Skip to main content

Location: Americas

CIMMYT has several offices in the Americas, including global headquarters in Mexico and a regional office in Colombia. Activities are supported by an additional 140 hectares of stations in diverse agro-ecological zones of Mexico. CIMMYT’s genebank in Mexico stores 27,000 maize and 170,000 wheat seed collections – key to preserving the crop genetic diversity of the region. CIMMYT projects range from developing nutritionally enhanced maize to mapping regional climate change hot spots in Central America. The comprehensive MasAgro project aims to increase wheat production in Mexico by 9 million tons and maize production by 350,000 tons by 2030. CIMMYT promotes regional collaboration and facilitates capacity building for scientists, researchers and technicians.

Fall armyworm on the agenda at the 2018 Borlaug Dialogue

DES MOINES (Iowa) — At the plenary of the 2018 Borlaug Dialogue, a global panel of experts gave an overview of the origins of the fall armyworm, how it is spreading around the world, and how governments, farmers and researchers are fighting against this pest.

Pedro Sanchez, research professor in tropical soils at the University of Florida and 2002 World Food Prize Laureate, shared background information on the history of the fall armyworm and the early attempts to neutralize it, decades ago. He pointed out that once-resistant varieties were eventually affected by this pest.

The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, shared the most recent developments and explained how organizations are working together to respond to this pest. “We want to have science-based, evidence-based solutions,” Kropff said. “We have to solve the problem based on science, and then to develop and validate and deploy integrated pest management technologies.”

The director general of the Ethiopian Institute of Agriculture, Mandefro Nigussie, reminded that in addition to affecting people and the environment, fall armyworm “is also affecting the future generation,” as children were pulled out of school to pick larvae.

The response against fall armyworm cannot be done by governments alone, panelists agreed. It requires the support of multiple actors: financing the research, producing research, promoting the results of the research and implementing appropriate measures.

Rob Bertram, chief scientist at USAID’s Bureau for Food Security predicted the fall armyworm will continue to be a “serious problem” as it moves and migrates.

The director general and CEO of the Kenya Agricultural & Livestock Research Organization, Eluid Kireger, emphasized the importance of global collaboration. “We need to borrow the technologies that are already working”.

The fall armyworm was also discussed during the Corteva Agriscience Forum side event, on a session on “Crop security for food security”. The Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize, B.M. Prasanna, was optimistic about the efforts to tackle this voracious pest. “I’m 100 percent confident that the pest will be overcome, but it requires very solid synergistic and coordinated actions at the national level, at the regional level and at the continental level.”

CIMMYT is co-leading the Fall Armyworm R4D International Consortium. “Fall armyworm is not going to be the only threat now and forever; there will be more insects, pests and pathogens moving around,” Prasanna said. “Global connectedness is exacerbating this kind of problem, but the solution lies also in global connectedness.”

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Cobs & Spikes podcast: Blue maize opportunities for Mexican farmers

Blue maize is a ubiquitous aspect of Mexico’s food culture, especially in the central highlands. Most of it is grown by small-scale farmers for local consumers who value it for its rich flavor and texture. But it’s also catching the attention of some food processing companies who are interested in its health benefits, as well as high-end culinary markets seeking authentic Mexican cuisine. Find out how CIMMYT researchers are helping Mexican farmers tap into two emerging markets that could boost incomes while conserving culture and biodiversity.

You can listen to our podcast here, or subscribe on iTunes, SoundCloud or Stitcher.

 

2018 World Food Prize recognizes action to improve child nutrition

Postcard_FOOD PRIZE copy

DES MOINES (Iowa) — As winners of the 2018 World Food Prize, Lawrence Haddad and David Nabarro are being recognized today for their individual work in unifying global nutrition efforts and reducing child malnutrition during the first 1,000 days of life. With this award, food and agriculture leaders highlight the importance of linking food production and nutrition.

Haddad’s and Nabarro’s efforts were crucial in uniting food security policy and programs in the wake of the 2008 global food crisis, when wheat, maize and rice prices doubled. Haddad and Nabarro leapt into action, each rallying a broad group of food system stakeholders and development champions and pushing for the implementation of evidence-based policies.

Using economic and medical research, Haddad convinced leaders to make child and maternal nutrition a priority in the global food security agenda. Nabarro, a champion of public health at the United Nations, was directly responsible for uniting 54 countries and one Indian state under the Scaling Up Nutrition Movement.

The 2018 laureates’ work significantly improved nutrition for mothers and children in the critical first 1,000 days of life — the period from pregnancy to a child’s second birthday. Their relentless leadership and advocacy inspired efforts by countless others to reduce childhood malnutrition. Between 2012 and 2017, the world’s number of stunted children dropped by 10 million.

“I would like to personally congratulate Haddad and Nabarro for putting nutrition and healthy diets on the global agenda,” expressed Martin Kropff, the Director General of the International Maize and Wheat Improvement Center (CIMMYT). “Together, we have to strive to develop resilient agri-food systems that provide nutritious cereal-based diets.”

Food and agriculture leadership

The World Food Prize has been referred to as the “Nobel Prize for food and agriculture.” Awarded by the World Food Prize Foundation, it recognizes individuals who have advanced human development by improving the quality, quantity or availability of food in the world. Winners receive $250,000 in prize money.

The World Food Prize was founded in 1986 by Norman Borlaug, recipient of the 1970 Nobel Peace Prize.

