initiative with the support of USAID-Haiti Feed the Future (FTF) to identify the most promising varieties for the future of maize farming in Haiti. The project would also work to produce a “renewed” Hugo to farmers in Haiti with greater genetic purity and yield, and provide capacity development to Haitians in the production and processing of seed of these improved varieties. This renewed Hugo, known as “Hugo Plus,” can produce up to seven tons per hectare, in comparison to traditional varieties currently planted in Haiti that produce on average less than one ton per hectare.

Through a systemic series of maize trials, scientists also found that new CIMMYT germplasm is already available that outperforms any other maize available in Haiti in both irrigated and rain-fed conditions.  These resilient varieties, named “Mayi Plus I” and “Mayi Plus II” are currently under multiplication to be introduced to Haitian farmers as soon as possible.

Hugo Plus seed growing in Haiti. Photo: L. Eugene/CIMMYT
Hugo Plus seed growing in Haiti. Photo: L. Eugene/CIMMYT

Four tons of renewed Hugo were produced in 2015, 2.7 tons of which were produced in Haiti.

In the winter cropping season of 2016-2017, CIMMYT produced 150 tons of renewed Hugo seed in Mexico to send to Haiti, 50 percent more than the 100 tons they had planned to send. “This is the largest seed shipment ever sent by CIMMYT,” said Arturo Silva Hinojosa, leader of the International Maize Improvement Consortium in Latin America. “An additional 15 tons of seed will be harvested in Haiti, up from 0-3 tons in previous years.”

20 of the 150 tons of renewed “Hugo Plus” have already arrived in Haiti, where they will be sold to farmers at affordable prices in “agricultural input boutiques” established by FTF and partners. The remaining 130 tons will be used by CIMMYT and FTF to develop a strategic seed reserve in Haiti that will serve as a backup in case of natural disasters so that the country has immediate availability of seed stock for re-planting. The CIMMYT team in Haiti is currently working to find the best locations to store the strategic maize seed reserve.

To ensure that the genetic purity of renewed Hugo and other improved maize varieties will be maintained, CIMMYT is providing capacity development to help start Haiti’s seed sector from scratch. Project partners identified entrepreneurs interested in establishing a seed enterprise, and CIMMYT has been providing these entrepreneurs with in-depth training in seed processing and marketing, guidance on the infrastructure for a seed processing plant, and contacts throughout the world of equipment appropriate for Haitian conditions.

In addition, CIMMYT established a two-week course in seed production and seed processing with a FTF partner to train 13 Haitian technicians, who will now be able to train other Haitians interested in working in the country’s maize seed sector. A training manual is being prepared in French and Creole, and replication workshops will be conducted in target food security corridors of USAID in Haiti.

“This improved seed, and a self-sustaining seed sector capable of producing and marketing it, can contribute towards improved foreign exchange savings and will create local employment,” said Huntington Hobbs, former leader of strategic planning and research coordination for CIMMYT’s MasAgro project. “Increased maize production will bolster Haiti’s economy by providing feed for emerging industries in poultry and egg production, as well as the main staple of Haitian food security.”

Hugo Plus on harvest day. Photo: L. Eugene/CIMMYT
Hugo Plus on harvest day. Photo: L. Eugene/CIMMYT

CIMMYT researchers returned to Haiti in early June to advise seed companies on the installation of a seed processing plant, as well as to supervise trials and evaluations of new varieties and coordinate trainings in Haiti with trainers trained last February in Mexico.

In order to introduce local farmers to the new Hugo Plus maize variety and recognize CIMMYT’s contribution to Haiti’s food security through the Mayi Plus project, the USAID-Haiti Feed the Future Chanje Lavi Plante (CLP) project held a special event on June 21, 2016. The event was attended by farmers, agricultural input store managers and local partners, as well as staff from the Haitian Ministry of Agriculture and USAID who thanked CIMMYT for the recent 20 ton seed shipment.

“Hugo Plus is the result of many years of applied research work of CIMMYT in Haiti, and is a valuable alternative to the current varieties available in Haiti with such low yields,” said Micheal Wyzan, head of the office of economic growth and development at the Haiti mission of USAID. “We highly appreciate the fruitful collaboration between CIMMYT and the CLP project that allow farmers to increase their maize yields in the region.”

In his address to the audience, Alain Thermil, main liaison of Haiti’s Ministry of Agriculture with USAID, stated that, “CIMMYT is a very important organization in the world, and it is vital to Haiti that we establish and maintain a close relationship with CIMMYT.”

Jean Robert Estime, director of the CLP project in Haiti, agreed. “Through CIMMYT interventions, good quality seed is now available to farmers in Haiti. We are very grateful to CIMMYT, a great international organization with a mandate to do research on maize and wheat worldwide that is doing very important work in Haiti.”

CIMMYT renames lab to honor Evangelina Villegas, World Food Prize laureate

Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)
Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)

El BATAN, Mexico, (CIMMYT) – To celebrate and expand the legacy of the late Evangelina Villegas Moreno, a pioneering Mexican cereal chemist who won the 2000 World Food Prize for co-developing quality protein maize, the International Maize and Wheat Improvement Center (CIMMYT) has named its maize quality laboratory in her honor.

A memorial plaque was unveiled on 6 June by Martin Kropff, CIMMYT’s director general, at the entrance of the CIMMYT lab that generates crucial grain quality data for the center’s global maize breeding efforts.

“What better way to honor Dr. Villegas’ accomplishments than to have a CIMMYT maize quality lab named after her?” Kropff said. “The center is proud to have counted among its ranks a professional like Dr. Villegas, a pioneering Mexican scientist whose contributions to nutrition and food security will continue to resonate in impoverished regions.”

Breeding lines and populations from CIMMYT’s maize program are used in 100 countries and result in high-yielding, resilient varieties and hybrids grown on at least 20 million hectares throughout the tropics and subtropics.

One derivative of that work, known as quality protein maize (QPM), was developed by Villegas and Surinder K. Vasal, another former CIMMYT maize breeder and distinguished scientist, with whom she shared the 2000 World Food Prize.

Maize grain is rich in carbohydrates but poor in protein. In particular, it is lacking in the amino acids lysine and tryptophan, which are key protein building blocks in human diets. QPM grain contains more of those amino acids and so offers better nutrition for people with heavily maize-based diets, as is the case in parts of Latin America and sub-Saharan Africa.

A 2009 study in the science journal Food Policy found that eating QPM instead of conventional maize resulted in respective 12 and 9 percent increases in growth rates for weight and height, in infants and young children with mild-to-moderate undernutrition and where maize constituted the major staple food.

“Today, almost 30 years after Villegas retired from CIMMYT, the chemical and analytical approaches she developed still underpin work to monitor protein quality in QPM,” said Natalia Palacios, CIMMYT maize nutrition quality specialist and current head of the renamed lab. Together with Kropff, Vasal and Villegas’ sister, Juana Villegas Moreno, Palacios helped unveil the new plaque in a ceremony attended by 100 current and former CIMMYT personnel and Villegas’ family members.

Groundbreaker in science and society

Known as “Eva” to colleagues, Villegas, who passed away in April 2017, was born in Mexico City in 1924 and earned a Bachelor of Science degree in chemistry and biology at Mexico’s National Polytechnic Institute, at a time when higher education for women was still a novelty.

In 1950, she began her career as a chemist and researcher at Mexico’s National Institute of Nutrition and at the Office of Special Studies, an initiative funded by the Rockefeller Foundation and the Mexican government that was CIMMYT’s precursor.

She returned to CIMMYT in 1967, after earning a Master of Science degree in cereal technology from Kansas State University and a doctoral degree in cereal chemistry and breeding from North Dakota State University.

Villegas worked with Vasal in CIMMYT’s QPM breeding program, which operated from 1970 to 1985. Requiring the capacity to select for intricate gene combinations before the advent of DNA markers or genetic engineering, the program could not have succeeded without the support of Villegas’ lab and science, according to Vasal.

“I would call it exemplary interdisciplinary work (for) a breeder and a biochemist,” said Vasal. “Her lab analyzed 26,000 grain samples or more a year and provided the data in time for us to sow or pollinate experimental lines. Eva also furnished valuable critical suggestions that improved our breeding work.”

In a message read at the unveiling, Sanjaya Rajaram, 2014 World Food Prize recipient and former CIMMYT wheat scientist and program director, recalled Villegas’s significant contributions to the center’s wheat breeding research, which included establishing the center’s wheat industrial quality lab.