CIMMYT laureates

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. Bram Govaerts received the Norman Borlaug Field Award in 2014. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Better together: Partnership around zinc maize improves nutrition in Guatemala

On World Food Day, October 16, the International Maize and Wheat Improvement Center (CIMMYT) joins the Food and Agriculture Organization of the United Nations and partners around the world in their call to realize Sustainable Development Goal 2: Zero Hunger by 2030. Learn how CIMMYT, HarvestPlus and Semilla Nueva are working together to use biofortified zinc-enriched maize to reduce malnutrition in Guatemala, an important component of Goal 2.

Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of the country’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system. CIMMYT, HarvestPlus and Semilla Nueva are working together to change this, through the development and deployment of the world’s first biofortified zinc-enriched maize.

“In Latin America, Guatemala is among the top 3 countries with the highest rates of zinc and iron deficiencies, and it is characterized by a high production and consumption of staple foods such as maize and beans. This made Guatemala, along with Haiti, the top prioritized countries for biofortification in the region, according to the Biofortification Priority Index (BPI) for Latin America,” said SalomĂłn PĂ©rez, the HarvestPlus country coordinator for Guatemala. HarvestPlus developed the BPI in 2013 to select the countries, crops and micronutrients in which to focus their efforts in Latin America. The BPI combines three sub-indexes: production, consumption and micronutrient deficiency level. “As maize is a staple food in Guatemala, with high levels of consumption and production, the development of biofortified maize with enhanced zinc was prioritized for the country,” he said.

Biofortified maize is a unique and efficient way of improving nutrition. As the nutrients occur naturally in the plant, consumers do not have to make any behavioral changes to get results. Rather than having to import supplements or fortify food, seeds and crops are sourced within the country, which makes this option more sustainable and accessible even in remote rural areas. It tastes the same as non-biofortified maize varieties and requires no special preparation methods. This made biofortification the obvious choice for improving zinc deficiency in Guatemala, and CIMMYT the obvious partner.

“CIMMYT has over 50 years of experience in tropical maize breeding for different traits,” said FĂ©lix San Vicente, one of the CIMMYT maize breeders leading the project. “Throughout our history we have developed elite materials with important agronomic and nutritional traits, such as Quality Protein Maize (QPM).”

The long lineage of zinc maize

Developed by CIMMYT scientists Evangelina Villegas and Surinder Vasal, QPM has enhanced levels of lysine and tryptophan, essential amino acids, which can help reduce malnutrition in children. Villegas and Vasal would later go on to win the World Food Prize in 2000 for this groundbreaking work, and genetic variation found in QPM would serve as the baseline for developing zinc-enriched maize.

A maize plot of the Fortaleza F3 variety in Guatemala.
A maize plot of the Fortaleza F3 variety in Guatemala. Photo: Sarah Caroline Mueller. 

After years of breeding work and research, the world’s first biofortified zinc maize hybrid, ICTA HB-18, was released in Guatemala in May 2018. It was developed by CIMMYT, the CGIAR Research Programs on Maize (MAIZE) and Agriculture for Nutrition and Health (A4NH), and Guatemala’s Institute for Agricultural Science and Technology (ICTA) with support from HarvestPlus. Commercialized by Semilla Nueva under the name Fortaleza F3, the biofortified zinc maize hybrid contains 6-12ppm more zinc and 2.5 times more quality protein compared to conventional maize varieties. An open pollinated variety, ICTA B-15, was also released.

Just 100 grams of tortilla made of either of these varieties can provide 2.5 milligrams of zinc, 50 percent of the daily recommended intake for children, making zinc-enriched biofortified maize an excellent tool in the fight against malnutrition and hidden hunger.

As CIMMYT is a breeding organization, it depends on national partners to get seeds to the farmers. That is where Semilla Nueva comes in. This non-profit social enterprise is working to get high yielding biofortified seeds to farmers in Guatemala.

RĂłmulo GonzĂĄlez's daughter holds a corncob.
RĂłmulo GonzĂĄlez’s daughter holds a corncob. Photo: Sarah Caroline Mueller.

The last mile

“We need to be able to impact farmers with our improved germplasm,” said San Vicente. “Semilla Nueva takes us to the last mile, to the farmers, which alone we could not do, so that our breeding work can achieve impact in farmers’ fields and lives.”

Semilla Nueva targets commercial farmers in Guatemala, as they are the main source of maize consumed in the country. Typically, a quarter of their harvest is consumed at home and surplus is sold in local markets, meaning that the zinc maize not only provides increased income to farmers, but also improves nutrition in their families, communities and country at large.

“CIMMYT, along with partners like HarvestPlus, have provided the technologies and support to allow us to come up with new ways to improve farmers’ lives. Tapping into decades of research from qualified scientists is the only way that an organization of our size can have hope of making an impact in the lives of millions of farmers. That’s what makes the partnership so incredible,” said Curt Bowen, executive director and cofounder of Semilla Nueva. “We provide the innovative way to get technologies to farmers through our social enterprise model. CIMMYT and HarvestPlus come up with the technologies that we never could have come up with on our own. Together, we help thousands of families make huge changes in their lives and take on malnutrition, which is one of the world’s biggest challenges to ending global poverty.”

Semilla Nueva plans to produce 5,000 bags of Fortaleza F3 next year, which will represent 5 percent of the Guatemalan hybrid seed market.

Farmer RĂłmulo GonzĂĄlez on his maize plot.
Farmer RĂłmulo GonzĂĄlez on his maize plot.Photo: Sarah Caroline Mueller.

“Farmers have responded very positively to Fortaleza F3. They are convinced of its performance, especially during the dry season,” said Angela Bastidas, senior operations director at Semilla Nueva. “The way we approach farmers is not different than other seed companies; through farm visits, meetings, or field days. We are not reinventing the wheel. The difference with us has been offering farmers exactly what they need in terms of maize performance and price. Additionally, they find that our maize produces soft tortillas that taste better!” she explained.

In the end, the results speak for themselves. Fortaleza F3 increases yields by 13 percent and profits by $164 per bag compared to other mid-priced seeds, which goes a long way in improving farming families’ livelihoods, food security and nutrition.

“With Fortaleza F3, I pay less for the seed compared to other mid-priced competitors that I used to plant. F3 also yields more, giving me a greater profit,” said Rómulo González, a farmer from the southern coast of Guatemala. “With the extra income I’ve gotten since switching to F3, I’ve been paying for my daughter to go to school. Fortaleza F3 not only gave me a good harvest, but also the ability to support my daughter’s education.”

CIMMYT recognized for support in restoring Guatemalan seed systems after hurricane

CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)
CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) maize germplasm bank recently received an award in recognition of its contributions towards the Buena Milpa initiative in Guatemala, which aims to enhance the sustainability of maize systems in the country. Denise Costich, head of the maize germplasm bank, received the award on behalf of CIMMYT during the event ‘Maize of Guatemala: Repatriation, conservation and sustainable use of agro-biodiversity,’ held on September 7, 2018, in Guatemala City.

The seed varieties stored in the CIMMYT germplasm bank were of vital importance in efforts to restore food security in the aftermath of Hurricane Stan, which swept through Guatemala in 2005, leading to 1,500 deaths. Many farmers lost entire crops and some indigenous communities were unable to harvest seed from their traditional maize varieties, known as landraces. Generations of selection by farmers under local conditions had endowed these varieties with resistance to drought, heat, local pests and diseases. Such losses were further exacerbated by the discovery that the entire maize seed collection in Guatemala’s national seed bank had been damaged by humidity; the seeds were vulnerable to insects and fungus and could not be replanted.

In 2016, drawing upon the backup seed stored in its maize germplasm bank in Mexico, CIMMYT sent Guatemalan collaborators seed of 785 native Guatemalan maize varieties, including some of the varieties that had been lost. Collaborators in Guatemala subsequently planted and multiplied the seed from the historic CIMMYT samples, ensuring the varieties grow well under local conditions. On completion of this process, the best materials will be returned to local and national seedbanks in Guatemala, where they will be available for farmers and researchers to grow, study and use in breeding programs.

Jointly hosted by the government of Guatemala through the Ministry of Agriculture, Livestock and Food and the Ministry of Culture and Sport, the recent ceremony signified the official delivery of the repatriated seed into the national system. Attendees celebrated the importance of maize in Guatemala and witnessed the presentation of repatriated maize collections to local and national Guatemalan seedbank authorities, including the Institute of Agricultural Science and Technology (ICTA).

“Supporting the seed conservation networks, on both the national and community levels in countries like Guatemala, is a key part of the mission of the CIMMYT Germplasm Bank,” said Costich. “Our collaboration with the Buena Milpa project has enabled the transfer of both seed and seed conservation technologies to improve the food security in communities with maize-centered diets.”

The Buena Milpa initiative in Guatemala is improving storage practices in community seed reserves: tiny, low-tech seed banks meant to serve as backups for villages in cases of catastrophic seed loss. So far, Buena Milpa has enabled 1,800 farmers to access community seed reserves. In addition, 13,000 farmers have applied improved practices and technologies.

The CIMMYT maize germplasm bank, headquartered in Mexico, serves as a backup for farmers and researchers in times of catastrophic seed loss by safeguarding maize genetic diversity, a crucial building block in global food security.

This article was originally published on the website of the CGIAR Research Program on Maize.

Breaking Ground: Santiago LĂłpez-Ridaura supports farmers facing tough decisions

Postcard_santiago lopez

Farmers frequently encounter trade-offs between maximizing short-term profits and ensuring sustainable, long-term production. Santiago LĂłpez-Ridaura, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), says these trade-offs are even more complicated for small-scale farmers who grow a mix of crops and raise livestock. With computer models to play out different scenarios, he and his team are helping them find optimal solutions.

“If you have $100, one hectare of maize, a half hectare of beans and three cows, you have limited resources,” indicates López-Ridaura. “You have to decide how you allocate those resources.”

Should the farmer use the money to buy new equipment or vaccinate the cows? What would happen if the farmer replaced the half-acre of beans with maize? These trade-offs, López-Ridaura explains, are one aspect of a farming system’s complexity.

“The other is that these farmers are trying to satisfy multiple objectives,” he adds. “They want to generate income. They want to produce enough food to feed their family and they may be trying to maintain cultural values.”

For example, a hybrid maize variety may produce higher yields under certain growing conditions, but the farmer could decide to continue growing the native variety because it carries cultural or even religious importance. Seasonal migration for off-farm jobs, climate change and access to markets are just some of the other factors that further complicate the decision-making process. LĂłpez-Ridaura points out many models in the past have failed to capture these complexities because they have focused on one objective: productivity at the plot level.