An inspiration in science to improve nutrition

Villegas’ prizes and professional recognitions include the 2000 Woman of the Year award of the Mexican Women’s Association, presented to her by former Mexican President Ernesto Zedillo. In 2001 Villegas was named to Alpha Delta Kappa’s prestigious list of International Women of Distinction and received the Lazaro Cardenas Medal from the National Polytechnic Institute. In 2013 Kansas State University (KSU) honored Villegas with an Outstanding Alumni Award.

“As a scientist, as a woman and as a Mexican, Villegas will continue to inspire future generations working to enhance food security and nutrition for the disadvantaged,” said Palacios.

Breaking Ground: Hands on experience gives Carolina Camacho insight into farming best practices

TwitterCamachoEL BATAN, Mexico (CIMMYT) – Tending her own crops gives Carolina Camacho insights into the challenges farmers face that she could never have learned in a classroom.

Growing up in the metropolis of Mexico City, the historical and political importance of agriculture was never lost on Camacho, who works as a principal researcher at the International Maize and Wheat Improvement Center (CIMMYT).

“As a teenager, I would debate my sister over the most pressing issue that faced our country, Mexico. For me it was always in agriculture,” Camacho said. “I strongly believe if we are to improve our country, we must improve the lives of our campesinos (smallholder farmers).”

With no knowledge of farming, but with a passion to bring about change, she took to the field, studying crop science at Chapingo University, on the outskirts of the city in the State of Mexico. Having to brave early morning starts, she learned the basics of agriculture, and a love for the genetic diversity of maize.

Mexico, considered the birthplace of maize, is home to a rich diversity of varieties that has evolved over years of domestication by farmers. Camacho was introduced to this diversity firsthand, interning at CIMMYT’s maize germplasm bank as an undergraduate.

Interested in discovering how conserving maize diversity played out in farmers’ fields she gravitated towards an on-farm conservation project in rural Mexico. Working with indigenous farmers, Camacho learned how traditional knowledge and practices relate to environmental management, agricultural production and the diversity of native maize varieties.

After earning a master’s degree in the conservation and utilization of genetic resources, Camacho felt that crop science was isolated from the daily life of farmers. Thus, in a move to study the relationship between humans and plants, she embarked on a multidisciplinary doctoral in the sociology of rural development at Wageningen University in the Netherlands.

While conducting her research, Camacho lived with indigenous farmers in Mexico’s Lacandon rainforest in the state of Chiapas. Alongside local Mayan farmers she cultivated her own milpa – a farming system used by indigenous farmers in Latin America, which typically involves intercropping maize, beans and squash. Her hands-on fieldwork allowed her to study cultivation practices outside the scope of purely agronomic activities, but also as political, social and cultural actions.

“Farming alongside the Tzeltal people, I saw how my own cultivation practices were interwoven with everyday life,” said Camacho. “Farming was influenced by religious ceremonies, health and family affairs as well as political struggles for land. It had to cope, adapt and overcome these challenges.”

Today, these lessons learned guide Camacho as she investigates how agricultural innovations, including drought-tolerant crops, fertilizer and land management approaches can be farmer inclusive and tailored to local contexts as part of CIMMYT’s sustainable intensification strategy for Latin America.

Sustainable intensification aims to enhance the productivity of labor, land and capital. They offer the potential to simultaneously address a number of pressing development objectives, including unlocking the agricultural potential to adapt production systems to climate change, sustainably manage land, soil, nutrient and water resources, improved food and nutrition security, and ultimately reduce rural poverty.

CIMMYT principal researcher Carolina Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.
CIMMYT principal researcher Carolina Camacho studies how agricultural innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages. Photo: CIMMYT/ Courtesy of Carolina Camacho

Smallholder farmers, who manage small plots of land and handle limited amounts of productive resources, produce 80 percent of the world’s food. The United Nations calls on these farmers to adopt agricultural innovations in order to sustainably increase food production and help achieve the “Zero Hunger” U.N. Sustainable Development Goal. However, these farmers seldom benefit from new techniques to shore up efforts to meet the goal.