“Our models show the bigger picture. They take a lot of time to develop, but they’re worth it,” says López-Ridaura.

Custom solutions to farming challenges

The models start with hundreds of in-depth household surveys from a specific region. LĂłpez-Ridaura and his team then organize the large pool of data into several categories of farming systems.

“We make a model that says, ‘OK, this farm in Oaxaca, Mexico, has five hectares, 20 sheep and five people,” he explains. “We know how much the animals need to eat, how much the people need to eat, how much the farm produces and how much production costs.”

He and his team can then adjust certain factors in the model to explore different outcomes. For example, they can see how much water the farmer could use for irrigation to maximize his/her yields without depleting the local water supply during a drought. They can see which farmers would be the most vulnerable to a commodity crop price drop or who would benefit from a new policy.

Senior scientist Santiago Lopez-Ridaura (left) asks a farmer in Guatemala about his priorities — produce food, generate income, maintain soil health and feed his livestock — and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)
Santiago López-Ridaura (left) asks a farmer in Guatemala about his priorities — produce food, generate income, maintain soil health and feed his livestock — and the reasons behind his agricultural practices. (Photo: Carlos Sum/Buena Milpa)

“The political guys often want a simple solution so they may say, ‘We should subsidize inputs such as seeds and fertilizers.’ In Mexico, for example, you might miss 60-70% of farmers as they don’t use much of these inputs,” López-Ridaura says. “So that’s great for 30% of the population, but why don’t we think about the other 70%? We must be able to suggest alternatives from a basket of options, considering the diversity of farming systems.”

LĂłpez-Ridaura emphasizes that the models on their own do not provide solutions. He and his research team work with farmers to learn what they identify as their main challenges and how best to support them.

“We have networks of farmers in Guatemala and Oaxaca, and some may say, ‘Well, our main challenge is being self-sufficient with forage crops,’ and we’ll say, ‘OK, why don’t we try a crop rotation with forage crops? Our model suggests that it might be an appropriate option.’”

He and his team can then help the farmers access the right kind of seed and find out how best to grow it. This relationship is not a one-way street. The farmers also provide feedback on what is or is not working on the ground, which helps the researchers improve the accuracy of their models. This approach helps the researchers, farmers and policymakers understand different pathways forward and develop locally adapted, sustainable solutions.

Santiago LĂłpez-Ridaura and his team work in Africa, Latin America and South Asia. Their funding often comes from development agencies such as IFAD and USAID.

Winners of third Cargill-CIMMYT Award increase food production in Mexico

FOR IMMEDIATE RELEASE

EL BATAN, MEXICO – Cargill Mexico and the International Maize and Wheat Improvement Center (CIMMYT) announced the winners of the third Cargill-CIMMYT Food Security and Sustainability Award on July 24. The award ceremony took place at CIMMYT’s global headquarters in MĂ©xico.

The Cargill-CIMMYT Award supports initiatives that tackle food security challenges in Mexico through long-term solutions. Winners have successfully increased the production of nutrient-rich food and made it available to people.

This year, the jury selected the most innovative projects in three categories:

  • Farmers: Carlos BarragĂĄn, for the project ‘De la milpa a tu plato’ (‘From the field to your plate’). Based in the state of Oaxaca, this initiative promotes food security and sustainability in small-scale farming systems.
  • Opinion Leaders: FundaciĂłn Mexicana para el Desarrollo Rural, for the project Educampo. This project supports poor maize smallholders who live in marginalized communities to make their farming more productive and profitable.
  • Researchers: Mario LĂłpez, for the project ‘Technology for bean production.’ This initiative incremented production from 2 to 9 tons per hectare, disseminated agricultural technologies and increased the use of improved seed.

Winners were awarded a total of $25,000. The Farmers and Researchers categories received $10,000 each and the Opinion Leaders category was supported with $5,000.

A panel of experts from the agricultural and food sectors selected the winners from a shortlist of 30 projects across the country. The jury included representatives from Cargill Mexico, CIMMYT, Grupo Bimbo, the Inter-American Institute for Cooperation on Agriculture, Mexico’s Agriculture Council and Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food.


About Cargill

Cargill’s 155,000 employees across 70 countries work relentlessly to achieve our purpose of nourishing the world in a safe, responsible and sustainable way. Every day, we connect farmers with markets, customers with ingredients, and people and animals with the food they need to thrive.

We combine 153 years of experience with new technologies and insights to serve as a trusted partner for food, agriculture, financial and industrial customers in more than 125 countries. Side-by-side, we are building a stronger, sustainable future for agriculture. For more information, visit Cargill.com and our News Center.

About Cargill Mexico

Cargill Mexico aims to contribute in improving agricultural productivity, satisfying and fulfilling the expectations of the domestic industry. In addition to adding value to human and animal nutrition and thus encourage economic development, Cargill Mexico reinvests its profits in several new businesses in the country. Cargill has 9 business units that have operations in Mexico, it employs more than 1,750 people in 13 states and has a total of 30 facilities, including a corporate office in Mexico City. For more information, visit Cargill.com.mx, and our News Center.

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.


For more information

Cargill Mexico: Joselyn Ortega, Joselyn_Ortega@cargill.com, +52 5511057429.

CIMMYT: Ricardo Curiel, R.Curiel@cgiar.org, +52 5558047544.