“An agricultural scientist can tell a farmer when and how to plant for optimal results, but they do not farm in a bubble, their practice is affected by the ups and downs of daily life – not only by climate and agronomy but also by social and cultural complexities,” Camacho said.

“One of the biggest challenge is to recognize the heterogeneity of farmers and leave behind the idea of one size solution to their diverse problems and needs,” said Camacho. By understanding a farmer’s lifestyle, including access to resources and information, levels of decision making in the community and the role of agriculture in their livelihood strategy, researchers can best identify complementary farming practices and techniques that not only boost productivity but also improve livelihoods.

“It’s important to think about agricultural innovations as social processes for change in which technologies, like improved seeds or agronomic practices, are only one element,” said Camacho. “It is key that we recognize that changes will not only occur in the farmer’s field but also in the behavior of other actors in the value chain, such as input suppliers, traders, government officials and even researchers.”

Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.

When working with indigenous communities, she ensures cultural values of the milpa system are taken into account, thus promoting the agricultural tools and techniques that do not detract from the importance of the traditions associated with the milpa practice.

“The milpa system is a clear example of how agriculture in general and maize in particular contribute to the construction of the cultural identities of indigenous people. We should be aware of the consequences that innovations will have not only for environmental sustainability but also for the sustainability of the Mayan Culture,” she said.

“Let’s not forget, we can’t separate culture from agriculture,” Camacho finished.

 

Camacho studies the process in which researchers promote agricultural innovations and how farmers adopt them through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, supported by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA). Together with other researchers, Camacho has documented how MasAgro is promoting innovations in different regions of Mexico by responding to specific regional challenges and opportunities. Currently she is supporting scaling efforts for these innovations by ensuring that they will be sustainable and inclusive.

In the same line of inclusiveness, Camacho is working with two projects in the milpa system. The first one is the Buena Milpa project funded by U.S. Agency for International Development’s Feed the Future program and in collaboration with the Guatemala Agricultural Science and Technology Institute. The second one is the Milpa de Yucatan project sponsored by a private Mexican foundation in Yucatan Peninsula. Both projects promote sustainable intensification innovations in the milpa systems.

 

 

A ton of seed shipped to the doomsday vault at Svalbard

CIMMYT gene bank specialists — shown here with the shipment destined for Svalbard — conserve, study and share a remarkable living catalog of genetic diversity comprising over 28,000 unique seed collections of maize and over 140,000 of wheat (Photo: Alfonso Cortés/CIMMYT).

MEXICO CITY, Mexico (CIMMYT) — Staff of the gene bank of the International Maize and Wheat Improvement Center (CIMMYT) have sent 56 boxes of nearly 28,000 samples of maize and wheat seed from the center’s collections, to be stored in the Svalbard Global Seed Vault.

Located on Spitsbergen Island in Norway’s remote Arctic Svalbard Archipelago, 1,300 kilometers south of the North Pole, the vault provides free, “safe deposit” cold storage for back-up samples of seed of humanity’s crucial food crops.

“CIMMYT has already sent  130,291 duplicate samples of our maize and wheat seed collections to Svalbard,” said Bibiana Espinosa, research associate in wheat genetic resources. “This brings the total to nearly  158,218 seed samples, which we store at Svalbard to guard against the catastrophic loss of maize and wheat seed and diversity, in case of disasters and conflicts.”

Thursday’s shipment contained 1,964 samples of maize seed and 25,963 samples of wheat and weighed nearly a ton, according to Espinosa.

The wheat seed came from 62 countries and nearly half the samples comprised “landraces” — locally-adapted varieties created through thousands of years of selection by farmers.

“Of the maize samples, 133 contained seed of improved varieties, 51 were of teosinte — maize’s direct ancestor — and 1,780 were of landraces,” said Marcial Rivas, research assistant for maize genetic resources. “Many landraces are in danger of permanent loss, as farmers who grew them have left the countryside to seek work and changing climates have altered the landraces’ native habitats.”

The government of Norway and the Crop Trust cover the cost of storage and upkeep of the Svalbard Global Seed Vault, coordinating shipments in conjunction with the Nordic Genetic Resource Center.  Established in 2006, the Crop Trust supports the conservation and availability of crop diversity for food security worldwide and helps to fund CIMMYT’s work to collect and conserve maize and wheat genetic resources.  CIMMYT’s maize and wheat germplasm bank is supported by the CGIAR Research Program on Genebanks.