Photos available (click on the image to download the high-resolution JPG file)

Carlos BarragĂĄn (center) receives the Cargill-CIMMYT Award, in the Farmers category. Behind him are representatives from the organizations in the jury (from left to right): Bosco de la Vega, President of Mexico’s National Agriculture Council; David HernĂĄndez, Global Chief Procurement Officer of Grupo Bimbo; Martin Kropff, Director General of CIMMYT; Jorge Zertuche, Mexico’s Undersecretary of Agriculture; Marcelo Martins, President of Cargill Mexico; and JosĂ© SĂĄenz, Chief of Staff to the Secretary of Economy. (Photo: CIMMYT)
Carlos BarragĂĄn (center) receives the Cargill-CIMMYT Award, in the Farmers category.
Behind him are representatives from the organizations in the jury (from left to right): Bosco de la Vega, President of Mexico’s National Agriculture Council; David HernĂĄndez, Global Chief Procurement Officer of Grupo Bimbo; Martin Kropff, Director General of CIMMYT; Jorge Zertuche, Mexico’s Undersecretary of Agriculture; Marcelo Martins, President of Cargill Mexico; and JosĂ© SĂĄenz, Chief of Staff to the Secretary of Economy. (Photo: CIMMYT)
From left to right: Marcelo Martins, President of Cargill Mexico; Carlos BarragĂĄn, Farmers category winner; Citlali Fuentes, from FundaciĂłn Mexicana para el Desarrollo Rural, Opinion Leaders category winner; Mario LĂłpez, Researchers category winner; and Martin Kropff, Director General of CIMMYT. (Photo: CIMMYT)
From left to right: Marcelo Martins, President of Cargill Mexico; Carlos BarragĂĄn, Farmers category winner; Citlali Fuentes, from FundaciĂłn Mexicana para el Desarrollo Rural, Opinion Leaders category winner; Mario LĂłpez, Researchers category winner; and Martin Kropff, Director General of CIMMYT. (Photo: CIMMYT)

Breaking Ground: Gemma Molero sheds light on wheat photosynthesis

Postcard_Gemma MoleroDespite the rising interest in advanced methods to discover useful genes for breeding in crops like wheat, the role of crop physiology research is now more important than ever, according to Gemma Molero, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“Physiology starts with the physical, observable plant,” Molero said. “It attempts to understand plant traits and processes and, ultimately, to provide breeders with selectable traits. Take for example the plant’s ability to capture and use sunlight. This is a complex trait and there are no useful DNA markers for it, so we have to analyze how it works and then help breeders to select plants that use sunlight better and yield more grain.”

A key goal of breeders and physiologists is to boost wheat’s genetic yield potential dramatically. Progress through current breeding is less than 1 percent each year. Molero said that needs to go to 1.7 percent yearly, to meet the demand expected by 2050 from expanding and urbanizing populations.

“Science must also adapt wheat to rising temperatures, less water, and mutating disease strains, and physiology is contributing,” she added.

Applied science and fieldwork drew Molero to CIMMYT

Molero grew up near Barcelona, Spain, in a family that included a folk-healing grandmother and a grandfather whose potato fields and orchards she recalls helping to tend as a child, during summers in Granada.

“My family called me ‘santurrona’ — something like ‘goody-two-shoes’ in English — because I was always trying to help people around me,” Molero explained.

Molero completed bachelor’s and master’s degrees in biology at the University of Barcelona, Spain, by 2006. She then pursued a doctorate in eco-physiology under the supervision of JosĂ© Luis Araus, a University of Barcelona professor who was also working as a CIMMYT maize physiologist around the same time.

“Araus was an example of persistence and enthusiasm for me,” Molero explained. “He sent me to the CIMMYT research station near Ciudad Obregón, in northwestern Mexico, for fieldwork as part of my Ph.D. research. That sealed the deal. I said ‘This is the type of work where I can have impact, in an interdisciplinary setting, and with fieldwork.’ ”

She joined CIMMYT in 2011 as a post-doctoral fellow with Matthew Reynolds, a CIMMYT distinguished scientist who leads wheat physiology research.

Wheat spikes hold grain and catch light

Molero has quickly made a mark in CIMMYT wheat physiology research. Among other achievements, she has spearheaded studies on photosynthesis in wheat spikes — the small ears that hold the grain — to increase yield.

“In elite wheat varieties, spike photosynthesis adds an average 30 percent to grain yield,” she said. “In wheat wild relatives and landraces, that can go as high as 60 percent. This has put wheat spike photosynthesis in the science limelight.”

Practical outputs of this work, which involves numerous partners, include molecular markers and other tools that breeders can use to select for high spike photosynthesis in experimental lines. “We have a project with Bayer Crop Science to refine the methods,” Molero said.

Molero is also collaborating with plant biologists Stephen Long, University of Illinois, and Elizabete Carmo-Silva, Lancaster University, UK, to understand how quickly wheat returns to full photosynthesis after being shaded — for example, when clouds pass overhead. According to Molero, wheat varies greatly in its response to shading; over a long cropping season, quick recoveries can add 20 percent or more to total productivity.

“This is a breakthrough in efforts to boost wheat yields,” explained Molero, who had met Long through his participation in the International Wheat Yield Partnership (IWYP), an initiative that aims to raise wheat’s genetic yield potential by 50 percent over the next two decades. “I was fortunate to arrive at CIMMYT at just the right time, when IWYP and similar global partnerships were being formalized.”

Training youth and improving conditions for young women

From a post-doctoral fellow to her current position as a full scientist at CIMMYT, Molero has supervised 13 Ph.D. students and post-doctoral fellows, as well as serving as an instructor in many training courses.

“During my first crop cycle at Ciudad Obregón, I was asked to coordinate the work of five Ph.D. students,” she said. “I’d arrive home exhausted from long days and fall asleep reading papers. But I love supervising students and it’s a great way to learn about diverse facets of wheat physiology.”

Regarding the challenges for women and youth in the scientific community, Molero believes a lot needs to change.

“Science is male-dominated and fieldwork even more,” she observed. “It’s challenging being a woman and being young — conditions over which we have no control but which can somehow blind peers to our scientific knowledge and capacity. Instances of what I call ‘micro-machismo’ may appear small but they add up and, if you push back, the perceived ‘feminism’ makes some male scientists uncomfortable.”

Molero also believes young scientists need ample room to develop. “The most experienced generation has to let the new generation grow and make mistakes.”

Selected images from Science Week 2018

Every two years scientists from 15 offices worldwide of the International Maize and Wheat Improvement Center (CIMMYT) gather at the center’s headquarters in Mexico for an event known as “Science Week,” where they share and discuss new developments, science, challenges, and opportunities.

Science Week 2018, which took place from 25 to 28 June, drew more than 270 participants representing 46 countries that grow maize and wheat, crops that provide food and livelihoods for billions worldwide, to consider the theme “Next-generation science and partnerships for impact at CIMMYT.”

Topics addressed included cutting-edge tools and approaches for breeding, such as advanced genotyping, phenotyping, and data management, along with new technologies for the sustainable intensification of maize and wheat cropping systems—all to ensure benefits for farmers and consumers while accelerating genetic gains in maize and wheat, improving nutrition, and mitigating climate change impacts in agriculture.

Click here to see images of CIMMYT staff at work during Science Week 2018.

42299484135_22f61a733a_z

Designing and promoting institutional change: Geoff Graham of Corteva talks about CIMMYT

When trying to drive change in a global research organization, the science is the easy part, according to Geoff Graham, Vice President for Plant Breeding at Corteva Agriscience, a new company that brings together DuPont Crop Protection, DuPont Pioneer, and Dow AgroSciences.

“The hard thing is to change organizational culture—getting people to stop remembering how they’ve always done things and to think instead about what needs to be done,” said Graham, speaking on the topic to more than 600 international scientists and support staff at the Mexico headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on 25 June 2018.

“Innovation is a process that can be managed, but it takes time and must be prioritized,” he explained, in his keynote talk during the opening session of CIMMYT’s biennial Science Week, which brings together the center’s researchers from 15 offices in Africa, Asia, and Latin America and this year focused on next-generation science and partnerships for impact.

“Innovation may require creativity, but innovation and creativity are different things,” added Graham, whose family lived in Cali, Colombia, until he was 14 and then moved to Minnesota in the U.S.

Responsible for global breeding activities at Corteva, a name derived from a combination of words meaning “heart” and “nature,” Geoff previously worked at DuPont Pioneer. He has Bachelor of Science and Master of Science degrees from the University of Minnesota, and earned a Ph.D. in genetics and plant breeding from North Carolina State University.

Below, watch an interview with Graham regarding the role of research institutions in society, how change can occur in CIMMYT, and how Corteva will support the CIMMYT-led CGIAR Excellence in Breeding Platform.

Wheat-rye crosses provide control for deadly sap-sucking aphid

Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.
Martin Kropff, CIMMYT director general (left) and Mustapha El-Bouhssini, ICARDA entomologist, in that center’s lab at Rabat, Morocco.

In an excellent example of scientific collaboration spanning borders and generations, Mustapha El-Bouhssini, entomologist at the International Centre for Agricultural Research in the Dry Areas (ICARDA), screened wheat breeding lines from the International Maize and Wheat Improvement Center (CIMMYT) under glasshouse infestations of Russian wheat aphid (Diuraphis noxia), a major global pest of wheat. At least one of the lines, which were developed through crosses of wheat with related crop and grass species, showed high levels of resistance.

Scientists at CIMMYT began research on sources of RWA resistance for wheat in the early 1990s. Good sources of resistance from rye were accessed via wide crosses that combined major portions of both crop’s chromosomes, in collaborative work led by Adam J. Lukaszewski, University of California, Riverside.

“In our experiments, we did an initial screening with one replication and then a replicated test with a Pavon line and the check,” said El-Bouhssini.

Pavon is a semi-dwarf wheat variety developed by Sanjaya Rajaram, former CIMMYT wheat director and 2014 World Food Prize laureate. The version of Pavon referred to by El-Bouhssini had been crossed with rye by Lukaszewski and entered CIMMYT’s wheat genetic resource collections; the check was a popular high-yielding variety with no resistance to Russian wheat aphid.

The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.
The resistant wheat line (center) is green while all others have perished under heavy infestation of Russian wheat aphid, in the ICARDA entomology lab at Rabat, Morocco.

Pavon had been used by Lukaszewski and colleagues as a model variety for wide crosses to transfer pest and disease resistance to wheat from its distant relatives. More recently Leonardo Crespo-Herrera, CIMMYT wheat breeder, pursued this research for his doctoral studies. It was he who provided a selection of wide-cross lines to El-Bouhssini.