Maize seed and training aim to reduce aid dependency in Haiti

Bags of Hugo seed in storage in Haiti.
Bags of Hugo seed in storage in Haiti. CIMMYT/Alberto Chassaigne

EL BATAN, Mexico (CIMMYT) – Haiti’s farmers are benefiting from improved maize seed as part of a project developed to help kick-start the local seed sector and reduce dependence on international aid and imports.

Half of the Haitian population lives on less than $1.25 a day, and half of their food is imported, leaving them vulnerable to food price rises. Haiti receives $20 million per year in food assistance from U.S. Agency for International Development (USAID) collaborations alone. Because of the lack of inputs, fragile infrastructure and soil erosion, most farming is subsistence in nature and kept in check by droughts and seasonal storms.

Until good-quality improved seed is available in Haiti, farmers will struggle to surpass yields of one ton per hectare, and most will settle for much less. “In order to be sustainable, you need seed systems and it needs to be a business,” said Arturo Silva, leader of the Haiti Mayi Plus project, led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from USAID.

Bringing back Hugo

A very popular quality protein maize variety was introduced to Haiti 10 years ago by CIMMYT researcher Hugo Cordova. Haitian farmers know it as “Hugo,” but after a decade without a functioning system to guarantee that varieties are reproduced with the same genetic characteristics, the seed found in Haitian markets is no longer worthy of the name. Currently, there are only two formally-registered private seed producers in Haiti.

CIMMYT’s first task is to restore Hugo to its former glory by providing four tons of basic seed to be scaled up into commercial seed for use in Haiti. Although Hurricane Matthew destroyed 1.5 tons of this store in October, the project is still on track to surpass targets due to success elsewhere.

Haitian trainees in Mexico.
Haitian trainees in Mexico. CIMMYT/Alberto Chassaigne

In February 2016, eight people from Haitian seed enterprises, rural development groups and the Ministry of Agriculture travelled to the State of Oaxaca, Mexico, for a training course in seed production.

The training was so successful that, with 30 kilograms of foundation seed provided by CIMMYT, nearly four tons of basic Hugo seed will be produced in Haiti. Additionally, trainees passed on their newly acquired knowledge to around 30 farmers with the potential to become seed producers themselves.

From just over one ton of basic Hugo seed planted it will be possible to produce 140 tons of commercial seed for farmers, enough to plant 7,000 hectares of farmland in the area targeted by the project in southwest Haiti.

The return of Hugo is a quick win as a variety that farmers already know and trust. If farmers in target areas combine the new seed with good planting practices and fertilizer, they should be able to double their yields, at the very least.

Towards maize self-sufficiency in Haiti

An agricultural transformation can only occur as other obstacles facing Haiti are overcome. For now, CIMMYT, building on the work of USAID with its partners, is showing how a local seed sector can quickly be developed.

“We can have an impact in Haiti, but our focus is for this impact to be that they have people well-trained in quality seed production with the criteria of cutting dependency,” said Alberto Chassaigne, CIMMYT specialist in maize seed systems.

CIMMYT is working with local centers for rural development (CRDDs) to determine farmers’ needs, raise awareness of farming practices and identify those with the potential to become seed producers. CIMMYT donated a small seeder to the University of Quisqueya in Haiti’s capital, Port-au-Prince, and student trials are underway to investigate how to improve cropping intensity in farmers’ fields.

Hugo maize growing in Haiti. CIMMYT/Alberto Chassaigne
Hugo maize growing in Haiti. CIMMYT/Alberto Chassaigne

Looking to the future, studies are being conducted in Haiti to produce even better open-pollinated varieties (OPVs) and high-yielding hybrids that will allow an emerging local seed sector to take maize farming in Haiti to another level. The specialized genetics of hybrid maize yield more than OPVs when well fertilized, but must be produced using special protocol. CIMMYT’s partners in Haiti will be instrumental in creating a cultural change among farmers to see the value in paying for better seed and inputs.

“I believe that if we can have an impact in Haiti, with all the challenges it faces, there is no other country in Mesoamerica that can say it can’t be done there too,” said Chassaigne. “I work with very proactive, dedicated people who want to help their country; without them we will not achieve anything.”