“Resistance to pests in wheat is a valuable trait for farmers and the environment,” said Crespo-Herrera. “It can protect yield for farmers who lack access to other control methods. For those with access to insecticides, it can minimize their use and cost, as well as negative impacts on the environment and human health.”

 

 

 

 

CIMMYTNEWSlayer1

Breaking Ground: Tom Hagen brings IT expertise to crop breeding

Postcard_Tom HagenFrom an early age, Tom Hagen has enjoyed watching plants grow and solving complex problems. Now, as the enterprise breeding system manager at the International Maize and Wheat Improvement Center (CIMMYT), Hagen is combining his expertise in crop breeding and IT to help researchers and farmers be more successful.

“You could say I’m a hybrid scientific consultant – IT system architect,” said Hagen. “I will work with breeding teams to appropriately design software and then manage its development and deployment to facilitate breeding operations at CIMMYT and the International Rice Research Institute.”

The software will help breeders more effectively choose seed varieties, design field trials, collect data and analyze their outcomes. It is intended to assist farmers and extension agents as well.

“It will be able to give them advice about the appropriate seeds to use based on their specific environment and economic situation,” said Hagen. “It can also recommend ways to plant and manage their crop for better yields and higher income.”

Hagen’s interest in using computer programing to analyze large sets of biological data emerged shortly after obtaining a doctorate in plant genetics from the University of Georgia. It was the early 1990s, and bioinformatics was a new frontier. Hagen founded and managed the university’s Center for Scientific Computing and Visualization, and helped create the Bioinformatics Graduate Program.

In 1999, Hagen decided to leave the world of academia for the private sector.

“Universities are about inventing things, not applying them,” he said. “It is important to base your practice on theory, but at the end of the day, I personally think you need to apply it because otherwise – well, what is the point of it all?”

Hagen joined DuPont Pioneer, a large U.S. producer of hybrid seeds, where he and a team of designers created different technologies for breeders. Specifically, they worked on technologies that would help breeders develop a line of drought-resistant maize.

“By being in that group, I was both a scientist trying to invent and validate these methods while also designing and building the IT for that,” said Hagen.

During his last two years at DuPont Pioneer, Hagen was the architect of all analytics software. He also conducted research on crop growth modeling for predicting genotype-environment interactions for maize hybrids. This information has helped breeders, extension agents and farmers choose appropriate seed varieties for their specific environmental conditions.

Hagen joined the CGIAR Excellence in Breeding Platform (EiB) in January 2018. Led by CIMMYT, EiB aims to modernize breeding programs, specifically targeting the developing world for greater impact on food and nutrition security, climate change adaptation and development.

“I’m excited to be part of the work that’s starting to ramp up here at CIMMYT and the other CGIAR centers,” said Hagen. “I’m here to learn and engage, and do whatever I can to help others learn.”

Funding for the Excellent in Breeding Platform comes from the CGIAR, the Bill & Melinda Gates Foundation, national governments, development banks and other public and private agencies. Contributors include CGIAR system centers, the Biosciences eastern and central Africa- International Livestock Research Institute Hub, Cornell University, Diversity Arrays Technology, DuPont Pioneer, the Integrated Breeding Platform, Monsanto and Queensland University.

CIMMYTNEWSlayer1

Breaking Ground: Wei Xiong helps farmers and policymakers make better decisions

Farmers and agricultural policymakers frequently encounter tough decisions with complex trade-offs. Selecting which crop to plant next season, for example, would be much easier with a crystal ball. Wei Xiong, a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT), cannot look into the future, but he can remove a lot of the guesswork.

Xiong uses modeling tools to simulate how agricultural systems would respond to different policies, technological innovations and climate change.

“With these simulations, we can show farmers and policymakers different hypothetical outcomes,” said Xiong. “We can help them make better, more informed decisions.”

Xiong and his multi-disciplinary team are interested in looking at new angles of agricultural issues. For one project, Xiong is investigating how climate change could affect global beer prices. He and his team are studying the effects of increasingly frequent extreme weather events, such as drought, on global barley yields and how this could affect beer production and prices.

“We call the project drinking security,” added Xiong.

Xiong is also interested in the impacts of air pollution on agricultural production and livelihoods in India and China.

“We want to know if air pollution affects yields and whether policies to curb air pollution will have any impact on farmer incomes, food prices and international trade,” he said.

Xiong collaborates with a team of Chinese agricultural scientists and local extension officers on a program called Size & Technology Backyard. The program aims to increase farmers’ yields while decreasing agricultural pollution in the water, air and soil. During each growing season, agricultural students stay in villages to conduct surveys and field research with farmers.

“Based on that data, we can create an agricultural modeling system that incorporates everything from the crop physiology side, to the socioeconomic side and human dimension side,” said Xiong. “We can project which farmers are most likely to adopt which specific kinds of technology based on everything from their location to their family structure.”

But in China, Xiong explained, agriculture still falls under government control.

“The government has always decided which crop you should plant, which area you should use and how to use the areas,” said Xiong. “Most of the policies are based on suggestions by experts.”

The team will use their simulation models to recommend policies that benefit farmers and the environment.

Xiong effectively links many silos through his work at CIMMYT, in large part due to his diverse educational background. After receiving a bachelor’s degree in geography at Hubei University, he continued with a master’s degree in meteorology from the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. He later went on to earn a doctorate in agronomy from China Agricultural University.

After ten years as a professor at CAAS, Xiong worked at the International Institute for Applied Systems Analysis where he designed large-scale simulations of crop production and the effects of global policy. In 2014, he collaborated with other researchers on a global agriculture systems modeling project through a position at the University of Florida. Last fall, Xiong joined CIMMYT at its headquarters in El BatĂĄn, Mexico, working on sustainable intensification.

Xiong will return to China later this year to help establish a new CIMMYT office in Henan and strengthen CIMMYT’s partnership with Henan Agricultural University. The new location will focus on research and training, and will host two international senior scientists with expertise in remoting sensing, informatics, physiology and crop management.

Tar Spot Complex a potential big black spot on US maize economy

Figure: Maize-producing counties in the USA that are vulnerable to Tar Spot Complex (TSC) of maize, developed based on climate analogue model analysis procedure matching historic climatic data of 13 counties where TSC has been detected.
Figure: Maize-producing counties in the USA that are vulnerable to Tar Spot Complex (TSC) of maize, developed based on climate analogue model analysis procedure matching historic climatic data of 13 counties where TSC has been detected.

A new study shows that nearly 12 million hectares of the maize-growing USA, approximately 33 percent of the entire maize-growing area of the country, might be vulnerable to a disease called Tar Spot Complex (TSC).

Native to Latin America, one of the two major fungal pathogens involved in TSC of maize was detected for the first time in the United States in 2015. In Latin America, TSC can cause up to 50 percent losses in maize yields, but the impact of one fungal pathogen alone on maize yields unknown. There is a hypothetical likelihood that the second fungal pathogen involved in TSC, could migrate to the US. If this happens, the devastating TSC disease in the US could cause significant economic damages.

Even a one percent loss in maize production caused by the disease in this area could lead to a reduction in maize production of 1.5 million metric tons of grain, or approximately $231.6 million in losses. Such production losses would not only affect the $51.5 billion US maize industry, but also the food security in a number of low-income countries that are heavily dependent on maize imports from the US.

The emergence and spread of new crop diseases or new variants of already established diseases around the globe over the last decades have generated serious threats for food safety and security. Therefore, the improvement of crop disease resistance has become one of the key focus topics of research at the International Maize and Wheat Improvement Center (CIMMYT).

The intent of this study is to raise public awareness regarding potential TSC outbreaks and to develop strategies and action plans for such scenario.

This study was published by an interdisciplinary team of CIMMYT scientists in the journal of Mitigation and Adaptation Strategies for Global Change regarding the potential threats of TSC in the US and its global consequences. Within this article, ex-ante impact assessment techniques were combined with climate analogue analysis to identify the maize growing regions that may be vulnerable to potential TSC outbreaks in the USA.

This work was supported by the CGIAR Research Program on Maize (MAIZE).

The most important award is the one farmers give: Bram Govaerts

Bram Govaerts with the members of the Río Fuerte Sur Farmer Association (AARFS) Management Committee. Photo: José Saucedo.
Bram Govaerts with the members of the Río Fuerte Sur Farmer Association (AARFS) Management Committee. Photo: José Saucedo.

On the 14th of May, the Río Fuerte Sur Farmers’ Association (Asociación de Agricultores del Río Fuerte Sur, or AARFS), whose membership includes 2,500 farmers from northern Sinaloa, granted Bram Govaerts the 2018 Tecnoagro Award.

Starting 27 years ago, this award has been granted to people who promote the development of science and technologies aimed at improving farmers’ productivity and their ability to overcome the challenges of Mexican agriculture.

Govaerts received the 2018 Tecnoagro Award in recognition of the efforts of CIMMYT and, in particular, of its Sustainable Intensification Program, for promoting the adoption of conservation agriculture in northern Sinaloa, where the MasAgro program has had great success thanks to its close collaboration with AARFS farmers.

“It gave me great satisfaction to hear the words of Montiel Ibarra, an agricultural engineer who is Chairman of the Management Committee of the AARFS, indicating that MasAgro practices are the most appropriate alternative because they allow farmers to reduce costs, become more competitive, transform Sinaloa’s agriculture and make it more sustainable,” said Govaerts. “The best award is the one farmers give,” added CIMMYT’s Regional Representative in the Americas.

Govaerts receives the 2018 Tecnoagro Award and gives a keynote speech at the AARFS offices in Los Mochis, Sinaloa. Photo: Andrea Carbajal.
Govaerts receives the 2018 Tecnoagro Award and gives a keynote speech at the AARFS offices in Los Mochis, Sinaloa. Photo: Andrea Carbajal.

CIMMYT’s latest data indicate that Sinaloan farmers have saved, on average, $4,564 Mexican pesos and increased their productivity by 1.3 tons per hectare by implementing MasAgro’s sustainable intensification practices.

Additionally, conservation agriculture and the technologies that MasAgro promotes have made it possible for farmers to save up to 50% of the water used in their irrigation systems and reduce their pesticide applications by up to 66%, thanks to innovative integrated pest management practices.

Sinaloan farmers have also saved up to 170 kg of nitrogen fertilizer per hectare by applying optimal fertilizer doses estimated by remote sensors that very precisely determine the nutrient needs of maize or wheat crops.

Upon accepting the 2018 Tecnoagro Award, Govaerts joined AARFS’ call for farmers to adopt the sustainable intensification practices promoted by CIMMYT through MasAgro and reaffirmed his commitment to agricultural development both in Mexico and the world.

 

 

CIMMYTNEWSlayer1